利用GT-DRIVE进行整车动力性经济性仿真分析

利用GT-DRIVE进行整车动力性经济性仿真分析
利用GT-DRIVE进行整车动力性经济性仿真分析

利用GT-DRIVE进行整车动力性经济性仿真分析 Computer Simulation of Power Performance and Fuel Economy for Vehicle by Using GT-DRIVE

吕晓明张贺陈伟

(长城汽车股份有限公司技术研究院CAE部 071000)

摘要:汽车的动力性和燃油经济性是其重要的使用性能之一,直接影响其商品性。本文介绍了利用GT-DRIVE 软件进行整车建模的过程,并对长城汽车公司某小型四驱SUV车的动力性和燃油经济性进行了仿真分析。

关键词:动力性 经济性 模拟分析 GT-DRIVE

Abstract:To automobiles,the power performance and fuel economy are the main characters which directly affect its performance in market.This paper introduces the process how to based the full vehicle model and make simulation analysis of the power performance and fuel economy for the mini and Four-wheel drive SUV vehicle of GREAT WALL motor company by using GT-DRIVE.

Key words:power performance; economy;simulation analysis;GT-DRIVE

1 引言

汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性,所以,动力性是汽车各种性能中最基本、最重要的性能。动力性的好坏,直接影响到汽车在城市和城际公路上的使用情况。而在石油价格持续上涨的今天,降低油耗则成为我们工作迫切的需要,燃油经济性好,可以大大降低汽车的使用费用、节约能源。动力性和经济性受到各国政府、汽车制造企业和使用者的高度重视,是当前消费者购车参考的重要指标。

GT-DRIVE是GT-SUITE系列软件的重要组成部分。由于GT-SUITE软件使用方便、功能强大,涵盖了发动机、驱动系统、冷却系统、燃油供给系统、曲轴机构、配气机构等六个方面,对进行CAE 分析有很大帮助,而且GT-DRIVE参数化输入很方便,既简单又快捷。

应用GT-SUITE软件在汽车产品开发初期进行汽车动力传动系统参数匹配和性能仿真时,不仅能节约大量新产品开发和试验等带来的人力和物力投入,还降低了劳动强度,缩短了开发周期,提高了工作效率。

2 模型建立

GT-DRIVE主要是通过对整车动力传动系统的结构和功能进行分析,简化物理模型,选择合理的系统模块,搭建仿真模型,建立汽车系统的各总成和部件的机械连接和信号连接,并对各部件和总成进行参数化处理,完成整车建模。

在建立模型时要充分考虑部件间的位置关系和连接关系(使用默认连接,还是建立的连接 ),将前面定义好的各部件拖至建模区,在连接时,端口的选择至关重要。建立通过传感器或执行器的连接时,在连接时就会弹出对话窗口,在里面选择相应的信号端口即可。

2.1 理论基础

2.1.1动力性分析

汽车的动力性主要由三方面的指标来评定,即:最高车速、加速时间(原地起步加速时间和超车加速时间)和最大爬坡度。装有有级式固定传动比变速器汽车的行驶方程式为:

j i w f t F F F F F +++= (1-1) 即 dt

du m G u A C Gf r i i T a D T

g tq δααη+++=sin 15.21cos 20 (1-2) 式中,t F -驱动力,N;f F -滚动阻力,N;w F -空气阻力,N;i F -坡度阻力,N;

j F -加速阻力,N;tq T -发动机转矩,Nm;g i -变速器传动比;0i -主减速器传动比;

T η-传动系统机械效率;r -车轮滚动半径,m;f -滚动阻力系数;α-道路坡度角; D C -空气阻力系数;A -迎风面积,m 2;a u -车速,km/h;δ-旋转质量换算系数;

dt

du -车辆加速度,m/s 2。 功率平衡方程式为: 3600sin 15.21cos 12a a D T e u dt du m G Au C Gf P ???

?????+++=δααη (1-3) 式中,e P -发动机功率,kW。

通过上述公式,可以分析汽车在附着性能良好的典型路面(混凝土、沥青路面)上的行驶能力,即确定出汽车在节气门全开时可能达到的加速能力、爬坡能力和最高车速。

2.1.2燃油经济性分析

燃油经济性常用等速行驶百公里燃油消耗量和多工况循环行驶工况的百公里燃油消耗量来评价。车辆等速燃油消耗量的计算方法:

g

u Pb Q a s ρ02.1= (1-4) 式中,s Q -等速燃油消耗量,L/100km; P -阻力功率,kW;

b -燃油消耗率,g/kWh;ρ-燃油密度,kg/L。

循环工况的百公里燃油消耗量表示为: 100×=∑s

Q Q s (1-5) 式中,

s Q -百公里燃油消耗量,L/100km; ∑Q -所有过程油耗量之和,L;

s -整个循环的行驶距离,km。

2.2系统模块的选择

该车配备65KW 汽油发动机,5挡机械变速箱,满载1390Kg ,驱动形式是发动机前置四轮驱动(4WD )。根据整车结构和驱动形式分析,从模板中选用模型库如下:

复合模块:Axle (半轴)、EngineState (发动机)、Road/def (默认路面)、ShaftDriven (传动轴)、Transmission (变速器)、VehicleAmbient (大气环境)、VehicleBody (车体)。

控制模块:VehDriver (驾驶员)。

连接模块:ClutchConn (离合器)、ForceConn/def (默认力联接)、GearConn (主减速器)、RigidConn/def (默认刚性联接)、TireConn (轮胎)。

传感器和执行器模块:ActuatorConn/def (默认执行器)、SensorConn/def (默认传感器)。

模型在建模时是以不同的状态出现的,主要分为三层结构,模板(Template ):这是模型的原始状态,出现在数据库中,没有具体参数。实体(Object ):有具体参数的模型,而且该模型用于管理一批类似结构的部件。部件(Part ):出现在建模区模型图上的模型,这是实际物理存在的模型,而不是概念。

2.3各实体参数的输入

利用GT-DRIVE 进行整车性能仿真的最大特点是各子系统的模块化设计以及实体块的参数化输入很方便,双击main 中的实体块即可弹出对应各子系统的参数输入界面,首先输入名称,然后在参数输入界面输入子系统参数。在建完整车模型后,也可以通过双击子部件对参数进行修改。

