叶绿素浓度反演

叶绿素浓度反演
叶绿素浓度反演

原理

1.SeaDAS大气校正公式

2.叶绿素浓度计算公式:

IDL编程实现:

proautumn

;443波段autumn

file=filepath('lw443.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')

openr,lun,file,/get_lun

data443au=fltarr(700,1100,1)

readu,lun,data443au

data443au1=1.2386*data443au+0.0008574

help,data443au1,/str

free_lun,lun

;490 autumn

file=filepath('lw490.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')

openr,lun,file,/get_lun

data490au=fltarr(700,1100,1)

readu,lun,data490au

data490au1=0.92887*data490au+0.0015606

help,data490au1,/str

free_lun,lun

;510 autumn

file=filepath('lw510.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')

openr,lun,file,/get_lun

data510au=fltarr(700,1100,1)

readu,lun,data510au

data510au1=1.0118*data510au+0.00039303

help,data510au1,/str

free_lun,lun

;555 autumn

file=filepath('lw555.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')

openr,lun,file,/get_lun

data555au=fltarr(700,1100,1)

readu,lun,data555au

data555au1=1.0674*data555au+1.2241e-5

help,data555au1,/str

free_lun,lun

r1=data443au1>data490au1>data510au1/data555au1

help,r1

r=alog10(r1)

chla_au=10^(-2.2402*r^4+1.4345*r^3+0.15474*r^2-0.90456*r+0.025477)

help,chla_au

;window,1,xsize=700/2,ysize=1100/2

;new=rebin(chla_au,700/5,1100/5)

;print,min(new),max(new)

;tvscl,new,order=1

;

;

;window,2,xsize=500,ysize=700;打开窗口大于图像大小

;map_set,/isotropic,/noborder, /cylindrical,limit=[18,114,40,128],xmargin=[4,4],ymargin=[8,8]$ ;,title='autumn East China Sea chlorophyll inversion!c';设置投影,上下左右留白

;images=map_image(new,startx,starty,lonmin=114,lonmax=128,latmin=18,latmax=40,/bilinear,co mpress=1)

;

;device,decomposed = 0

;loadct,4

;tvscl,images,order=1,startx,starty

;map_grid,latdel=2,londel=2,/box,/label;先画图后加网格

im = IMAGE(chla_au, RGB_TABLE=4, $

POSITION=[0.25,0.05,0.95,0.9], $

FONT_COLOR='Green', FONT_SIZE=16, $

TITLE='autumn East China Sea chlorophyll inversion',/order)

c = COLORBAR(TARGET=im, ORIENTATION=1, $

POSITION=[0.3,0.05,0.35,0.5], $

TITLE='Chla_au (g/ml)')

end2.

YSI(多参数水质检测仪)测定叶绿素a浓度的准确性及误差探讨解析

上肠ksd.(湖泊科学),2010,22(6):965-968 http:∥www.jlakes.org.E-mail:jhk∞@IligIas.ac.cn @20lOby如£册耐矿kksc泐鲫 YSI(多参数水质检测仪)测定叶绿素a浓度的准确性及误差探讨‘刘苑1”,陈宇炜H。,邓建明1’2 (1:中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京210008) (2:中国科学院研究生院,北京lo0049) 摘要:Ysl(多参数水质检测仪)由于其快速、轻便的特点,已广泛应用于野外水体中时绿素a的测定.通过将Y跚溯得的叶绿素a值与分光光度法测定值进行比较,对Ysl6600水质测定的准确性和数据采集进行评估.结果显示,Ysl测定值多数偏低。且与分光光度法测定值之间存在显著性差异;时间上,冬季比夏季具有更大的线性相关性.分段同归结果显示,随着叶绿素a浓度不断增大.两组数据的差值也不断增大.YsI测定误差产生于3个方面:(1)测定前YsI校准方法的不同;(2)其它种类具有荧光特性色素的存在;(3)YsI自身结构. 关键词:叶绿素a浓度;YSI;分光光度法;误差 DisCussiOn0naccuracyanderrOrSforphytopIanI∞nchlorophy¨-aconcentra埘0nanaIySiSusingYSl(MuItI-parameterwateranalyzer) U[UYu觚1r,C胍NYhweil&DENGJi柚min91.2 巧scie,lces.Nn嘲i他2、000s.P.Rcht舱)(1:胁把研k幻加fo秽巧上4妇&妇懈4耐勖佃研珊跏f,觑l咖g肺咄姚可&珊,印砂研d肠彻咖,劭加甜PAc扭娜(2:G,眦妇纪&幻Dz盯cJ咖e卵A棚d唧矿&£伽,&驴f,增l(-D049,P.尼西f,埘) Abst陀ct:YsI(Mlllti?pa强ln曲盱waler锄aly蹭r)is诵delyusedto山把皿i肿phytlDm锄kton 6eIdschl啪phyll-aconcentr撕加inm蛐ybec舢卵0fitsrapidne睇锄dportablene鹄.Tbepu叩∞e0ftllis咖由i8t0evalu砒etIlee伍c卵y0ft王leYSIEn“姒蛐entalMo_Ili试ngsye锄hw栅qIlalityⅡ地a棚他眦“tsanddalacouectionbycompfariItgtw0group邑0fdala憾illg蚰啪ltory耐}

