工程光学课程设计报告

工程光学课程设计报告
工程光学课程设计报告

工程光学课程设计

设计名称:工程光学课程设计

院系名称:电气与信息工程学院

专业班级:

学生姓名:

学号:

指导教师:

黑龙江工程学院教务处制

2013年12月

工程光学课程设计评分表

(6069)和不及格(少于60分)五级给出。

一、ZEMAX 软件介绍

美国ZEMAX Development Corporation研发ZEMAX 是一套综合性的光学设计软件,集成了光学系统所有的概念、设计、优化、分析、公差分析和文件管理功能。ZEMAX所有的这些功能都有一个直观的接口,它们具有功能强大、灵活、快速、容易使用等优点。ZEMAX 有两种不同的版本:ZEMAX-SE和ZEMAX-EE,有些功能只在EE版本中才具有。

ZEMAX 可以模拟序列性(Sequential)和非序列性(non-sequential)系统,分别针对成像系统和非成像系统。ZEMAX采用序列和非序列两种模式模拟折射、反射、衍射的光线追迹。序列光线追迹主要用于传统的成像系统设计,如照相系统、望远系统、显微系统等。这一模式下,ZEMAX以面作为对象来构建一个光学系统模型,每一表面的位置由它相对于前一表面的坐标来确定。光线从物平面开始,按照表面的先后顺序进行追迹,追迹速度很快。许多复杂的棱镜系统、照明系统、微反射镜、导光管、非成像系统或复杂形状的物体则需采用非序列模式来进行系统建模。这种模式下,ZEMAX以物体作为对象,光线按照物理规则,沿着自然可实现的路径进行追迹,可按任意顺序入射到任意一组物体上,也可以重复入射到同一物体上,直到被物体拦截。与序列模式相比,非序列光线追迹能够对光线传播进行更为细节的分析。但此模式下,由于分析的光线多,计算速度较慢。

在一些较为复杂的光学系统中,可以同时使用序列和非序列光线追迹。根据需要,可以采用序列光学表面与任意形状、方向或位置的非序列组件进行结合,共同形成一个系统结构。

二、显微物镜设计方案

25×显微镜物镜属于中倍显微物镜,通常由两个分离的双胶组合透镜组成,这类物镜也称为里斯特物镜,它的倍率一般在6×至30×之间,数值孔径NA为0.2至0.6之间。

由于显微物镜倍率较高,像距远大于物距,显微物镜的设计通常采用逆光路方式,即把像方的量当做物方的量来处理。里斯特物镜两个双胶合透镜光焦度分配的原则通常是使每个双胶合透镜产生的偏角相等或者是后组的偏角略大于前组。里斯特物镜的光阑通常放在第一个双胶合透镜上。当两个双胶合透镜相互补消球差和慧差时,两个双胶合透镜的间隔大致和物镜的总焦距相等。第一个双胶合的焦距约为物镜焦距的二倍。第二个双胶合的焦距大致和物镜的总焦距相等。

物镜的像差校正方式采取两个双胶合透镜各自单独校正球差、慧差和色差,这种方案的有点是:二个双胶合透镜组合在一起则为一个中倍物镜,移去一个双胶合透镜后可用作低倍显微物镜使用。

其总设计图如图1所示。

图1 25×显微镜物镜设计方案图

三、显微镜物镜及参数

1、物镜的数值孔径

物镜的数值孔径表征物镜的聚光能力,是物镜的重要性质之一,增强物镜的聚光能力可提高物镜的鉴别率。

数值孔径通常以符号“N A ”表示(即Numerical Aperture )。根据理论的推导得出:

sin NA n u =

式中 n──物镜与观察之间介质的折射率;

u──物镜的孔径半角。

因此,有两个提高数字孔径的途径:

(a )增大透镜的直径或减少物镜的焦距,以增大孔径半角u 。此法因导致象差增大及制造困难,实际上sinu 的最大值只能达到0.95。

(b )增加物镜与观察之间的折射率n 。

2、物镜的分辨率

物镜的分辨率是指物镜具有将两个物点清晰分辨的最大能力。要明白分辨率可以有一定的限度,这就要用光通过透镜后产生衍射现象来解释。物体通过光学仪器成像时,由于光的衍射,物点的象不再是一个几何点,而是有一定大小的衍射斑。衍射斑中心亮斑集中了全部能量的83.78%,叫作艾里斑。艾里斑的中心代表像点的位置。根据瑞利(Rayleigh )判断,两个相邻像点之间的间隔等于艾里斑半径时则能被光学系统分辨。其分辨率为

0.610.61sin n u NA

αλλσβ=== 根据道威(Doves )判断,两个相邻像点之间的两衍射斑中心距为0.85a 时,则能被光学系统分辨。其分辨率为

0.850.5NA

α

λσβ== 由以上公式可知,显微镜的分辨率主要取决于显微物镜的数值孔径。

3、物镜的有效放大率

在保证物镜的分辨率充分利用时所对应的物镜的放大率,称为物镜的有效放大率。有效放大率可由以下关系推出:设眼睛容易分辨的角距离为'

'24,则在

明视距离上对应的线距离'σ为

22500.00029'42500.00029mm mm σ??≤≤?? 把'σ换算到显微镜的物空间,按道威判断取σ值,则

22500.000290.5/42500.00029mm NA mm λ??≤?Γ≤??