定义TransShiftStrategyE (换档策略)、XYZMap (轮胎摩擦系数)、XYZPoints (发动机机械输出特性和燃油消耗特性)、XYTable (滚动阻力系数),定义Cluch (离合器动作)。参照国家标准,尽量把参数准确化。

2.4建立整车模型

当各子系统模型选定之后,应根据整车配置方案和部件连接关系建立模型的物理连接,该步骤

相对简单,只须用Create Links 连接功能建立物

理连接,或者直接用ctrl+3连接,如图1所示,

整车动力性模型,传动系各部件之间有直接的

物理连接关系,车轮和半轴之间也有物理连接

关系,但驾驶员与动力传动系和整个车体系统

之间没有物理连接,在仿真过程中,它们之间

是通过信号(控制器和传感器)连接来传递信

息。如图2所示,整车经济性模型,连接方式

如上所述。

2.5检查整车模型

建模、输入参数和连接都完成后,要对整

个模型进行检查,看参数的输入是否正确,双

击各个连接,检查各连接是否对应,如没有问题,

可进行后处理操作。

2.6仿真计算

通过Open Run Setup 设置计算类型,从动力学

分析、静力学分析运动学分析和专家模块选择所需

仿真类型,之后通过Run Simulation 进行计算,得

到结果。如果计算出现错误警告,重新检查模型,

找到错误,改正后继续计算,直到正确计算完毕。

3 数据处理

通过整车动力性分析得到如下结果,如图3所示,各个挡位下的加速度、最大爬坡度、最高车速、最大功率等数据均已给出,图4为一挡起步连续换挡0—100km/h 加速时间曲线。

通过整车经济性分析得到如下结果:

ECE-EUDC 循环工况油耗6.759 L/100km ,满足设计要求。而在90 km/h 和120 km/h 时的油耗是通过后处理自动插值生成的数据。

表1 经济性指标计算结果 速度(km/h ) 90

120 等速百公里油耗(L/100km) 6.865 9.622

图1 动力性仿真

图2 经济性仿真模型

4 结论

GT-DRIVE 软件能很快建立动力性、经济性分析模型,过程比较简单,实用性强,使用方便,能满足各种车型的需要,且达到了一定的计算精度。该软件的变参数计算可用于分析汽车结构参数及运行参数对动力性及经济性的影响程度.从而可为汽车设计提供一定的参考依据。

5 参考文献

[1] 余志生,汽车理论(第三版)[M],北京:机械工业出版社,2000

[2] GBT12545.1--12545.2-2001乘用车及商用车辆燃料消耗量试验方法

[3] GT-ISE Users Manual,Gamma Technologies.Inc

[4] Run Menu Features and Template Reference Manual, Gamma Technologies.Inc

图3 动力性数据

图4 0—100km/h 加速时间曲线

汽车动力性与经济性研究

《汽车理论》课程设计 题目:汽车动力性与经济性研究姓名: 班级: 学号: 指导教师: 日期:

目录 1、任务书 (3) 1.1 参数表 (3) 1.2 任务列表 (4) 2、汽车动力性能计算 (5) 2.1 汽车发动机外特性计算 (5) 2.2 汽车驱动力计算 (6) 2.3 汽车驱动力-行驶阻力计算 (7) 2.4 汽车行驶加速度计算 (8) 2.5 汽车最大爬坡度计算 (10) 2.6 汽车动力特性 (13) 2.7 汽车动力平衡计算 (14) 2.8 汽车等速百公里油耗计算 (15) 2.9小结 (16)

1、任务书 姓名:学号:班级:姓名:学号:班级: 荣威750 汽车参数如下: 1.1 参数表 表1 汽车动力性参数表 表2 汽车燃油经济性拟合系数表

表3 六工况循环参数表 1.2 任务列表 根据上述参数确定: 1、发动机的外特性并画出相应的外特性图; 2、推导汽车的驱动力,并画出汽车的驱动力图; 3、计算汽车每档的阻力及驱动力,画出各档汽车驱动力—行驶阻力平衡图,求 出每档的最高车速,最大爬坡度,通过分析确定汽车的动力性评价指标数值,并计算出最大爬坡度时的相应的附着率; 4、计算汽车行使的加速度,并画出加速度曲线; 5、计算汽车动力特性,画出动力特性图,求出每档的最高车速,最大爬坡度, 利用动力特性分析确定汽车动力性评价指标数值; 6、自学汽车的功率平衡图,画出汽车功率平衡图,分析确定汽车的动力性评价 指标数值 7、画出最高档与次高档的等速百公里油耗曲线。

2、汽车动力性能计算 2.1 汽车发动机外特性计算 由于荣威750汽车发动机由试验台架测得的扭矩接近与抛物线,因此用式2-1近似的拟合发动机的外特性曲线。 1953450n 60000083298.02 +--=)(tq T ---------------------------------------------(2-1) o g i i rn 377 .0ua =---------------------------------------------------------------------------(2-2) r i i o g tq t T T F η= -------------------------------------------------------------------------(2-3) 通过计算及作图得: 图2-1 荣威750汽车用汽油机发动机外特性图 根据图2-1可知,在n=5300r/min 时,该发动机具有最大功率m ax e P ,最大功率为92.3982kW ,当转速继续增加时,功率会下降;在n=3500r/min 时,具有最大扭矩m ax tq T ,最大扭矩为194.98N ·m ,该发动机的最小稳定转速为600r/min ,允许的最大转速为6500r/min

