排列组合与概率知识点及经典练习题

一、随机变量.

1. 随机试验的结构应该是不确定的.试验如果满足下述条件:

①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;

③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.

它就被称为一个随机试验.

2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a,b是常数.则也是一个随机变量.一般地,若ξ是随机变量,是连续函数或单调函数,则也是随机变量.也就是说,随机变量的某些函数也是随机变量.

设离散型随机变量ξ可能取的值为:

ξ取每一个值的概率,则表称为随机变量ξ的概率分布,简称ξ的分布列.

有性质①;②.

注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:

即可以取0~5之间的一切数,包括整数、小数、无理数.

3. ⑴二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是:[其中]

于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作~B (n·p),其中n,p为参数,并记.

⑵二项分布的判断与应用.

①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.

②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.

4. 几何分布:“”表示在第k次独立重复试验时,事件第一次发生,如果把k次试验时事件A发生记为,事A不发生记为,那么.根据

相互独立事件的概率乘法分式:于是得到随机变量ξ的概率分布列.

我们称ξ服从几何分布,并记,其中

二.数学期望与方差.

1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为

则称为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.

2. ⑴随机变量的数学期望:

①当时,,即常数的数学期望就是这个常数本身.

②当时,,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.

③当时,,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.

⑵单点分布:其分布列为:.

⑶两点分布:,其分布列为:(p + q = 1)

⑷二项分布:其分布列为~.(P为发生的概率)

⑸几何分布:其分布列为~.(P为发生的概率)

3.方差、标准差的定义:当已知随机变量ξ的分布列为时,则称

为ξ的方差. 显然,故为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中

与离散的程度.越小,稳定性越高,波动越小

...............

4.方差的性质.

⑴随机变量的方差.(a、b均为常数)

⑵单点分布:其分布列为

⑶两点分布:其分布列为:(p + q = 1)

⑷二项分布:

⑸几何分布:

5. 期望与方差的关系.

⑴如果和都存在,则

⑵设ξ和是互相独立的两个随机变量,则

⑶期望与方差的转化:⑷(因为为一常数)

一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

先排末位共有

然后排首位共有

最后排其它位置共有

由分步计数原理得

二.相邻元素捆绑策略

例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有

种不同的排法

三.不相邻问题插空策略

例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?

解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的

6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有种

四.定序问题倍缩空位插入策略

例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法

解:

(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。

思考:可以先让甲乙丙就坐吗?

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有几种方法

五.重排问题求幂策略

例5.把6名实习生分配到7个车间实习,共有多少种不同的分法

解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有种不同的排法

六.多排问题直排策略

例6.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法

解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有种,再排后4个位置上的特殊元素丙有种,其余的5人在5个位置上任意排列有种,则共有种

七.排列组合混合问题先选后排策略

例7.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.

解:第一步从5个球中选出2个组成复合元共有种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有种方法,根据分步计数原理装球的方法共有

八.元素相同问题隔板策略

例8.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?

解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有种分法。

九.正难则反总体淘汰策略

例9.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的

取法有多少种?

解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有,只含有1个偶数的取法有

,和为偶数的取法共有。再淘汰和小于10的偶数共9种,符合条件的取法共有

十. 合理分类与分步策略

例10.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法

解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究

只会唱的5人中没有人选上唱歌人员共有种,只会唱的5人中只有1人选上唱歌人员种,只会唱的5人中只有2人选上唱歌人员有种,由分类计数原理共有

种。

排列组合概率例题与讲解

排列组合概率例题与讲解 排列、组合与概率 一、基本知识点回顾: (一)排列、组合 1、知识结构表: 2、两个基本原理: (1)分类计数原理 (2)分步计数原理 3、排列 (1)排列、排列数定义 (2)排列数公式: (3)全排列公式: 4、组合 (1)组合、组合数定义 (2)组合数公式: (3)组合数性质: ①②③ ④ ⑤即: 5、思想方法 (1)解排列组合应用题的基本思路: ①将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步 ②对“组合数”恰当的分类计算是解组合题的常用方法; ③是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”; (2)解排列组合题的基本方法: ①优限法: 元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置; ②排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。 ③分类处理:某些问题总体不好解决时,常常分成若干类,再由分类计数原理得出结论;注意:分类不重复不遗漏。 ④分步处理:对某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决;在解题过程中,常常要既要分类,以要分步,其原则是先分类,再分步。 ⑤插空法: 某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间。 ⑥捆绑法: 把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列。 ⑦穷举法: 将所有满足题设条件的排列与组合逐一列举出来;这种方法常用于方法数比较少的问题。 (二)二项式定理 历年高考中对二项式定理的考查主要有以下两种题型: 1、求二项展开式中的指定项问题:方法主要是运用二项式展开的通项公式;