遮光后叶绿素含量升高和叶绿素a和b比值降低的原因

遮光后叶绿素含量升高和叶绿素a/b降低的原因 试题:如图,叶绿素的含量随着遮光比例的升高而升高,遮光后叶绿素a/b 降低,捕光能力上升。原因。 因为学生知道,光是叶绿素形成的必需条件,所以大部分学生都错误认为叶绿素含量随光照增强而增加。 从资料中可以看出,这些变化都是为了适应植物在遮光条件下的生长。 一、遮光后叶绿素含量为什么会升高 叶绿素含量受到光照、温度、矿质元素、逆境等外界因素及核基因、质基因等内在因素的共同影响,在外部因素中光对叶绿素的合成与分解起主导作用。植物体中叶绿素的合成和分解处于一个动态平衡中,叶片光照后,才能顺利地合成叶绿素,但形成叶绿素所要求光照强度相对较低,当然过弱也不利于叶绿素的生物合成,除680nm以上波长以外,可见光中各种波长的光照都能促使叶绿素形成,光过强反而会发生光氧化而受破坏。 植物中叶绿素和蛋白质结合为结合态叶绿素才能发挥作用,而自由态的叶绿素则会对细胞造成光氧化损伤。为了避免自由态叶绿素对细胞造成的光氧化损伤,植物必须快速降解这些物质。 在遮光条件下,集光色素蛋白在光合单位中的相对含量会增加,从而导致结合态叶绿素增加。与此同时,降低了叶绿素的降解和光氧化,所以遮光后叶绿素的含量会增加。 遮荫环境下,植物通过增加单位叶面积色素密度和叶绿素含量,有利于提高植株的捕光能力,吸收更多的光,提高光能利用率,是对弱光环境的一种适应。 二、遮光后叶绿素a/b降低 在不同生理条件下,叶绿素a和叶绿素b的合成、分解速度影响了叶绿素a/b的比值,但调节叶绿素a/b的比值主要通过“叶绿素循环”实现。叶绿素a 和叶绿素b的相互转化称为“叶绿素循环”。 在遮光条件下,叶绿素a向叶绿素b的转化加快,叶绿素a水解形成脱植基叶绿素a,脱植基叶绿素a再转化为脱植基叶绿素b,最后合成叶绿素b,从而降低了叶绿素a/b的比值。弱光下叶绿素b的相对含量增高是有其生理适应,有利于对弱光的利用。

叶绿素理化性质及含量

实验报告 课程名称: 植物生理学(乙)指导老师: 廖敏 成绩: 实验名称: 叶绿素理化性质和含量 实验类型: 定量探究型 同组学生姓名: 方昊 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填) 一、实验目的和要求 掌握植物中叶绿体色素的分离和性质鉴定、定量分析的原理和方法; 二、实验内容和原理 以青菜为材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量 分析。原理如下: 1. 叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取; 2. 叶绿素是二羧酸酯,与强碱反应,形成绿色的可溶性叶绿素盐,就可与有机溶剂中的类胡萝卜素 分开; 3. 在酸性或加温条件下,叶绿素卟啉环中的Mg++可依次被H+和Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素; 4. 叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光; 5. 叶绿素吸收红光和蓝紫光,红光区可用于定量分析,其中645和663用于定量叶绿素a 、b 及总量,而652可直接用于总量分析。 专业:农业资源与环境 姓名: 吴主光 学号: 3110100403 日期: 2013.10.17 地点: 生物实验中心 装 订 线

三、主要仪器设备 1. 天平(万分之一)、可扫描分光光度计、离心机、研具、各种容(量)器、洒精灯等 四、操作方法、实验步骤以及实验现象 定性分析: 鲜叶5g+95%30ml(逐步加入),磨成匀浆 过滤入三角瓶中,观察荧光现象:透射光绿色,反射光红色。 皂化反应(3ml):加KOH数片剧烈摇均,加石油醚5ml和H2O1ml分层后观察:上层呈黄色,为类胡萝卜素,吸收蓝紫光;下层呈绿色,为叶绿素,吸收红光和蓝紫光。 取代反应(1):加醋酸约2ml,变褐(去镁叶绿素);取1/2加醋酸铜粉加热,变鲜绿色,为铜代叶绿素。 取代反应(2):鲜叶2-3cm2,加Ac-AcCu 20ml加热,观察: 3 min变为褐绿色的去镁叶绿素, 5 min后,变为深绿色的铜代叶绿素。 叶绿素和类胡萝卜素的吸收光谱测定: 皂化反应的上层黄色石油醚溶液(稀释470nm OD 0.5-1) 反复用石油醚粹取,直到无类胡萝卜素,离心得叶绿素(盐)(稀释663nm OD 0.5-1) 在400-700nm处扫描光谱,分别测定类胡萝卜素和叶绿素的吸收峰. 叶绿素定量分析:鲜叶0.1g,加1.9mlH2O,磨成匀浆,取0.2ml加80%丙酮4.8ml,摇匀,4000转离心3min,上清液在645,652,663测定OD,计算Chla,Chlb 和Chl总量的值。 五、实验数据记录和处理

不同环境条件下植物叶绿素a、b含量地比较

一、实验课题名称:不同环境条件下植物叶绿素a、b含量的比较 二、选题背景或文献综述: 《植物生理学实验指导》(第四版)、《植物生理学》(第六版)、上网查阅相关资料 阴生植物也称“阴性植物”,是在较弱的光照条件下生长良好的植物,但并不是阴生植物对光照强度的要求越弱越好,而是必须达到阴生植物的补偿点,植物才能正常生长,阳生植物也称“阳性植物”,光照强度对植物的生长发育及形态结构的形成有重要作用,在强光环境中生长发育健壮,在阴蔽和弱光条件下生长发育不良的植物称阳性植物,这类植物要求全日照,并且在水分、温度等条件适合的情况下,不存在光照过强的问题。 阳生植物和阴生植物的区别:关于光的饱和点和补偿点光是光合作用的能量来源,光照强度直接影响光合速率,在其它条件都适宜的情况下,在一定范围内,光合速率随光照强度提高而加快,当光照强度高到一定数值后,光照强度再提高而光合速率不再加快,这种现象叫光饱和现象。开始达到光饱和现象的光照强度称为光饱和点,在光饱和点以下,随着光照强度减弱,光合速率减慢,当减弱到一定光照强度时,光合作用吸收二氧化碳量与呼吸释放二氧化碳的量处于动态平衡,这时的光照强度称为光补偿点。此时植物制造有机物量和消耗有机物量相等,不同类型植物的光饱和点和