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

基于Cruise的乘用车动力性经济性仿真及优化

基于Cruise的乘用车动力性经济性仿真及优化 发表时间:2019-03-26T17:07:48.823Z 来源:《基层建设》2018年第35期作者:李季 [导读] 摘要:我国乘用车动力性和经济性是汽车开发的重要内容,本文根据某个乘用车为例子,初步针对动力传动系统参数进行分析,应用Cruise软件进行了整车动力性、经济性仿真;根据仿真计算结果。 安徽江淮汽车集团股份有限公司安徽省合肥市 230601 摘要:我国乘用车动力性和经济性是汽车开发的重要内容,本文根据某个乘用车为例子,初步针对动力传动系统参数进行分析,应用Cruise软件进行了整车动力性、经济性仿真;根据仿真计算结果。对整车动力传动系统参数进行了相应的优化,在满足整车动力性要求的前提下,提高了燃油经济性能力,使其满足国家第四阶段油耗限值的要求。 关键词:Cruise;动力性;经济性;仿真 前言:我国汽车的动力性是汽车性能中最基本的一项技能,同时也是汽车开发过程当中需要考虑到的重点问题。在分析如何满足现代化的汽车动力性的前提之下,提升汽车的经济性是目前汽车研究的主要内容。随着我国现如今能源消耗的提升,新标准对乘用车燃油经济性提出了新型的挑战。目前,应用先进性分析方法针对汽车动力性经济以及汽车生产企业单位进行综合性评价。 一、关于Cruise软件概述 社会发展进步的过程,会随着社会需要的变化而出现优胜略汰的情况。对于能源的利用,人们更是十分的上心。以往人们使用的是利用燃油或其他燃料,让其在燃烧的过程驱动车辆行驶,如今,人们提倡低碳环保,节能减排,政府更是大力的扶持这一政策的实施。现在一种新型的代步工具,电动汽车的出现更是响应了政府的政策号召,因此,电动汽车这一新兴产业未来的发展趋势必将不可限量[1]。Cruise软件作为奥地利公司研发的一种汽车动力性和燃油经济性模拟分析的软件,其可以应用汽车开发过程当中的传动性系统的搭配,汽车性预测可以将整个车子的仿真进行综合计算,在车辆设计的前期,应用初步选择的动力传统系统数据,应用该软件实施动力性和经济性的效仿模拟,并且根据结果实施进一步的提升优化管理,可以很有效的减少新车辆的开发时间,并且还可以做到提升整个车的动力性经济性研发模式。 二、动力性经济性乘用车和传统燃油汽车的差异 乘用车是利用电能的转化,将电能转化成机械能去驱动车子的运作行驶,和传统的车辆相比,会更加的环保,能耗也相对较低。乘用车它的售后服务可以以传统的汽车售后作为参考,并在其原有的模式下进行延伸和拓展。乘用车它的驱动主要是把电池的电能转换成为动能,从而驱动车轮让其运作,然而,传统的燃油汽车却是利用发动机的功能,在燃烧可燃的混合气的过程中,将化学能转变成了机械能,之后再将机械能传到变速器和驱动桥以及车轮,通过这样一个复杂的过程才使得车辆正常的运作起来。这两者因为构造的不同,主要会影响到监测和维修过程所使用的工具,还有专用的一些设备的配置与应用,与此同时,因为乘用车并没有变速器以及发动机,所以,它需要保养的也仅仅是减速器而已,从此可以看出,乘用车它的保养和维修的次数一定会比传统的汽车要少的多。除此之外,传统的燃油汽车与乘用车它们的差异主要表现在电子系统上。乘用车它与传统的燃油汽车相对比,它主要包括的有电机总成和电池管理系统以及电子控制系统等等。它电子集成化的程度相对比较高,控制的策略就较为复杂一些,因此在信息的传输过程中对数字化程度的要求就要高一些,不过,乘用车也有着一些弊端的,相较于传统的驱动式汽车来说,它发生故障的概率要更高一些。因为这一差异性的影响,因此在售后服务这一方面,相对应的部分就会提出一些更高的要求。其中,能够有效影响乘用车的因素体现在以下几个方面:首先,需要用到新型的专用检测设施,专业对口型维修技术人员。 其次,因为电子元件数量的增加,乘用车它本身的复杂性促使了实际使用人没有办法自己完成修理排除故障,就降低了用户自修的能力。而且,300V之上的电压就是高电压了,所以,它是有一定的危险性的。因此,对于乘用车的维修人员上岗工作要求也随之提高[2]。其从业人员必须要持有相关的上岗证件,对于使用电动车的人员也要进行相关的安全知识的学习,确保人身安全! 最后,对于乘用车要进行实时的监控,可以通过一些高科技手段对使用人员进行远程教学与指导。现当下,国家提倡节能减排,并能够给予相关工作提供一些相应的政策扶持。但是,因为时间比较短,政策实施的比较较晚,因此还存在一些弊端或者是值得再去优化更改的地方。在面对乘用车的购买这一方面,国家能够提供一定的补贴,除此之外,暂时并没有给出一些硬性的要求,强制性的要乘用车的售后服务给予其它的售后服务,同时,也没有明文规定其发展的要求,从此可以看出,乘用车这一行业它自由发展的空间还是很大的。不过,这也是一把双刃剑,因为没有一些明确的硬性条款约束,很容易导致其行业在发展探索的道路上多走弯路,或者是花样百出,这样就易造成行业内的混沌。如果,这一新兴产业在发展了一段时间后,能够根据市场的实际情况而逐步的形成一个较为完善的,并且适合我国国情的汽车行业服务模式,那么,乘用车也将会成为相关行业的一大竞争对手 三、针对Cruise的乘用车动力性经济性售后服务分析 售后服务主要存在的目的就是为了消费者提供更为便捷的解决问题的途径,因此提升是售后服务的便捷性,是大势所趋,也是一个售后服务站所立足生存下去的最为基本的要求。乘用车在一些故障问题上要比传统的燃油汽车更难处理一些,这种弄情况就不得不需要找一些专业性的人员帮忙解决,所以,在售后服务站点的设立方面,一定要考虑到它的便利问题,同时,不仅仅是要求站点设立的要方便,同时,服务人员也要符合要求,首要的是专业的技能,上岗必持证,再就是,从业人员要“乐于助人”,能够积极的帮助上门的“求助者”,为他们提供便捷的服务。 综上所述,乘用车要想持续的发展下去,建立相关的服务站是必不可少的,建立的之初,可以借鉴参考相关的服务机构或企业。借鉴不是照搬照抄,而是要结合自身的情况加以取舍,从以往的情况来看,一般服务站建立在人口比较多的社区更为便捷。同时,因为乘用车的自身特点来看,因为它是不能缺电的,所以,因为没有电而没有办法启动汽车的情况应该相对较多,那么,设立一个紧急救援的服务也是有必要的,这样做有利于提高消费者对企业的好感度,因此有可能会促进产业更好的持续发展下去。这是新兴的汽车生产企业发展下去的需要,同时能够提高服务站的盈利问题。 针对乘用车相比起,燃油车保养起来确实比较简单些,除了在定期内车辆内部的硬件需要更换以外,其实大多都是对于车辆各项功能系统的检测。第一,针对动力系统的硬件检测,当然和燃油车一样只有经历过检测才明够准确的避免一些安全隐患问题,才能够清楚哪里需要换掉,只不过电动车的检查可能复杂点,需要特别检查一些插口接头以及线路绝缘防护情况[3]。第二,作为电池是乘用车的重要组成因素,当然在保养的阶段也要仔细检查,而大多4S店内都会有专业的检测仪器,可以很准确的检查出电池核心的情况。最后,我国乘用车