设照明光的平均波长为0.000555mm,得

5231046NA NA ≤Γ≤

近似写作

5001000NA NA ≤Γ≤

由此可知:物镜的有效放大率由物镜的数值孔径及入射光波长决定。

4、实际参数确定

按照设计要求:物镜放大倍数为25,数值孔径NA=0.4,通过以上几个参数的计算,计算出理论上的数值并确定符合数值要求的镜片。初步确定第一个双胶合透镜的初始结构由ZF3与K9组合,第二个双胶合透镜的初始结构由ZF3与ZK9组合。求出双胶合透镜的初始结构之后,就可以进行光线追迹、相差计算和平衡了,如果的得到不满意的结果,可重新选择玻璃对,再重复上面的计算,达到设计要求,也可以采用自动设计程序作进一步校正,其结果可能会更好。 四、25×显微镜物镜光学系统仿真过程

1、选择初始结构并设置参数

显微镜物镜的初始结构选择如图2

图2 显微镜物镜初始结构图

在用ZEMAX软件进行设计时,将显微镜倒置设计。设置参数如下:物方数值孔径为0.016,物高为25mm,物方半视场高度为12.5mm。此时该系统的结构、传函以及像差如图3所示。从MTF图和像差图可以看出该显微物镜的成像质量还不是很好,需要对其进行自动优化校正。

图3 初始结构各参数仿真图

2、自动优化

首先,建立自动优化函数。具体过程如下:选择Editors>> Merit Function,弹出Merit Function Editor 对话框,在Type栏中输入EFFL,并将Target定为6.930840,Weight值取1.0;其次,选择Editor对话框工具栏中的Tools>>Default Merit Function, 设置Optimization and Reference为RMS~Wavefront~Centroid;

最后,选择确定按钮进行自动优化。自动优化后,显微镜物镜结构的数据如下:

图4 显微镜物镜优化结构图

图5 自动优化后各参数仿真图

3、最终仿真参数分析

由图可看出:

(1)物方数值孔径NA=0.3721605,与要求的0.4很接近;

(2)初始设定的物高为12.5,仿真得像高为0.498,则放大倍数m=25.1,与要求的放大倍数25倍十分接近。

最终的仿真参数基本符合设计的要求。

设计总结

在课程设计刚开始的时候,对于ZEMAX软件我也是没有接触过,第一个任务是安装软件,学习软件。从网上查询资料,去图书馆查阅相关书籍,到对软件以及设计的过程有了初步了解,首次认识就要利用它来设计,感觉是件很困难的事。在后来的不断实践中,在学习使用软件的过程中,对这次设计的概念越来越清晰,初步掌握了对于软件优化过程中的一些小技巧,比如说设置不同的镜片为孔阑得到的结果是不一样的;优化过程中可以采取在小视场范围中优化,然后看整个视场的成象质量,这样往往会比在整个视场优化效果好,最终完成了我们这次的设计。虽然设计的结果不是很理想,但是通过这次的实践,我对于光学显微镜的结构有了更加深刻的理解,对于ZEMAX软件也有了一定的认识,也掌握了简单的设计思路。这次实验中我学会了许多东西,ZEMAX软件的基本使用方法,光学系统设计的基本设计思路与步骤,更重要的是一种学习的方法。整个设计个过程比较艰难,但是结果还是比较令人欣慰。

设计过程是一个不断调试的过程,需要有充足的时间和极大的耐心,设计也充分体现了我们对于理论知识掌握的程度跟我们的动手能力。在设计中,我深刻体会到理论一定要用于实践,理论的东西在很大程度上都偏离了实际,只有在实际实践过程中才能不断加深我们对理论知识的认识跟掌握,不断完善我们的理论体系。

这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在老师和同学们的帮助支持下,终于都一一解决了问题。非常感谢帮助我的指导老师和同学们,我很开心能将知识运用到实践中并在自主学习中收获到那么多。

参考文献

[1]郁道银、谈恒英,工程光学,北京:机械工业出版社,2011.

[2]袁旭沧,现代光学设计方法,北京:北京理工大学出版社,1995.

[3]胡家升,光学工程导论,大连:大连理工大学出版社,2005.