排列组合和概率习题及答案

C 2n k (1/2) 2n 独立重复试验。如果在一次试验中某事件发生的概率是P ,那么 在n 次独立重复试验中这个事件恰好发生K 次的概率为P n (K )=C n k P k (1-P) n-k (一夫妇生四孩子,问生2男2女的情况之几率;每次生男女概率相同,1/2,如抛硬币问题(抛四次,2次朝上),即C 42(1/2) 4=3/8 12、 有5个白色珠子和4个黑色珠子,从中任取3个,问其中至少有一个是黑色的概率。 1- C 53 /C 93 13、 自然数计划S 中所有满足n 100, 问满足n(n+1)(n+2) 被6整除的n 的取值概率? 由于3个连续自然数必包括一个偶数及一个可被3整除的数,因此100% 14、 设0为正方形ABCD[ 坐标为(1,1),(1,-1),(-1,1),(-1,-1)]中的一点,求起落在x 2+y 2 1的概率。 面积法。x 2+y 2=1为一个以原点为圆心,半径为1的圆,面积为л,正方形面积为4, ANSWER: л/4 15、 A>B (成功的概率)? (1) A 前半部分的成功概率为1%,B 前半部分成功概率为1.4%. (2) A 后半部分的成功概率为10%,B 后半部分成功概率为8.5%. C. P(A)=1%*10% P(B)=1.4%*8.5% 16、 集合A 中有100个数,B 中有50个数,并且满足A 中元素于B 中元素关系a+b=10的有20对。问任意分别从A 和B 中各抽签一个,抽到满足a+b=10的a,b 的概率。 C 201 /C 1001 C 501 17、 有两组数,都是『1,2,3,4,5,6』,分别任意取出两个,其中一个比另一个大2的概率? 2*4/ C 61 C 61由于注明分别,即分两次取。 18、 从0到9这10个数中任取一个数并且记下它的值,再取一个数也记下它的值。当两个值的和为8时,出现5的概率是多少? 2/9. 总共有{(8,0)(0,8)(1,7)(7,1)(6,2)(2,6)(5,3)(3,5)(4,4)}集合中不能有重复元素

高考排列组合、概率知识点总结及典型例题(教师版)

高考排列组合、概率知识点总结及典型例题 排列组合知识点总结: 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①m m n c -=n n c ;②111-m n c --+=m n n n c c ;③1 1-k n kc -=k n nc ; 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若12 m m 1212m =m m +m n n n C C ==则或 四、二项式定理. 1. ⑴二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点: ① 项数:共有1+n 项; ② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C ③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列 展开. ⑵二项展开式的通项. n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+. ⑶二项式系数的性质. ①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;

(完整版)排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合与概率知识点及经典练习题

一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个; ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a,b是常数.则也是一个随机变量.一般地,若ξ是随机变量,是连续函数或单调函数,则也是随机变量.也就是说,随机变量的某些函数也是随机变量. 设离散型随机变量ξ可能取的值为: ξ取每一个值的概率,则表称为随机变量ξ的概率分布,简称ξ的分布列. 有性质①;②. 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如: 即可以取0~5之间的一切数,包括整数、小数、无理数. 3. ⑴二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是:[其中] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作~B (n·p),其中n,p为参数,并记. ⑵二项分布的判断与应用.

①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布. ②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列. 4. 几何分布:“”表示在第k次独立重复试验时,事件第一次发生,如果把k次试验时事件A发生记为,事A不发生记为,那么.根据 相互独立事件的概率乘法分式:于是得到随机变量ξ的概率分布列. 我们称ξ服从几何分布,并记,其中 二.数学期望与方差. 1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为 则称为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平. 2. ⑴随机变量的数学期望: ①当时,,即常数的数学期望就是这个常数本身. ②当时,,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ③当时,,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.