汽车整车动力性仿真计算

汽车整车动力性仿真计算 1 动力性数学模型的建立 汽车动力性是汽车最基本、最重要的性能之一。汽车动力性主要有最高车速、加速时间t 及最大爬坡度。其中汽车加速时间表示汽车的加速能力,它对平均行驶车速有着很大影响,而最高车速与最大爬坡度表征汽车的极限行驶能力。根据汽车的驱动力与行驶阻力的平衡关系建立汽车行驶方程,从而可计算汽车的最高车速、加速时间和最大爬坡度。其中行驶阻力(F t )包括滚动阻力F R 、空气阻力F Lx 、坡度阻力F St 和加速阻力F B 。 根据图1就可以建立驱动的基本方程,各车节之间的连接暂时无需考虑。而车辆必须分解为总的车身和单个车轮。节点处只画出了x 方向的力;z 方向的力对于讨论阻力无关紧要,可以忽略。 图1 (a )车辆,车轮和路面;(b )车身上的力和力矩; (c )车轮上的力和力矩;(d )路面上的力 如果忽略两个车节间的相对运动,根据工程力学的重心定理,汽车(注脚1)和挂车(注 脚2)的车身运动方程为: ∑=++--=+n j j Lx X αG G F x m m 12121sin )()( (1)

其中1G 和2G 是车节的车身重量,1m 和2m 它们的质量,α是路面的纵向坡度角,∑j X 是n 车轴上的纵向力之和,L F 是空气阻力。 由图1(c ),对第j 个车轴可列出方程 αG F X x m Rj xj j Rj Rj sin -+-= (2) j zj j xj Rj Rj Rj e F r F M φ J --= (3) Rj G 是该车轴上所有车轮的重量,Rj m 是它们的质量,Rj J 是绕车轴的车轮转动惯量之和,xj F 是在轮胎印迹上作用的切向力之和,zj F 是轴荷,Rj M 是第j 个车轴上的驱动力矩。 如果假设车轴的平移加速度Rj x 和车身的加速度x 相等,由式(1)到式(3)在消去力j X 和xj F 以后就得到方程 ∑∑∑ ∑∑=====--++-=+++n j j j zj Lx n j Rj n j j Rj Rj n j j Rj n j Rj r e F F αG G G r M φ r J x m m m 1 1 211 11 21sin )()( 引进总质量和总重量(力) m m m m n j Rj =++∑=121 mg G G G G n j Rj ==++∑=1 21 把车轮角加速度转化为平移加速度x ,即得到 ∑∑∑ ===++++=n j j j zj Lx n j j j Rj n j j Rj r e F F αG x R r J m r M 1 11 sin )( (4) 右边是由4项阻力组成,我们称之为 1)滚动阻力∑==n j j j zj R r e F F 1 (5) 令j j r e f = ,f 为阻力系数,代入式(5),则整车的滚动阻力为 zj n j R F f F ∑==1(5-1) 还常常进一步假定,所有车轮(尽管比如各个车轮胎压不同)的滚动阻力系数相等,又因为所有车轮轮荷zj F 之和等于车重G ,如果车辆行驶在角度为α的坡道上,则轮荷之和等于αcos G (参看图1) ,这样,式(5-1)可改写为 αfG F f F n j zj R cos 1==∑= 因为道路上的坡度较α不是很大,整车滚动阻力因而近似于整车车轮阻力 G f F R R =(5-2) 2)空气阻力2 a D 15 .21u A C F Lx =(6) 3)上坡阻力αG F St sin =(7) 在式(4)中的αG sin 项用以表示上坡阻力 αG F St sin =(7-1) 参看式(7)。如果我们用αtan 以及等价的值p 来取代αsin ,那么上述表达式就更为直

汽车动力性经济性优化设计

题目: 选择市场上热销的大众高尔夫六代1.4T 手动舒适型轿车,依据用户需要设定其百公里等速(90km/h )油耗范围为(5.0-7.0)L/100km,加速时间(0-100km/h )范围为(9.0-12.0)s ,试对该车型进行动力装置参数的选定与优化,并确定最佳方案。 已知参数:整车质量1330kg ;最高车速200km/h ;发动机怠速800r/min;最高转速5000r/min;车轮半径R=0.4064m ;单个车轮转动惯量1.302kg m ;发动机飞轮转动惯量0.222kg m 。 方案: 1. 发动机功率的选择 (1)首先从保证汽车预期最高车速初步选择发动机应有功率。根据公式 3max max 1()360076140 D e a a T C A mgf P u u η=+ 估算出发动机功率,其中m=1330kg ;max a u =200km/h ;空气阻力系数D C =0.30;迎风面积A=2.0;滚动阻力系数f=0.020(设定测试路面为一般沥青或混凝土路面);总传动效率T η=0.95(变速器)×0.96(单级主减速器)=0.912。根据以上参数,可得发动机的功率为e P =85kw 。 (2)参考同级汽车比功率统计值,粗略估计新车比功率值,得出最大功率值,同级汽车比功率值列于表1:

表1 部分汽车的比功率统计值 车型发动机功率/kw 车总重/kg 比功率/1 kw t-?雪铁龙世嘉78 1270 61.42 日产骐达93 1206 77.11 标致307 78 1290 60.47 别克英朗108 1430 75.52 现代i30 90 1215 74.07 求得表1中的比功率平均值为 X=(61.42+77.11+60.47+75.52+74.07)/5=69.72,由此估计新车发动机功率为69.72×1.330=93kw。 2.变速箱传动比范围以及主减速器传动比由经验初定 由以往同系车型可以初步确定变速箱(5挡手动)各挡传动比大小如表2所示: 表2 各挡传动比大小 挡位一挡二挡三挡四挡五挡 传动比 3.625 2.071 1.474 1.038 0.844 而由经验值可初定主减速器传动比为3.40。依据以上数据可以开始绘制燃油经济性—加速时间曲线,即C曲线。 3.绘制不同主传动比 i时燃油经济性—加速时间曲线 在以上数据的前提下改变主减速器传动比,变速箱传动比不变,绘制C曲线,进而得到满足动力性与燃油经济性要求的最佳主传动比。

汽车动力性matlab仿真源程序

clc n=[1500:500:5500];%转速范围 T=[78.59 83.04 85.01 86.63 87.09 85.87 84.67 82.50 80.54];%对应各转矩 dt=polyfit(n,T,3);%对发动机输出转矩特性进行多项式拟合,阶数取4 n1=1000:100:5500;%???? t=polyval(dt,n1); figure(1) title('发动机外特性') plot(n1,t,n,T,'o'),grid on%图示发动机输出转矩特性 %汽车驱动力计算 G=input('整车重力/N,G=');%输入970*9.8 ig=[3.416 1.894 1.28 0.914 0.757];%变速器速比 k=1:5;%5个前进档 r=0.272;i0=4.388;eta=0.9; ngk=[800 800 800 800 800]; ngm=[5500 5500 5500 5500 5500]; ugk=0.377.*r.*ngk(k)./(ig(k).*i0);%计算每一档发动机800rpm时的最低行驶速度ugm=0.377.*r.*ngm(k)./(ig(k).*i0);%计算每一档发动机5400rpm最高行驶速度 for k=1:5%依次计算5个档的驱动力 u=ugk(k):ugm(k); n=ig(k)*i0.*u./r/0.377; t=54.8179+2.2441.*(n./100)-4.8003.*(n./1000).^2+2.815e-10.*n.^3 Ft=t.*ig(k).*i0*eta/r; figure(2) plot(u,Ft) hold on,grid on %保证K的每次循环的图形都保留显示 end %行驶阻力计算 f0=0.009; f1=0.002; f4=0.0003;%三者都是轿车滚动阻力系数 % disp'空气阻力系数Cd=0.3--0.41,迎风面积A=1.7--2.1' Cd=input('空气阻力系数Cd=');%输入0.3 A=input('迎风面积/m2,A=');%输入2.3 u=0:10:180; f=f0+f1.*(u./100)+f4.*(u./100).^4; Ff=G*f;%计算滚动阻力 Fw=Cd*A.*u.^2./21.15;%计算空气阻力 F=Ff+Fw;%滚动阻力、空气阻力之和 title('驱动力-阻力图(五档速比为3.416 1.894 1.28 0.914 0.757)') plot(u,F,'mo-'); grid on

汽车的动力性与经济性指标

汽车的动力性与经济性 衡量一辆汽车质量的高低,技术性能是重要的依据。其中动力性、经济性是主要指标。动力性指标和经济性指标在汽车的性能介绍表上都有介绍。 汽车的动力性指标 汽车的动力性指标主要由最高车速、加速能力和最大爬坡度来表示,是汽车使用性能中最基本的和最重要的性能。在我国,这些指标是汽车制造厂根据国家规定的试验标准,通过样车测试得出来的。 最高车速:指在无风条件下,在水平、良好的沥青或水泥路面上,汽车所能达到的最大行驶速度。按我国的规定,以1.6公里长的试验路段的最后500米作为最高车速的测试区,共往返四次,取平均值。 加速能力(加速时间):指汽车在行驶中迅速增加行驶速度的能力,通常用加速时间和加速距离来表示。加速能力包括两个方面,即原地起步加速性和超车加速性。现多介绍原地起步加速性的参数。因为起步加速性与超车加速性的性能是同步的,起步加速性性能良好的汽车,超车加速性也一样良好。 原地起步加速性是指汽车由静止状态起步后,以最大加速强度连续换档至最高档,加速到一定距离或车速所需要的时间,它是真实反映汽车动力性能最重要的参数。有两种表示方式:车速0加速到1000米(或400米,或1/4英里)需要的秒数;车速从0 加速到100公里/小时(80公里/小时、100公里/小时)所需要的秒数,时间越短越好。 超车加速性是指汽车以最高档或次高档由该档最低稳定车速或预定车速(如30公里/小时、40公里/小时)全力加速到一定高速度所需要的时间。 这里特别要指出的是,加速性能的测试与驾驶员的驾车换档技术与环境有密切的联系。驾驶员技术水平的不同,行驶路面的不同,甚至气候条件的不同,所反映出来的加速时间也会不同。车厂给出的参数往往是样车所能达到的最佳值,因此作为用户来说,这个参数仅能做为参考。 爬坡能力:指汽车在良好的路面上,以1档行驶所能爬行的最大坡度。对越野汽车来说,爬坡能力是一个相当重要的指标,一般要求能够爬不小于60%或30°的坡路;对载货汽车要求有30%左右的爬坡能力;轿车的车速较高,且经常在状况较好的道路上行驶,所以不强调轿车的爬坡能力,一般爬坡能力在20%左右。 汽车的经济性指标 汽车的经济性指标主要由耗油量来表示,是汽车使用性能中重要的性能。尤其我国要实施燃油税,汽车的耗油量参数就有特别的意义。耗油量参数是指汽车行驶