补偿点是不同的,阳性植物的光饱和点和补偿点一般都高于阴性植物。 结构和特性的区别:阴生植物的叶片的疏导组织比阳生植物稀疏,以叶绿体来说,阳生植物有较大的基粒,基粒片层数目多的多,叶绿素含量也高,阴生植物在较低的光照条件下充分的吸收光线,叶绿素a/叶绿素b的比值小,能够强烈的利用蓝紫光,阳性植物叶片小而厚,表面具蜡质或绒毛,叶脉密,单位面积内气孔多,叶绿素含量高,体内含盐分多,渗透压高,可以抗高温干旱,阳生植物的气孔一般在叶片下表皮分布的数量多于上表皮,这样可以避免阳光直晒而减少水分散失,阳生植物的呼吸速率高于阴生植物。 区分阳生植物与阴生植物,主要是根据植物对光照强度需要的不同,阳生植物要求充分直射日光才能生长或生长良好,阴生植物适宜于生长在荫蔽环境中,它们在完全日照下反而生长不良或不能生长,阳生植物和阴生植物之所以能适应不同光照,是与它们的生理特征和形态特征不同有关,以光饱和点来说,阳生植物的光饱合点是全光照(即全部太阳光照)的100%,而阴生植物是全光照的10%~50%。因为阴生植物叶片的输导组织比阳生植物的稀疏,当光照强度增大时,水分对叶片的供给不足,阴生植物便不再增加光合速率,以叶绿体来说,阴生植物与阳生植物相比,前者有较大的基粒,基粒片层数目多,叶绿素含量较高,能在较低光照强度下充分

利用高光谱技术反演作物叶绿素浓度

利用高光谱技术反演作物叶绿素浓度 摘要:高光谱技术作为一种新兴光谱技术,被广泛应用于植物的无损检测中,植被叶片叶绿素含量的估测就是其中之一。利用可见-近红外成像光谱仪采集不同生育期玉米和大豆的冠层“图谱”数据,在逐步提取影像中光照土壤、阴影土壤、光照植被、阴影植被四种组分光谱的基础上,通过选取的敏感波段构建光谱植被指数和叶绿素密度进行波段自相关分析,探讨各个分量对作物叶绿素密度反演的影响。 关键词:高光谱技术;叶绿素;反演 0 引言 植物通过光合作用获取营养物质,在植物光合作用中,植物细胞中的叶绿体占据了重要的地位,而叶绿体中的色素有叶绿素(叶绿素a,叶绿素b 和叶绿素a+b)与类胡萝卜素(胡萝卜素和叶黄素)。其中,叶绿素是植物光合作用中最重要的色素,其作为主要吸收光能的物质,直接影响植物光合作用的光能利用率。叶片单位面积的叶绿素含量是植物总体生长状况的一个重要指标。叶片叶绿素含量的测定可以用来检测和研究植物突变、压力和营养状态,作物压力和萎黄病的检测对精细农业具有重要的潜在影响[1]。 随着光谱技术的发展,其被应用到各个领域。而高光谱技术作为光谱技术的一种,由于具有众多优点,在光谱检测方面应用十分广泛,备受人们的青睐。人类肉眼的视觉范围在380~780 nm 之间,而高光谱的波段非常宽,一些高光谱仪器的波段达350~2 500 nm。因此,通过高光谱技术可以对绿色植物进行叶绿素的检测和定量分析。本文对高光谱技术在植物,特别是在经济作物的叶绿素含量检测和定量分析中的应用加以概述[2]。 1 成像系统简介及数据处理 1.1 高光谱成像技术简介 高光谱成像技术是在多光谱成像的基础上发展而来的,在较宽的波段范围内,利用成像光谱仪对目标物体进行连续成像,从而获得每个像元的数十或数百条光谱信息。其成像特点是:光谱范围广(200~2 500nm)、超多波段(上百个波段)、高的高光谱分辨率(几个nm)、波段窄(≤10-2λ)和图谱合一等。由于所获得的图像信息不仅可以反映物体的大小、形状、缺陷等外部特征,而且不同物体因结构和成分的不同使光谱吸收也不同,从而可以用于物体内部的物理结构和化学成分的检测。 高光谱成像检测装置主要由光源、光谱相机(成像光谱仪+CCD)、装有图像采集卡的计算机组成,如图1所示[3]

测定叶绿素a和b的方法及其计算完整版

测定叶绿素a和b的方 法及其计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

实验二十五测定叶绿素a和b的方法及其计算 一目的要求: 熟悉在未经分离的叶绿体色素溶液中测定叶绿素a和b的方法及其计算。 二实验原理: 如果混合液中的两个组分,它们的光谱吸收峰虽然有明显的差异,但吸收曲线彼此有些重叠,在这种情况下要分别测定两个组分,可根据Lambert-Beer定律,通过代数方法,计算一种组分由于另一种组分存在时对光密度的影响,最后分别得到两种组分的含量。 如图z-4叶绿素a和b的吸收光谱曲线,叶绿素a的最大吸收峰在663nm,叶绿素b在645nm,吸收曲线彼此又有重叠。 图z-4 叶绿素a和b的吸收光谱曲线 横坐标为波长(nm),纵坐标为比吸收系数 根据Lambert-Beer定律,最大吸收光谱峰不同的两个组分的混合液,它们的浓度C与光密度OD之间有如下的关系: OD1=Ca·ka1+Cb·kb1 (1) OD2=Ca·ka2+Cb·kb2 (2) 式中:Ca为组分a的浓度,g/L。 Cb为组分b的浓度,g/L。 OD1为在波长λ1(即组分a的最大吸收峰波长)时,混合液的光密度OD值。 OD2为在波长λ2(即组分b的最大吸收峰波长)时,混合液的光密度OD值。