利用排列组合计算概率的练习题

利用排列组合计算概率的练习题在数学中,排列组合是一种十分重要的概念,特别是在概率计算中。通过掌握排列组合的知识和技巧,我们可以解决各种与概率有关的问题。本文将通过一些练习题来展示如何利用排列组合计算概率。 练习题1:从10个不同的球中,随机取3个,计算取出的球至少有 一个是红色的概率。 假设我们用R表示红色球,用B表示蓝色球,那么我们可以列出所有可能的组合: RBB, RBR, RRB, RRR, BBB, BBR, BRB, BRR 共有8种可能的组合。其中,有3种组合至少有一个红色球,它们是:RBB, RBR和RRR。因此,取出的球至少有一个是红色的概率为 3/8。 练习题2:一副扑克牌共有52张牌,从中随机取5张,计算取到的 牌全为黑桃的概率。 在一副扑克牌中,有13张黑桃牌。我们需要计算从13张黑桃牌中 选取5张的可能性,以及从52张牌中选取5张的可能性。 首先,我们计算从13张黑桃牌中选取5张的可能性,即13选5。 这个可以通过排列组合公式来计算:13! / (5! * (13-5)!) = 1287。 接下来,我们计算从52张牌中选取5张的可能性,即52选5。也 可以使用排列组合公式来计算:52! / (5! * (52-5)!) = 2598960。

所以,取到的牌全为黑桃的概率为1287 / 2598960,约为0.000495。 练习题3:一个由0和1组成的4位数,以及一个由1和2组成的3位数,它们的百位、十位、个位各位上的数字都不相同,计算两个数 相加等于300的概率。 我们需要计算满足条件的组合有多少种,以及总的组合有多少种。 首先,我们计算满足条件的组合数。对于由0和1组成的4位数, 百位不能为0,但可以为1,十位、个位不能为0或1,所以满足条件 的组合数为1 * 2 * 1 * 1 = 2。 对于由1和2组成的3位数,百位和十位不能为1,所以满足条件 的组合数为1 * 1 * 1 = 1。 因此,两个数相加等于300且满足条件的概率为2 / (2 * 1) = 1/2。 通过以上三个练习题,我们可以看到排列组合在计算概率中的应用。掌握了排列组合的知识和技巧,我们能够更加准确地计算各种概率问题,解决各类实际问题。因此,学习和理解排列组合的概念对于数学 的学习和应用具有重要意义。 通过以上练习题的讲解,相信大家对于利用排列组合计算概率有了 更深入的理解。希望本文对于大家的学习有所帮助。

排列组合 概率专项训练

排列组合概率专项训练 【排列组合专项练习】 1. 从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为__________。(以数字作答) 2. 要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为__________。(以数字作答) 3. 某篮球运动员在三分线投球的命中率是_______,他投球10次,恰好投进3个球的概率为______。(用数字作答) 4.从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种 5. 从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有________种(用数字作答) 6. 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是_____,三人中至少有一人达标的概率是_____。 7. 加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为_____、_____、_____,且各道工序互不影响,则加工出来的零件的次品率为_________。 8. 从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为____________(结果用最简分数表示)。 9. 一个病人服用某种新药后被治愈的概率为0.9.则服用这咱新药的4个病人中至少3人被治愈的概率为_______(用数字作答)。 【概率计算题专项练习】 1.在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……6),求: (Ⅰ)甲、乙两单位的演出序号均为偶数的概率; (Ⅱ)甲、乙两单位的演出序号不相邻的概率.

经典排列组合问题100题配超详细解析

1.n N ∈且55n <,那么乘积(55)(56)(69)n n n ---等于 A .5569n n A -- B .15 55n A - C .15 69n A - D .14 69n A - 【答案】C 【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数 为55-n ,那么可知下标的值为69-n,共有69-n-〔55-n 〕+1=15个数,因此选择C 2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么不同的分配方案共有〔 〕 A. 24种 B. 36种 C. 38种 D. 108种 【答案】B 【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B 3.n ∈N * ,那么〔20-n 〕(21-n)……(100-n)等于〔 〕 A .80 100n A - B .n n A --20100 C .81 100n A - D .81 20n A - 【答案】C 【解析】因为根据排列数公式可知n ∈N * ,那么〔20-n 〕(21-n)……(100-n)等于81 100n A -,选 C 4.从0,4,6中选两个数字,从3.5.7中选两个数字,组成无重复数字的四位数.其中偶数的个数为 ( ) A.56 B. 96 C. 36 D.360 【答案】B 【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么 其余的有A 3 5=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种 5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,假设其中甲、乙两名志愿者不能从事翻译工作,那么选派方案共有 〔 〕 A. 280种 B. 240种 C. 180种 D. 96种 【答案】B 【解析】根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,有 46360A =种不同的情况,其中包含甲从事翻译工作有3 560A =种,乙从事翻译工作的有3560A =种,假设其中甲、乙两名支援者都不能从事翻译工作,那么选派方案共有 360-60-60=240种. 6.如图,在∠AOB 的两边上分别有A 1、A 2、A 3、A 4和B 1、B 2、B 3、B 4、B 5共9个点,连结线段