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

AVL CRUISE整车动力性经济性仿真分析一点技巧

A VL CRUISE整车动力性经济性仿真分析 章郁斌 长安汽车工程研究院规划所,重庆,401120,zhangyubinde@https://www.360docs.net/doc/ce11565560.html, 摘要:本文主要介绍了 关键字:CRUISE 动力经济仿真 CRUISE软件可以用于车辆的动力性,燃油经济性以及排放性能的仿真,其模块化的建模理念使得用户可以便捷的搭建不同布置结构的车辆模型,其复杂完善的求解器可以确保计算的速度CRUISE的一个典型应用是对车辆传动系统和发动机的开发,它可以计算并优化车辆的燃油经济性,排放性,动力性(原地起步加速能力、超车加速能力)、变速箱速比、制动性能等,也可以为应力计算和传动系的振动生成载荷谱 一、简化计算任务 通常计算任务会有这样一种情况,选择多种变速器与多种发动机或者主减速器进行搭配计算。这在CRUISE中其实很好实现的,如下图操作即可 然后在计算中心里添加对应的模型即可,如图 当你有多个组件进行搭配的时候,可以在DOE plan中进行搭配的选择。

如此一来,可以使计算任务变得非常简单了。 二、简化结果提取 在模型里添加一个special model中的ms-export的模块,按下图配置输出的参数 在总线里配置好ms-export模块的参数总线连接 然后对计算任务的输出进行修改,勾上output of ms-exports

然后开始计算,如果你的任务是有很多case(各种组件的组合计算)这样计算的结果会生成相应很多个excel工作簿,然后我们可以编相应的程序或者宏就可以对这些工作簿进行处理,可以把结果生成到一个另外一个工作簿中,如此工作就变得很轻松了,我们可以把更多的精力放在真正的研究上了。 目前我可以用这种方法很方便的提取以下结果: 爬坡度的结果如何提取,我还没有找到办法,如果你找到了的话,请告诉我一下,谢谢

FSAE赛车动力性-经济性计算

FSAE赛车动力性、经济性计算书 1.计算目的 通过对发动机的功率、驱动力、行驶加速度、最大车速、最大爬坡度、0-75km/h加速时间及加速位移、等速燃料经济性、多工况燃料经济性等参数的计算,可以了解FSAE赛车整车的动力性能和经济性能,为以后的设计改进提供理论基础。 2.计算相关参数 以上发动机功率为加上进、排气系统所测的数据,在计算中还的减去发动机附件(如:风扇消耗的功率、助力转向泵消耗的功率以及空调压缩机消耗的功率)所消耗的功率得到净功率,由于风扇消耗的功率计算比较复杂,在这里就不计算了,且这里只计算在空调不开的状态下,整车所能表现的最好的动力性和经济性。 2.2整车参数

汽车的动力性指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。运输效率之高低在很大程度上取决于汽车的动力性,所以动力性是汽车各种性能中最基本、最重要的性能。 动力性评价指标主要有三个: a、汽车的最高车速u a max; b、汽车的加速性能(加速时间t); c、汽车的爬坡性能(最大爬坡度imax)。 动力性计算相关公式: 3.1 驱动力计算公式 Ft=Ttq×i q×i o×ηt/r式中: Ttq——发动机转矩(Nm);i g ——变速器传动比; i o——主减速器传动比;ηt ——传动效率;r ——滚动半径(m); 3. 2 汽车行驶速度公式(在驱动轮不打滑的情况下) u a=0.377r×n/ i g/ i o 式中:u a——汽车行驶速度(km/h);n ——发动机转速(r/min); 3. 3 滚动阻力系数公式 f=0.014×(1+ u a2/19440) 式中: f ——滚动阻力系数; 3. 4 空气阻力公式 Fw=Cd×A×u a2/21.15 式中:Fw ——空气阻力;A ——迎风面积;Cd ——空气阻力系数; 3.5 动力因数 D=(Ft-Fw)/G 式中:D ——动力因数; 3. 6 滚动阻力公式 F f=Gf 式中:G ——整备质量或满载质量; 3.7 计算过程及结果(利用matlab软件对附件程序进行运算得出结论) 3. 7.1 外特性曲线图 图示发动机外特性曲线图是根据功率测试数据通过程序拟合出来的。 4、汽车经济性能计算 汽车燃油经济性常用一定运行工况下汽车行驶百公里的燃油消耗量或一定燃油量能使汽车行驶的里程来衡量,以下通过计算等速百公里油耗和循环行驶试验工况百公里油耗来衡量汽车的燃油经济性。 燃油经济性评价指标: a、等速燃料经济性 b、多工况燃料经济性(综合油耗=1/(0.55/市区多工况百公里油+0.45/市郊多工况百公 里油耗)) 4.1经济性计算相关公式 4.1.1 等速行驶工况燃油消耗量的计算

汽车理论课程设计:基于Matlab的汽车动力性的仿真

2009 届 海南大学机电工程学院 汽车工程系 汽车理论课程设计 题目:汽车动力性的仿真 学院:机电工程学院 专业:09级交通运输 姓名:黄生锐 学号:20090504 指导教师: 编号名称 件 数 页 数 编 号 名称 件 数 页数 1 课程设计论文 1 3Matlab编程源程序 1 2 设计任务书 1 2012年6月20日 成绩

汽车理论课程设计任务书 姓名黄生锐学号20090504 专业09交通运输 课程设计题目汽车动力性的仿真 内容摘要: 本设计的任务是对一台Passat 1.8T手动标准型汽车的动力性能进行仿真。采用MATLAB编程仿真其性能,其优点是:一是能过降低实际成本,提高效率;二是获得较好的参数模拟,对汽车动力性能提供理论依据。 主要任务: 根据该车的外形、轮距、轴距、最小离地间隙、最小转弯半径、车辆重量、满载重量以及最高车速等参数,结合自己选择的适合于该车的发动机型号求出发动机的最大功率、最大扭矩、排量等重要的参数。并结合整车的基本参数,选择适当的主减速比。依据GB、所求参数,结合汽车设计、 汽车理论、机械设计等相关知识,计算出变速器参数,进行设计。论证设计的合理性。 设计要求: 1、动力性分析: 1)绘制汽车驱动力与行驶阻力平衡图; 2)求汽车的最高车速、最大爬坡度; 3)用图解法或编程绘制汽车动力特性曲线 4)汽车加速时间曲线。 2、燃油经济性分析: 1) 汽车功率平衡图; 完成内容: 1.Matlab编程汽车驱动力与行驶阻力平衡图 2.编程绘制汽车动力特性曲线图 3.编程汽车加速时间曲线图 4.课程设计论文1份