ka1为组分a的比吸收系数,即组分a当浓度为1g/L时,于波长λ1时的光密度OD值。 kb2为组分b的比吸收系数,即组分b当浓度为1g/L时,于波长λ2时的光密度OD值。 ka2为组分a(浓度为1g/L),于波长λ2时的光密度OD值。 kb1为组分b(浓度为1g/L),于波长λ1时的光密度OD值。 从文献中可以查到叶绿素a和b的80%丙酮溶液,当浓度为1g/L时,比吸收系数k值如下: 将表中数值代入上式(1)、(2),则得: OD663=×Ca+×Cb OD645=×Ca+×Cb 经过整理之后,即得到下式: Ca= OD645 Cb= OD663 如果把Ca,Cb的浓度单位从原来的g/L改为mg/L,则上式可改写为下列形式: Ca= OD645 (3) Cb= OD663 (4) CT= Ca+ Cb= OD663+ OD645 (5) (5)式中CT为总叶绿素浓度,单位为mg/L。 利用上面(3)、(4)、(5)式,即可计算出叶绿素a和b及总叶绿素的浓度 (mg/L)。 [附注]一般大学教学实验室所用的分光度计多为721型,属低级类型,其单色光的半波宽要比中级类型的751型宽得多,而叶绿素a和b吸收峰的波长相差仅18nm(663-645nm),难以达到精确测定。此外有时还由于仪器本身的标称波长与实际波长不符,

(完整word版)叶绿素含量的测定

叶绿素含量的测定 一、原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。 根据朗伯—比尔定律,某有色溶液的吸光度A 与其中溶质浓度C 和液层厚度L 成正比,即A =αCL 式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm 时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。 如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。这就是吸光度的加和性。今欲测定叶绿体色素混合提取液中叶绿素a 、b 和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A ,并根据叶绿素a 、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a 、b 时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 已知叶绿素a 、叶绿素b 的80%丙酮溶液在红外区的最大吸收峰分别位于663、645nm 处。已知在波长663nm 下叶绿素a 、叶绿素b 在该溶液中的吸光系数的分别为82.04和9.27;在波长645nm 处的吸光系数分别为16.75和45.60。根据加和性原则列出以下关系式: A663=82.04Ca+9.27Cb (1) A645=16.76Ca+45.60Cb (2) 式(1) (2)A 663nm 和A645nm 为叶绿素溶液在663nm 和645nm 处的吸光度,C a C b 分别为叶绿素a 、叶绿素b 的浓度,以mg/L 为单位。 解方程(1) (2)组得 C a =12.72 A 663—2.59 A 645 (3) C b =22.88 A 645—4.67 A 663 (4) 将C a +C b 相加即得叶绿素总量C T C T = C a 十C b =20.29A 645—8.05 A 663 (5) 从公式(3)、(4)、(5)可以看出,,就可计算出提取液中的叶绿素a 、b 浓度另外,由于叶绿素a 叶绿素b 在652nm 的吸收峰相交,两者有相同的吸光系数(均为30.5),也可以在此波长下测定一次吸光度(A 652)而求出叶绿素a 、叶绿素 b 总量 所测定材料的单位面积或单位重量的叶绿素含量可按下式进行计算: C T = 5 .341000 652 A (6) 有叶绿素存在的条件下,用分光光度法可同时测出溶液中类胡萝卜素的含量。Licht-enthaler 等对Arnon 进行了修正,提出了 80%丙酮提取液中3种色素含量的计算公式: C a =12.21A 663—2.59 A 646 (7)

不同环境条件下植物叶绿素a、b含量的比较(分光光度法测定)

一、实验课题名称 不同环境条件下植物叶绿素a、b含量的比较(分光光度法测定) 二、文献综述 1.叶绿素a的生物合成过程 起始物是谷氨酸,之后为5-氨基酮戊酸,两分子的ALA缩合形成胆色素原(PBG),4分子PBG相互连结形成原中卟啉IX.原卟啉IX与Mg结合形成Mg-原卟啉原IX,光下E环的环化形成,D环的还原作用和叶绿醇尾部的连接完成了整个合成过程,合成过程中的许多步骤在图中已省略 2.影响叶绿素形成的条件 (1)光光是影响叶绿素形成的主要条件。从原叶绿素酸酯转变为叶绿酸酯需要光,而光过强,叶绿素又会受光氧化而破坏。黑暗中生长的幼苗呈黄白色,遮光或埋在土中的茎叶也呈黄白色。这种因缺乏某些条件而影响叶绿素形成,使叶子发黄的现象,称为黄化现象(etiolation)。 也有例外情况,例如藻类、苔藓、蕨类和松柏科植物在黑暗中可合成叶绿素,其数量当然不如在光下形成的多;柑橘种子的子叶及莲子的胚芽在无光照的条件下也能形成叶绿素,推测这些植物中存在可代替可见光促进叶绿素合成的生物物质。 (2)温度叶绿素的生物合成是一系列酶促反应,受温度影响。叶绿素形成的最低温度约2℃,最适温度约30℃,最高温度约40℃。秋天叶子变黄和早春寒潮过后秧苗变白,都与低温抑制叶绿素形成有关。高温下叶绿素分解大于合成,因而夏天绿叶蔬菜存放不到一天就变黄;相反,温度较低时,叶绿素解体慢,这也是低温保鲜的原因之一。 (3)营养元素叶绿素的形成必须有一定的营养元素。氮和镁是叶绿素的组成成分,铁、锰、铜、锌等则在叶绿素的生物合成过程中有催化功能或其它间接作用。因此,缺少这些元素时都会引起缺绿症(chlorosis),其中尤以氮的影响最大,因而叶色的深浅可作为衡量植株体内氮素水平高低的标志。 (4)氧缺氧能引起Mg-原卟啉IX或Mg-原卟啉甲酯的积累,影响叶绿素的合成。 (5)水缺水不但影响叶绿素生物合成,而且还促使原有叶绿素加速分解,所以干旱时叶片呈黄褐色。 通过对室外旱池处理条件下的甘薯叶片叶绿素含量变化的研究,结果表明,水分胁迫下甘薯品种叶片中叶绿素a、b及总叶