排列组合概率练习

排列组合概率练习 一、选择题(10×5'=50') 1. 8本不同的书分给甲、乙、丙3人,其中有两人各得3本,一人得2本,则不同的分法共有( ) A.560种 B.280种 C.1 680种 D.3 360种 2.从不同号码的5双鞋中任取4只,其中恰好有一双的取法种数为( ) A.120 B.240 C.180 D.60 3.停车场划出一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法有( ) A.A 88种 B.A 812种 C.A 88·C18种 D.A 88·C 1 9种 4.设集合M ={a |a ∈N ,1≤a ≤10},A 是M 的三元素子集且至少有两个偶数元素,则如此的集合A 的个数是( ) A.60 B.100 C.120 D.160 5.某单位有三个科室,为实现减员增效,每科室抽调2人去参加再就业培训,培训后这6人中有2人返回单位,但不回到原科室工作,且每科室至多安排一人,问共有多少种不同的安排方法( ) A.75种 B.42种 C.30种 D.15种 6.两个事件对立是这两个事件互斥的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.不充分且不必要条件 7.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一次,他们都中靶的概率为 ( ) A. 53 B. 43 C. 2512 D.25 14 8.一学生通过某种英语听力测试的概率为2 1 ,他连续测试2次,则恰有1次获得通过的概率为 ( ) A. 41 B. 31 C. 21 D. 3 4 9.一个小组有8个学生在同年出生,每个学生的生日都不相同的概率是 ( ) A. 8365 8 365C C B.3658 C. 88365365A D. 88365365C 10.在正方体8个顶点中任取4个,其中4点恰好能构成三棱锥的概率是 ( ) A. 3532 B. 35 31 C. 3528 D. 3529 二、填空题(4×3'=12') 11.将数字1、2、3、4、5、6、7填入一排编号1、2、3、4、5、6、7的七个方格中,现要适当调换,但每次调换时,恰有四个方格中的数字不变,共有不同的调换方式种数为 . 12.在分别标有2、4、6、8、11、12、13的七张卡片中任取两张,用卡片上的两个数组成一个分数,在所得分数中既约分数的概率为 .

排列组合与概率(含习题问题详解)

2014高三暑期保送复习 《排列组合与概率》专题 第一讲 排列组合与二项式定理 【根底梳理】 1.排列 (1)排列的概念:从n 个不同元素中,任取m (m ≤n )个元素(这里的被取元素各不一样)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (2)排列数的定义:从n 个不同元素中,任取m (m ≤n )个元素的所有排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. (3)排列数公式 A m n = (4)全排列数公式 A n n =(叫做n 的阶乘). 2.组合 (1)组合的定义:一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. (2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C m n 表示. (3)组合数公式 C m n =(n ,m ∈N *,且m ≤n ).特别地C 0 n =1. (4)组合数的性质:①C m n =C n -m n ;②C m n +1=C m n +C m -1 n . 3.二项式定理 〔1〕(a +b )n =C 0n a n +C 1n a n -1 b +…+C r n a n -r b r +…+C n n b n (n ∈N * )这个公式所表示的定理叫二项式定理,右边的多项式叫 (a +b )n 的 其中的系数C r n (r =0,1,…,n )叫. 式中的C r n a n -r b r 叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n a n -r b r . 〔2〕.二项展开式形式上的特点 ①项数为. ②各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为. ③字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增直到n . (4)二项式的系数从C 0 n ,C 1 n ,一直到C n -1n ,C n n . (3).二项式系数的性质 ①对称性:与首末两端“等距离〞的两个二项式系数即