汽车动力性仿真 摘要 本文是对Passat 1.8T 手动标准型汽车的动力性能采用matlab 编制程序,对汽车动力性进行计算。从而对汽车各个参数做出准确的仿真研究,为研究汽车动力性提供理论依据,本文主要进行的汽车动力性仿真有:最高车速、加速时间和最大爬坡度。及相关汽车燃油性经济。 关键词:汽车;动力性;试验仿真;matlab 1. Passat 1.8T 手动标准型汽车参数 功率Pe (kw ) 转速n (r/min ) 15 1000 36 1750 50 2200 66 2850 80 3300 90 4000 110 5100 105 5500 各档传动比 主减速器传动比 第1档 3.665 4.778 第2档 1.999 第3档 1.407 第4档 1 第5档 0.472 车轮半径 0.316(m ) 传动机械效率 0.91 假设在良好沥青或水泥路面上行驶,滚动阻力系数 0.014 整车质量 1522kg C D A 2.4m 2

纯电动车经济性能影响因素仿真教学文案

纯电动车经济性能影响因素仿真 1 纯电动汽车经济性能指标 纯电动汽车是以二次电池为储能载体二次电池以铅酸电池镍氢电池埋离子电池为主。由于二次电池目前在储电量、充放电性能、使用寿命、成本等方面无法与内燃机相比,因此近一时期以来,研究进展不大,大多数研究单位已将研究目标转为混合动力汽车。纯电动汽车的经济性能是在保证动力性的前提下,汽车以尽量少的能量消耗行驶的能力,纯电动汽车在等速行驶、加速行驶和循环工况下的能量消耗率和续驶里程来决定经济性能的优劣。车辆能耗经济性评价常用的指标都是以一定的车速或者循环行驶工况为基础,以车辆行驶一定里程的能量消耗量或一定能量可反映出车辆行驶的里程来衡量。纯电动汽车能量消耗率是动力电池存放的电量维持汽车某一工况下运行的能力,如单位里程消耗的能量、百公里消耗能量;续驶里程是指纯电动汽车从动力电池全充满状态开始到试验规定结束时所走过的里程,如以45km/h行驶的里程等。为了使电动汽车能耗经济性评价指标具有普遍性,其评价指标应该具有以下三个条件: (1)可以对不同类型的电动汽车进行比较; (2)指标参数值与整车存储能量总量无关; (3)可以直接通过参数指标进行能耗经济性判断; 不同的纯电动汽车在不同的行驶工况下能量消耗率和续驶里程可能会不同,很难用统一的公式进行计算,下面将运用仿真的方法得出纯电动汽车的续驶里程和能量消耗率。 2 铃木电动车仿真分析 根据目前国内外有关学者对纯电动汽车的研究结论,可以看出,纯电动汽车的研发出现了难以进行下去的问题。一方面是由于纯电动汽车面临的成本和续驶里程等问题,一直没有很好的解决;另一方面,和人们对电动汽车的要求过于完美化,提出不切实际的过高要求有关。因此,对纯电动车经济性能影响因素的分析和研究,可以对解决这个问题找到一些方法或者启示。 电动汽车仿真软件ADVISOR由美国国家再生能源实验室开发,使用后向仿真为主、前向仿真为辅的混合设计方法,具有车辆总成参数匹配与优化、传动/驱动系统能量转化分析、排放特性/能量消耗对比、车辆能量管理策略评价、整车综合性能预测分析等功能。以下是铃木某款纯电动车的整车部分参数,汽车采用永磁电机和镍氢电池,并建立ADVISOR的仿真模型,分析影响纯电动汽车经济性能的参数[2]。建立ADVISOR的仿真模型需要的参数有整车整备质量、空气阻力系数、迎风面积、轴距、最大载荷、电机最大功率、电机额定电压、电机最大扭矩、电池容量、主减速比。在已知以上参数的情况下建立ADVISOR的仿真模型。微型电动汽车具有无污染、低噪音、小体积、低速度和易驾驶等优点,使得它可以穿梭与大城市的各种道路,能够直接到达出租车都不能到达的身居小巷。微型电动汽车的最高时速一般为45km/h,虽然比一般小汽车的速度慢,但比步行或骑自行车快得多。因此微型电动汽车作为代步工具是相当合适的。另外,微型电动汽车的低速度也提高了它在居住区行驶时的安全性。驾驶微型电动汽车,比驾驶小汽车简单得多。ADVIDOR提供了道路循环(Drive Cycle)、多重循环(Multiple)和测试过程(Test Procedure)3种仿真工况来仿真车辆的性能。道路循环提供了CYC.ECE、CYC.FTP和CYC.1015等56种国外标准的道路循环供用户选择,另外提供了行程设计器(Trip Buider),可以将多达8种不同的道路循环任意组合在一起,综合仿真车辆的性能。多重循环功能可以用批量处理的方式以相同的初始条件,快速计算和保存不同的道路循环情况下的仿真结果,并将它们显示在一起,供用户比较。测试过程包括

汽车动力性经济性试验报告

汽车动力性和经济性 试验报告 实验内容:汽车加速性能试验 汽车等速燃油消耗率试验

一、汽车加速性能试验 1、实验目的 1)通过实验的环节,了解汽车试验的全过程; 2) 掌握最基本的汽车整车道路试验测试技术,包括试验车的检查准备、测量原理,试验方案的设计、测试设备的选择、试验操作、误差来源和控制、数据的取得和记录、试验结果分析计算整理;3) 巩固课堂上所学的汽车理论和汽车试验知识,提高实践能力; 2、实验条件 1)试验前检查汽油发动机化油器的阻风阀和节气阀,以保证全开;2)柴油发动机喷油泵齿条行程能达到最大位置;3)装载量按试验车技术条件规定装载(满载);4)轮胎气压负荷车上标示规定;5)风速;3/m s ≤6)试验车经充分预热; 7) 试验场地应为干燥平坦且清洁的水泥或沥青路面,任意方向的坡度2% ≤3、主要实验仪器设备与实验车参数 试验车参数列表:

仪器名称型号生产厂家 五轮仪LC1100(931680718)ONO SOKKE 信号采集系统 大气压力、温度表 风速仪风云仪器 五轮仪采样频率100赫兹 4、试验内容 总体的速度-时间曲线如下所示: 4.1 实验一:低速滑行法测滚动阻力系数 1)试验目的: 了解滑行试验条件、方法;学会仪器使用;掌握车速记录、分析方法;计算滚动阻力系数。 2)试验内容: a).在符合实验条件的道路上,选取合适长度的直线路段,作为加速性能试验路段,在两端设置标杆作为标号; b).试验车辆加速到大于20km/h,将变速器置于空挡后,按下采集系统“开始” 键,直至车辆停止,按“结束键”,记录车辆从20km/h到停止这一过程车速

avlcruise整车动力性经济性仿真分析一点技巧

A V L C R U I S E整车动力性经济性仿真分析一点技巧(总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

AVL CRUISE整车动力性经济性仿真分析 章郁斌 长安汽车工程研究院规划所,重庆,401120,zhangyubinde 摘要:本文主要介绍了 关键字:CRUISE 动力经济仿真 CRUISE软件可以用于车辆的动力性,燃油经济性以及排放性能的仿真,其模块化的建模理念使得用户可以便捷的搭建不同布置结构的车辆模型,其复杂完善的求解器可以确保计算的速度CRUISE的一个典型应用是对车辆传动系统和发动机的开发,它可以计算并优化车辆的燃油经济性,排放性,动力性(原地起步加速能力、超车加速能力)、变速箱速比、制动性能等,也可以为应力计算和传动系的振动生成载荷谱 一、简化计算任务 通常计算任务会有这样一种情况,选择多种变速器与多种发动机或者主减速器进行搭配计算。这在CRUISE中其实很好实现的,如下图操作即可 然后在计算中心里添加对应的模型即可,如图 当你有多个组件进行搭配的时候,可以在DOE plan中进行搭配的选择。 如此一来,可以使计算任务变得非常简单了。 二、简化结果提取 在模型里添加一个special model中的ms-export的模块,按下图配置输出的参数

在总线里配置好ms-export模块的参数总线连接 然后对计算任务的输出进行修改,勾上output of ms-exports 然后开始计算,如果你的任务是有很多case(各种组件的组合计算)这样计算的结果会生成相应很多个excel工作簿,然后我们可以编相应的程序或者宏就可以对这些工作簿进行处理,可以把结果生成到一个另外一个工作簿中,如此工作就变得很轻松了,我们可以把更多的精力放在真正的研究上了。 目前我可以用这种方法很方便的提取以下结果: 爬坡度的结果如何提取,我还没有找到办法,如果你找到了的话,请告诉我一下,谢谢

汽车动力性、经济型分析

整车经济性、动力性分析 栾焕明 (哈尔滨航空工业集团动力研发) 摘 要:通过AVL CRUISE的仿真计算,优化速比,在保证整车动力性的前提下,提高整车 经济性。通过仿真选优,提出了优化方案,并由试验进行验证。 关键词:速比;优化 主要软件:AVL CRUISE 汽车经济性、动力性的分析: 汽车经济性常用一定运行工况下汽车行驶百公里的燃油消耗量或一定燃油量能使汽车行 驶的里程来衡量。 汽车动力性的评定,通过分析汽车的驱动力和行驶阻力(牵引力)、车速与发动机转矩、变 速器速比和主减速比、车速与发动机扭矩和转速之间的关系,以便尽量拓展车速范围和增大牵 引力,最大限度的发挥动力总成的性能,满足复杂多变的使用条件。 1.整车主要参数及动力性指标: 1.1 整车主要尺寸与质量参数: 整车长度(mm) 3745 前轮轮距(mm) 1300 整车宽度(mm) 1505 后轮轮距(mm) 1310 整车高度(mm) 1925 车轮滚动半径(mm) 273 轴距(mm)最大总质量(kg) 1610 1.2 整车主要动力性指标: a. 最高车速不小于130km/h; b. 最大爬坡度不小于32%; c. 直接档最低稳定车速不大于25 km/h; 2. 471发动机及变速器的主要技术参数 2.1发动机的特性: 转速(r/min) 扭矩(N·m) 功率(kW) 1500 90.82 14.26 2000 94.89 19.87 2500 97.87 25.62 3000 104.35 32.78

3500 106.72 39.12 4000 104.22 43.66 4500 101.77 47.96 5000 99.45 52.07 5400 97.21 54.97 2.2 变速器1主要技术参数: 主减速器传动比 i 0=5.125/4.3/3.909 最大输入扭矩(N·m) 108 最大扭矩转速(rpm) 3000~3500 档 位 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 传 动 比 i 1=3.652 i 2=1.948 i 3=1.424 i 4=1.000 I 5=0.795 2.3 变速器2主要技术参数: 主减速器传动比 i 0=4.3/3.909 最大输入扭矩(N·m) 108 最大扭矩转速(rpm) 3000~3500 档 位 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 传 动 比 i 1=4.424 i 2=2.722 i 3=1.792 i 4=1.226 I 5=1

汽车动力性和经济性计算(最新整理)

摘要 汽车运用工程课程是交通运输本科专业的一门主干课程,而对于汽车来说,动力性与经济性是两个非常重要的指标,它们能综合反映出某一款车的性能高低。本文正是通过计算一款车(新瑞虎1.6S MT 舒适型)的动力性能以及燃油经济性来确定该款车的性能是否得到充分发挥,同时利用计算机VB高级语言编程,以此为基础,对其传动系参数进行了优化,通过对优化前后整车性能的对比分析,判断是否达到在动力性能与燃油经济性之间达到一个较优平衡。相信通过这次的汽车运用工程课程设计,我将会更深层次地理解汽车各性能。

Abstract Automobile Application Engineering undergraduate curriculum is a transport main course, and for the car, power and economy are two very important indicators, which can comprehensively reflect the performance of a particular level of a car. This article is by calculating a car (new Tiggo 1.6S MT comfort) of the dynamic performance and fuel economy to determine whether the performance of the car is brought into full play, while taking advantage of high-level computer programming language VB as a basis, its transmission parameters were optimized by comparing before and after optimization of vehicle performance, to determine whether the dynamic performance and fuel economy to achieve an optimal balance between. I believe that through the use of the automobile engineering course design, I will be a deeper understanding of the performance car.

相关文档
最新文档