叶绿素含量的测定

叶绿素含量的测定 绿素含量的绿定叶 一、绿绿目的 1.了解分光光度绿的工作原理~ 2.掌握不同型分光光度绿的操作方绿~号 3.通绿本绿绿的绿掌握绿素含量绿定的一绿常绿的方法学叶------分光光度法。 二、绿绿原理 叶叶体体体叶绿素是脂溶性色素~主要存在于以绿绿首的色素中。在活中~绿绿 素脂蛋白绿合受到绿原系绿的保绿~绿和光是绿定的。与并氧 叶绿素的80%丙绿提取液在波绿663nm~645nm有吸收峰~绿素叶a和绿素叶b 的绿度符合以下公式, C=0.0127A-0.00259A a663645 C=0.0229A-0.00467A绿度绿位是,g/Lb645663 C=12.7A-2.59Aa663645 C=22.9A-4.67A绿度绿位是,mg/Lb645663 叶绿素绿绿度绿, C=C+CTab 若以绿液中色素含量表示~绿来 三、绿器、绿绿和材料 1.绿器 紫外-可绿分光光度绿、、研体25ml容量、璃漏斗、璃棒、皮绿滴管瓶玻玻2. 绿绿

丙绿;分析绿,、85%丙绿、80%丙绿 2.材料 绿绿、石英砂、酸绿碳 四、操作步绿 1. 在遮光件下取出等绿绿品~剪碎~混~取绿绿条匀称0.1-0.5g~ 2. 绿品置于绿~加入少量酸绿和石英砂~加入一定绿的丙绿磨绿绿~再加研内碳体研匀 85%丙绿适量绿绿磨至绿绿白色~研 3. 绿绿有绿绿的漏斗绿液绿入将匀25ml的容量中~用瓶并80%的丙绿分次洗绿和绿绿清研~ 最后用80%的丙绿定容。 4. 以80%的丙绿绿比液~在参663和645nm波绿绿绿定吸光绿;A绿在0.2-0.8范绿~内 绿度绿大绿用80%丙绿适稀绿,。当 五、绿果绿理 按照公式绿算出绿素叶a和绿素叶b的绿度~再绿算出绿素的含量。叶六、 注意事绿 1. 在活~绿合绿绿素是绿定的~绿绿一绿破~绿素易被光解。因此~抽提和绿体内叶坏叶 定工作绿可能避光快速完成。尽 2. 绿含有大量酸性液泡的绿品~绿首先加入微性的绿液~仔绿磨后加入丙绿绿行碱冲研抽提。 3. 分光光度绿的精度绿绿定的绿果有至绿重要的影~使用前绿绿器绿行校正。响七、思考绿

测定叶绿素a和b的方法及其计算

实验二十五测定叶绿素a和b的方法及其 计算 一目的要求: 熟悉在未经分离的叶绿体色素溶液中测定叶绿素a和b 的方法及其计算。 二实验原理: 如果混合液中的两个组分,它们的光谱吸收峰虽然有明显的差异,但吸收曲线彼此有些重叠,在这种情况下要分别测定两个组分,可根据Lambert-Beer定律,通过代数方法,计算一种组分由于另一种组分存在时对光密度的影响,最后分别得到两种组分的含量。 如图z-4叶绿素a和b的吸收光谱曲线,叶绿素a的最大吸收峰在663nm,叶绿素b在645nm,吸收曲线彼此又有重叠。 图z-4 叶绿素a和b的吸收光谱曲线 横坐标为波长(nm),纵坐标为比吸收系数

根据Lambert-Beer定律,最大吸收光谱峰不同的两个组分的混合液,它们的浓度C与光密度OD之间有如下的关系: OD1=Ca·ka1+Cb·kb1 (1) OD2=Ca·ka2+Cb·kb2 (2) 式中:Ca为组分a的浓度,g/L。 Cb为组分b的浓度,g/L。 OD1为在波长λ1(即组分a的最大吸收峰波长)时,混合液的光密度OD值。 OD2为在波长λ2(即组分b的最大吸收峰波长)时,混合液的光密度OD值。 ka1为组分a的比吸收系数,即组分a当浓度为1g/L时,于波长λ1时的光密度OD值。 kb2为组分b的比吸收系数,即组分b当浓度为1g/L时,于波长λ2时的光密度OD值。 ka2为组分a(浓度为1g/L),于波长λ2时的光密度OD 值。 kb1为组分b(浓度为1g/L),于波长λ1时的光密度OD 值。 从文献中可以查到叶绿素a和b的80%丙酮溶液,当浓度为1g/L时,比吸收系数k值如下:

水体叶绿素a测定方法

叶绿素a的测定方法——乙醇+分光光度法 1、水样的保存 水样注入水样瓶后,应放置在阴凉处,并避免阳光直射。若水样的进一步处理需要较长时间(大于12h),则应置于0℃~4℃低温下保存。水样量视水体中浮游植物多少而定,一般应采0.5~2L。 2、抽滤 在抽滤装置的滤器中放入GF/C滤膜。抽滤时负压应不大于50kPa。抽滤完毕后,用镊子小心地取下滤膜,将其对折(有藻类样品的一面向里),再用普通滤纸吸压,尽量去除滤纸上的水分。如不立即提取,应将滤膜放在黑暗低温条件下保存。在普通冰箱冷冻室中可存放几天,在-20℃低温冰箱中可保存30天。 3、提取 研磨可用玻璃研钵。将滤膜剪碎放入研钵,加入90%乙醇溶液7~8ml,研磨3~5分钟直至变为匀浆。将研磨后的匀浆移入具塞带刻度的离心管中。用少量提取液冲洗研钵或匀浆器,冲洗液并入离心管中,使终容积略小于10ml。盖上关塞,摇动后置于黑暗低温处进行提取至少6-24h。 4、离心 将装有提取液的离心管放入离心机中,转速3500~4000rpm,离心10~15min。将上层叶绿素提取液移入定量试管中,再用少量提取液清洗、离心二次取得提取液。最后将提取液定容到10ml。如果大批样品需同步操作时,可减少离心步骤,直接在提取液中浸泡滤膜6-24h,取其清液即可。 5、测定 用90%乙醇溶液作为参照液(参照比色皿中盛放90%乙醇溶液,并用90%乙醇调分光光度计零点)。测定定容后的提取液在665nm和750nm处的吸光度,并计算两个吸光度的差记为A1;然后向比色皿中加入1滴1mol/L的盐酸酸化,酸化5—10min(可以用不同时间实验再进行调整)后再次测定酸化后的提取液在665和750nm处的吸光度,并且把酸化后的两个吸光度的差记为A2.则提取液中叶绿素a的浓度为: Chla=27.9×(A1-A2)×V提取液/V 脱镁叶绿素浓度为: Chla=27.9×(1.7 A2-A1)×V提取液/V 其中Chla为水样中的叶绿素a含量,单位为ug/L;V提取液为提取液的最终定容体积,单位为mL;V为抽滤水样的体积,单位为L。

叶绿素含量的测定

叶绿素含量的测定 一.实验原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。 根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL.式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。 如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。就是吸光度的加和性。如欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三特定波长下的吸光度A,并根据叶绿素a、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 植物叶绿素含量测定----丙酮提取法 高等植物光合作用过程中利用的光能是通过叶绿体色素(光合色素)吸收的。叶绿体色素由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。叶绿体色素的提取、分离和测定是研究它们的特性以及在光合中作用的第一步。叶片叶绿素含量与光合作用密切相关,是反眏叶片生理状态的重要指标。在植物光合生理、发育生理和抗性生理研究中经常需要测定叶绿素含量。叶绿素含量也是指导作物栽培生产和选育作物品种的重要指标。 ● 叶绿素不溶于水,溶于有机溶剂,可用多种有机溶剂,如丙酮、乙醇或二甲基亚砜等研磨提取或浸泡提取。叶绿色素在特定提取溶液中对特定波长的光有最大吸收,用分光光度计测定在该波长下叶绿素溶液的吸光度(也称为光密度),再根据叶绿素在该波长下的吸收系数即可计算叶绿素含量。 ●利用分光光计测定叶绿素含量的依据是Lambert-Beer定律,即当一束单色光通过溶液时,溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。其数学表达式为: ●A=Kbc 式中:A为吸光度;K为吸光系数;b为溶液的厚度;c为溶液浓度。 ●叶绿素a、b的丙酮溶液在可见光范围内的最大吸收峰分别位于663、645nm处。叶绿素a 和b在663nm处的吸光系数(当溶液厚度为1cm,叶绿素浓度为g·L-1时的吸光度)分别为82.04和9.27;在645nm处的吸光系数分别为16.75和45.60。根据Lambert-Beer定律,叶绿素溶液在663nm和645nm处的吸光度(A663和A645)与溶液中叶绿素a、b和总浓度(a+b)(Ca、Cb 、Ca十b,单位为g·L-1),的关系可分别用下列方程式表示: ●A663=82.04C a+9.27C b (1) ●A645=16.76C a+45.60C b(2) ●C a=12.7 A663—2.59 A645(3) ●C b=22.9 A645—4.67 A663 (4) ●C a十b=20.3 A645—8.04 A663 (5) ●

基于辐射传输模型的叶绿素含量定量反演(精)

生态学杂志ChineseJournalofEcology 2006,25(5):591~595 基于辐射传输模型的叶绿素含量定量反演*施润和1,2** 庄大方牛铮王汶 21343(1中国科学院地理科学与资源研究所,北京100101; 北京100101;4中国科学院研究生院,北京100049;中国科学院遥感应用研究所,中国人民大学环境学院,北京100872) 摘要利用基于叶片内部辐射传输机制的PROSPECT模型模拟大量不同生化含量和叶肉结构的叶片光谱,研究利用高光谱植被指数定量反演叶绿素含量的可行性和精度,并比较各指数的稳定性和抗干扰能力。结果显示,各指数在对叶绿素的敏感性方面相差不大,除三角植被指数(TVI)外,其它指数均随叶绿素含量的增加而减小。叶片水分含量的差异对各指数的影响很小,干物质次之,叶肉结构影响最大。在抵抗干物质影响和叶肉结构影响方面,结构无关色素指数(SIPI)明显优于其它四种指数,吸收中心波深归一化后的面积指数(ABNC)次之。通过使用叶片光学模型的模拟光谱来研究叶绿素含量变化的光谱响应及其影响因素和反演策略,具有较强的理论性和普适性。研究结果与实际观测相吻合,方法简单易行。 关键词辐射传输模型,叶绿素,高光谱,植被指数,反演 中图分类号 Q945 11 文献标识码 A 文章编号 1000-4890(2006)05-0591-05 Quantitativeinversionofchlorophyllcontentbasedonradiativetransfermodel.SHIRunhe,Z HUANGDafang1,NIUZheng3,WANGWen4(1InstituteofGeographicalSciencesandNatu ralResourcesResearch,ChineseAcademyofSciences,Beijing100101,China;2GraduateUni versityofChineseAcademyofSci ences,Beijing100049,China;3InstituteofRemoteSensingApplications,ChineseAcademyo fSciences,Bei jing100101,China;4SchoolofEnvironmentandNaturalResources,RenminUniversityofChi na,Beijing100872).ChineseJournalofEcology,2006,25(5):591~595. PROSPECTmodelisawell knownleafopticalmodelbasedontheradiativetransferprocesseswithinaleaf,whichwasusedi nthispapertosimulatetheleafreflectancespectraofchlorophyll,water,anddrymattercon tentsandmesophyllstructureparameters,aimedtoinvestigatethefeasibilityandprecisionofhy perspectralvegetationindices(VIs)inchlorophyllprediction,andtheirresistantperformances againstleafwater,drymatter,andmesophyllstructure.Atotalof5widely usedVIsforpredictingchlorophyllcontent,i.e.Chloro phyllAbsorptionRatioIndex(CARI),TriangularVegetationIndex(TVI),PhotochemicalRef lectanceIndex(PRI),Structured IndependentPigmentIndex(SIPI),andAreaofBandNormalizationtotheCenterofAb sorptionFeature(ABNC),wereconsidered.ThesimulationresultsshowedthatalltheVIsexce