排列组合与概率试题含答案

排列组合与概率 一、选择题(每题5分,计60分) 1、书架上同一层任意立放着不同的10本书,那么指定的3本书连在一起的概率为(A ) A 、1/15 B 、1/120 C 、1/90 D 、1/30 2、甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个螺母,其中有180个A 型的,现从甲乙两盒中各任取一个,则能配成A 型的螺栓的概率为(C ) A 、1/20 B 、15/16 C 、3/5 D 、19/20 3、一个小孩用13个字母:3个A ,2个I ,2个M ,2个J 其它C 、E 、H 、N 各一个作组字游戏,恰好组成“MATHEMATICIAN ”一词的概率为(D ) A 、!824 B 、!848 C 、!1324 D 、! 1348 4、袋中有红球、黄球、白球各1个,每次任取一个,有放回地抽取3次,则下旬事件中概率是8/9的是(B ) A 、颜色全相同 B 、颜色不全相同 C 、颜色全不同 D 、颜色无红色 5、某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为(C ) A 、P 3 B 、(1—P)3 C 、1—P 3 D 、1—(1-P)3 6.2004年7月7日,甲地下雨的概率是0.15,乙地下雨的概率是0.12。假定在这天两地是否下雨相互之间没有影响,那么甲、乙都不下雨的概率是( C ) (A ) 0.102 (B ) 0.132 (C ) 0.748 (D ) 0.982 7.电灯泡使用时数在1000小时以上的概率为0.8,则3个灯泡在使用1000小时后坏了1个的概率是( D ) (A ) 0.128 (B ) 31 (C ) 0.104 (D ) 0.384 8. 从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率B A.小 B.大 C.相等 D.大小不能确定 9.16支球队,其中6支欧洲队、4支美洲队、3支亚洲队、3支非洲队,从中任抽一队为欧洲队或美洲队的概率为( D ) ()A 1101416C C C ()1101416C C C B + ()1161416C C C C ()116 1416C C C D + 10.两袋分别装有写着0、1、2、3、4、5六个数字的6张卡片,从每袋中各任取一张卡片,所得两数之和等于7的概率为(B ) ()111 A ()91 B ()152 C ()15 4D 11.在100个产品中有10个次品,从中任取4个恰有1个次品的概率为( D ) ()()()31091014100C A ()10 1B ()()3109101C ()4100 390110C C C D

《排列组合》知识点总结+典型例题+练习(含答案)

排列组合 考纲要求 1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题. 2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题. 3. 了解组合数性质. 知识点一:排列 1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m

高中数学排列组合及概率统计习题

高中数学排列组合及概率统计习题 高中数学必修排列组合和概率练习题 一、选择题(每小题5分,共60分) ⑴ 已知集合A={1,3,5,7,9,】1}, B={1,7,】7}.试以集合A 和 B 中各取一个数作为点的坐标,在同 一直角坐标系中所确定的不同点的个数是C (A) 32 (B) 33 (C) 34 解分别以{1,3,5,7,9,11}和{1,7,11}的元素为'和y 坐标,不同点的个数为以?厅 分别以{1,3,5,7,941)和(1,7,11)的元素为),和x 坐标,不同点的个数为P ;?P ;不同点的个数总数是4'?4'+E :?R'=36,其中重复的数据有(1,7),(7,1),所以只有34个 (2)从】,2, 3, 9这九个数学中任取两个,其中一个作底数,另一个作直数,则可以得到不同的对 数值的个数为 (A) 64 (B) 56 (C) 53 (D) 51 ① 从】,2, 3, 9这九个数学中任取两个的数分别作底数和直数的“对数式”个数为2P ;;② 1不能为底数,以1为底数的“对数式”个数有8个,而应减去; ③ 1为直数时,对数为0,以】为直数的“对数式”个数有8个,应减去7个; 警拦。鬼=2 1。&2 = 1心蓦 1。&3 = 1。&9 iog 23 = log 49 所示求不同的对数值的个数为2C, 8 - 7 - 4 = 53(个)