实验十 叶绿素a和b含量的测定

实验十叶绿素a和b含量的测定(分光光度法) 一、目的 学会Chla、b含量的测定方法,了解叶片中Chla、b的含量。 二、原理 根据朗伯-比尔(Lambert-Beer)定律,某有色溶液的吸光度A值与其中溶质浓度C以及光径L成正比,即A=aCL(a为该物质的吸光系数)。各种有色物质溶液在不同波长下的吸光值可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下的吸光度的总和,这就是吸光度的加和性。 乙醇溶液中叶绿素a、b在长波光方面的最大吸收峰位于665nm和649nm,同时在该波长时叶绿素a、b的比吸收系数K(溶液厚度是1cm,溶液浓度为1g/L的吸光度)为已知,我们即可以根据Lambert Beer定律,它们的浓度C与吸光度A之间有如下的关系: A665 = 83.31 Ca + 18.60 C b (1) A649 = 24.54 Ca + 44.24 C b (2) (1)(2)式中的A665、A649为叶绿素溶液在波长665nm和649nm时的光密度。

C a、C b为叶绿素a、b的浓度、单位为每升克数。 83.31、18.60为叶绿素a、b在、在波长665nm时的比吸收系数。 24.54、44.24为叶绿素a、b在、在波长649nm时的比吸收系数。 解方程式(1)(2),则得: C A = 13.7 A665 - 5.76 A649 (3) C B = 25.8 A649 - 7.6 A665 (4) G = C A + C B = 6.10 A665 + 20.04 A649 (5) 此时,G为总叶绿素浓度,C A、C B为叶绿素a、b浓度,单位为每升毫克,利用上面(3)(4)(5)式,即可以计算叶绿素a、b及总叶绿素的总含量。 三、材料用具及仪器药品 菠菜叶片、分光光度计、天平、研钵、剪刀、容量瓶(25ml)、漏斗、滤纸、乙醇(95%) 四、方法步骤 1.称取0.2克新鲜去叶脉叶片,剪碎,放在研钵中,加少许CaCO3,加入乙醇10ml共研磨成匀浆,再加5ml乙醇,过滤,最后将滤液用乙醇定容到25ml。 2.取一光径为1cm的比色杯,注入上述的叶绿素乙醇溶液,另加乙醇注入另一同样规格的比色杯中,作为对照,在分光光度计下分别以665nm和649nm波长测出该色素液的光密度。 计算结果: 五、实验报告

叶绿素含量测定方法(精)

叶绿素含量测定方法---丙酮法 由于微藻的生长周期比较复杂,包括无性繁殖阶段和有性繁殖阶段,其在不同阶段的生理形态不同,有时藻细胞会聚集在一起,以片状或团状形式存在,在显微镜下难以确定其所包含的细胞数量。 藻细胞中叶绿素的含量(特别是叶绿素a的含量)通常随与细胞的生长呈较好的线性关系,因此可通过测定藻细胞中叶绿素含量变化来反映微藻的生长情况。叶绿素测定采用丙酮研磨提取法。 取适量藻液于10 mL离心管中在4000 rpm转速下离心10 min,弃去上清液,藻泥中加入适量的100 %的丙酮。采用丙酮提取法时在试管研磨器中冰浴研磨5 min,4000 rpm离心后,上清液转入10 mL容量瓶中。按上述方法对藻体沉淀进行萃取,直至藻体沉淀呈白色为止。定容后,采用722S型可见分光光度计分别测定645 nm和663 nm下萃取液的吸光值,叶绿素含量用以下公式进行计算(Amon,1949): 叶绿素a含量用以下公式进行计算: Chlorophyll a (mg/L) = (12.7×A663 nm-2.69×A645 nm)×稀释倍数 叶绿素b含量用以下公式进行计算: Chlorophyll b (mg/L) = (22.9×A645 nm-4.64×A663 nm)×稀释倍数 叶绿素总含量用以下公式进行计算: Chlorophyll a+b (mg/L) = (20.2×A645 nm+8.02×A663 nm)×稀释倍数 由于丙酮的沸点较低,较高温度下挥发很快。此外,叶绿素稳定性较差,见光易分解,因此,本实验中叶绿素的提取和测定均在低温黑暗条件下进行,以减少提取过程中的损失。 叶绿素提取方法 提取液:本试验用DMSO/80%丙酮(l/2,v/v)提取的叶绿素,谭桂英周百成底栖绿藻叶绿素的二甲基亚砜提取和测定法* 海洋与湖沼 1987 18(3)295--300. 一、直接浸提法: 1、准确量取10ml藻液,加到15ml离心管中,放在台式离心机离心,3500r/min (根据不同的藻选择不同那个的离心转速)离心5min倒上清;留藻泥。随后在盛有藻泥的离心管中加入蒸馏水,与藻泥混匀后再次离心,目的是除去藻细胞表面的盐份,此清洗过程重复三次。 2、往藻泥中加二甲基亚砜3.33ml,65℃水浴9h,20h; 3、然后离心,将上清转移到10ml棕色瓶中, 4、添加6.67ml80%丙酮到离心管中,混匀,离心,再将上清转移到10ml棕色瓶中。 5、定容,待测。

叶绿素a测定

实验三富营养化湖中藻量的测定(叶绿素a法) 一、实验目的 富营养化湖由于水体受到污染,尤以氮磷为甚,致使其中的藻类旺盛生长。此类水体中代表藻类的叶绿素a浓度常大于10微克/升。 本实验通过测定不同水体中藻类叶绿素a浓度,以考查其富营养化情况。 二、器材与用品 1、分光光度计(波长选择大于750nm,精度为0.5-2nm)。 2、比色杯(1cm;4cm)。 3、台式离心机(3500r/min) 4、离心管(15ml具刻度和塞子);冰箱 5、匀浆器或小研钵。 6、蔡氏滤器;滤膜(0.45微克,直径47mm)。 7、真空泵(最大压力不超过300kpa)。 8、MgCO3悬液:lg MgCO3细粉悬于100ml蒸馏水中。 9、90%的丙酮溶液:90份丙酮+10份蒸馏水。 10、水样:两种不同污染程度的湖水水样各2L. 三、方法和步骤

1、按浮游植物采样方法,湖泊、水库采样500ml,池塘300ml。采样点及采水时间同“浮游植物”。 2、清洗玻璃仪器:整个实验中所使用的玻璃仪器应全部用洗涤剂清洗干净,尤其应避免酸性条件下而引起的叶绿素a分解。 3、过滤水样;在蔡氏滤器上装好滤膜,每种测定水样取50-500ml减压过滤。待水样剩余若干毫升之前加入0.2ml MgCO3悬液、摇匀直至抽干水样。加入MgCO3可增进藻细胞滞留在滤膜上,同时还可防止提取过程中叶绿素a被分解。如过滤后的载藻滤膜不能马上进行提取处理,应将其置于干燥器内,放冷(4℃)暗处保存,放置时间最多不能超过48小时。 4、提取;将滤膜放于匀浆器或小研钵内,加2-3ml90%的丙酮溶液,匀浆,以破碎藻细胞。然后用移液管将匀浆液移入刻度离心管中,用5ml90%丙酮冲洗2次,最后向离心管中补加90%丙酮,使管内总体积为10ml。塞紧塞子并在管子外部罩上遮光物,充分振荡,放冰箱避光提取18-24小时。 5、离心:提取完毕后,置离心管于台式离心机上3500r/min,离心10min,取出离心管,用移液管将上清液移入刻度离心管中,塞上塞子,3500r/min在离心10min。正确记录提取液的体积。

叶绿素含量的测定

植物生理学实验报告实验题目:叶绿素含量的测定 姓名 班级 学号

一、实验原理和目的 根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比。叶绿素(丙酮)在652nm(混合)、663nm、645nm有最大吸收峰。 叶绿素(95%乙醇)在665nm、649nm,类胡萝卜素在470nm有最大吸收峰,根据在分光光度计下测定的吸光度,求得叶绿素的含量 二、实验器具和步骤 植物材料:女贞 实验器具:分光光度计;电子天平;研钵;试管;小漏斗;滤纸;吸水纸;移液管;量筒;剪刀 试剂:95%乙醇(或80%丙酮);石英砂;碳酸钙粉 步骤:1.称取剪碎的新鲜样品0.1g 左右,放入研钵中,加少量石英砂和碳酸钙粉及3~5ml 95%乙醇,研成均浆,继续研磨至组织变白。静置3~5min 2. 取滤纸1张,置漏斗中,用乙醇湿润,沿玻棒把提取液倒入漏斗中,过滤到10ml试管中,用少量乙醇冲洗研钵、研棒及残渣数次,最后连同残渣一起倒入漏斗中。 3.用滴管吸取乙醇,将滤纸上的叶绿体色素全部洗入漏斗中。直至滤纸和残渣中无绿色为止。最后用乙醇定容至10 ml ,摇匀 4. 把叶绿体色素提取液倒入光径1cm的比色杯内。以95%乙醇为空白,在波长665nm、649nm、470nm下测定吸光度 5. 计算公式: 叶绿素的含量(mg/g)= (浓度×提取液体积×稀释倍数)/样品鲜重。 Ca=13.95A665-6.88A649; Cb=24.96A649-7.32A665 C类=(1000A470-2.05Ca-114.8Cb)/245 单位:mg/L 三、实验数据和作业

2、计算叶绿素含量 计算公式: 叶绿素的含量(mg/g)= (浓度×提取液体积×稀释倍数)/样品鲜重。 Ca=13.95A665-6.88A649; Cb=24.96A649-7.32A665 C类=(1000A470-2.05Ca-114.8Cb)/245 单位:mg/L 由上面的公式进行代入计算,有: Ca=13.95*1.820-6.88*0.953=18.83236 Cb=24.96*0.953-7.32*1.820=10.46448 C类=(1000*1.948-2.05*18.83236-114.8*10.46448)/245=2.8901 则:叶绿素含量=(29.29684*10*0.001*1)/0.1=2.9297 四、数据分析 实验中可能清洗研钵和滤纸不是特别干净可能造成误差 五、思考题 为什么提取叶绿素时干材料一定要用80%的丙酮,而新鲜的材料可以用无水丙酮提取?答:因为叶绿素存在于叶绿体内囊体上与其上的蛋白质组成色素蛋白复合体,要 分离叶绿素和蛋白质必须有水,叶绿素的头部为极性的,有亲水性

相关文档
最新文档