四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生不能全排在一起,则不同的排法数有 (A) 3600 (B) 3200 (C) 3080 ①三名女生中有两名站在一起的站法种数是P ;; ②将站在一起的二名女生看作1人与其他5人排列的排列种数是段,其中的三名女生排在一起的站法应减去。站在一起的二名女生和另一女生看作1人与4名男生作全排列,排列数为P ;,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是P ;P ; o 符合题设的排列数为: />2(A>6-/>1^5) = 6x(6x5x4x3x2-2x5x4x3x2) = 24x5x4x3x2 = 2880(#) 我的做法用插空法,先将4个男生全排再用插空=2880 (4) 由(妊+扼严展开所得x 多项式中,系数为有理项的共有 (A) 50 项 (B) 17 项 (C)】6 项 (D) 15 项 解(屈+扼),00=(4)(屈)M 扁Mx )g (*)「+.? M'SSy 00 _ _ 100-r r 3(】()0-r) 2r 300-r 可见通项式为:%(屈严 >-'(咨)「= = %6一^+*岫"=%6 W 00-' 旦当^,6,12,18,...,96时,相应项的系数为有理数,这些项共有17个,故系数为有理项的共有17 个. (5) 设有甲、乙两把不相同的锁,甲锁配有2把钥匙,乙锁配有2

最新排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集,所 有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类, 又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。 随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。 5.隔板法: 不可分辨的球即相同元素分组问题

第12讲 排列组合、二项式定理、概率与统计经典精讲 课后练习

第12讲 排列组合、二项式定理、概率与统计经典精讲 主讲教师:陈孟伟 北京八中数学特级教师 题一:把座位编号为1、2、3、4、5、6的六张观看《孔子》的电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的票必须是连号,那么不同的分法种数是_________ 题二:把座位编号为1,2,3,4,5,6的六张同排的电影票全部分给四个人,每人至少分一张,至多分二张,且这两张票必须相隔一个数,则不同的分法种数是__ ____. 题三:由1,2,3,4,5组成的五位数中,恰有2个数位上的数字重复且十位上的数字小于百位上的数字的五位数的个数是 ____. 题四:用5,6,7,8,9组成没有重复数字的五位数,其中两个偶数数字之间恰有一个奇数数字的五位数的个数是 ____. 题五:某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,若甲、乙两名员工必须分到同一个车间,则不同分法的种数为 ____. 题六:将编号为①②③④的四个小球放到三个不同的盒子内,每个盒子至少放一个小球,且编号为①②的小球不能放到同一个盒子里,则不同放法的种数为 ____. 题七:若(x -m ) 8=a 0+a 1 x +a 2 x 2+…+a 8 x 8,其中a 5=56, 则a 0+a 2+a 4+a 6+a 8=________. 题八:若多项式x 5+x 10=a 0+a 1(x +1)+a 2(x +1) 2+…+a 9(x +1)9+a 10(x +1)10, 则a 4=______. 题九:5)x a x ((x ∈R )展开式中x 3的系数为10,则实数a 等于________. 题十: 已知(x -2 x 2) n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1. (1)求展开式中各项系数的和; (2)求展开式中含32 x 的项; (3)求展开式中系数最大的项和二项式系数最大的项.

高中排列组合知识点汇总及典型例题(全)

高中排列组合知识点汇总及典型例题 (全) 排列组合 一.基本原理 1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一 m 列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为An. 1.公式:1.Anm n n 1 n 2 n m 1 n! n m! 2. 规定:0! 1 (1)n! n (n 1)!,(n 1) n! (n 1)! (2) n n! [(n 1) 1] n! (n 1) n! n! (n 1)! n!;(3)n n 1 1 n 1 1 1 1

(n 1)! (n 1)! (n 1)!(n 1)! n!(n 1)! 三.组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n 个不同的m 元素中任取m 个元素的组合数,记作Cn 。 n n 1 n m 1 Amn! 1. 公式:C n m!m! n m!Amm m n 规定:Cn 1 01n 2.组合数性质:Cnm Cnn m,Cnm Cnm 1 Cnm 1,Cn Cn Cn 2n rrr 1rrrrr 1rrrr 1 注:Crr Crr 1 Crr 2 CnCnCn 1 Cn Cr 1 Cr 1 Cr 2 1 Cn Cr 2 Cr 2 1 Cn Cn 1 若Cnm Cnm则m1=m2或m1+m2 n 四.处理排列组合应

用题1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。 2.解排列、组合题的基本策略(1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: (3(4)两种途径:①元素分析法;②位置分析法。3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空 法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。

相关文档
最新文档