[4]华家宁,现代光学技术及应用,江苏:江苏科学与技术出版社,2005.

[5]朱自强,现代光学教程,四川:四川大学出版社,1990.

[6]谢建平,近代光学基础,北京:中国科学技术出版社,2006.

工程光学设计

摘要 摘要:设计三片库克照相物镜,给出三片镜子的结构参数按照设计要求合理设计。近轴光路追迹求出设计系统的焦距和后焦距。然后利用zemax光学设计软件仿真验证设计结果。 关键词:照相物镜;光学设计 设计要求: 设计要求:采用三片库克(cookie)结构,D/f=1/5,半像面尺寸:18mm 半视场角:20°设计波长:0.486um、0.587um、0.656um,口径D:10mm 计算:系统焦距f,,后焦距(BFL) 第一章绪论 我们设计光学系统采用光线模型方法,即利用几何光学和光学工程中涉及到的基本方法、基本公式设计三片库克照相物镜。利用光线模型设计光学系统是非常重要的方法。曾经有位美国学者在回答有关光线和波动理论应用问题时,睿智的说;“你用光线理论设计照相机镜头,尽管是近视理论,但你用一个星期可以完成;然而你若用衍射理论设计照相机镜头,虽然你用的理论很严格,也去你一辈子才能设计出一个镜头。”可见用几何光学和工程光学中的光线模型设计光学系统是多么的重要。而近轴光线的追迹公式又是利用光线理论设计光学系统的基础。 根据近轴光学公式的性质,它只能适用于近轴区域,但是实际使用的光学仪器,无论是成像物体的大小,或者由一物点发出的成像光束都要超出近轴区域。 这样看来,研究近轴光学似乎没有很大的实际意义。但是事实上近轴光学的应用并不仅限于近轴区域内,对于超出近轴区域的物体,仍然可以使用近轴光学公式来计算平面的位置和像的大小。也就是说把近轴光学公式扩大应用到任意空间。对于近轴区域以外的物体,应用近轴光学公式计算出来的像也是很有意义的: 第一,作为衡量实际光学系统成像质量的标准。根据共轴理想光学系统的成像性质:一个物点对应一个像点;垂直于光轴的共轭面上放大率相同。如果实际共轴球面系统的成像符合理想则该理想像的位置和大小必然和用近轴光学公式计算所得结果相同。因为它们代表了实际近轴光线的像面位置和放大率。如果光学系统成像不符合理想,当然就不会和近轴光学公式计算出的结果一致。二者间的差异显然就是该实际光学系统的成像性质和理想像间的误差。也就是说,可以用它作为衡量该实际光学系统成像质量的指标。因此,通常我们把用近轴光学公式计算出来的像,称为实际光学系统的理想像。 第二,用它近似地表示实际光学系统所成像的位置和大小。在设计光学系统或者分析光学系统的工作原理时,往往首先需要近似地确定像的位置的大小。能够满足实际使用要求的光学系统,它所成的像应该近似地符合理想。也就是说,它所成的像应该是比较清晰的,并且物像大体是相似的。所以,可以用近轴光学公式计算出来的理想像的位置和大小,近似地代表实际光学系统所成像的位置和大小。由此可见近轴光学系统具有重要的实际意义,它在今后的研究光学系统的成像原理时经常用到。

第三版工程光学答案

第一章 3、一物体经针孔相机在屏上成一60mm大小得像,若将屏拉远50mm,则像得大小变为70mm,求屏到针孔得初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点得光线则方向不变,令屏到针孔得初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔得初始距离为300mm。 4、一厚度为200mm得平行平板玻璃(设n=1、5),下面放一直 径为1mm得金属片。若在玻璃板上盖一圆形得纸片,要求在玻璃板上方任何方向上都瞧不到该金属片,问纸片得最小直径应为多少? 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层得时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式与(2)式联立得到n0、

16、一束平行细光束入射到一半径r=30mm、折射率n=1、5得玻璃球上,求其会聚点得位置。 如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中得会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点得虚实。 解:该题可以应用单个折射面得高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时得状态,使用高斯公 式: 会聚点位于第二面后15mm处。 (2) 将第一面镀膜,就相当于凸面镜 像位于第一面得右侧,只就 是延长线得交点,因此就是虚像。 还可以用β正负判断: (3)光线经过第一面折射:, 虚像 第二面镀膜,则:

得到: (4) 在经过第一面折射 物像相反为虚像。 18、一直径为400mm,折射率为1、5得玻璃球中有两个小气泡,一个位于球心,另一个位于1 /2半径处。沿两气泡连线方向在球两边观察,问瞧到得气泡在何处?如果在水中观察,瞧到得气泡又在何处? 解: 设一个气泡在中心处,另一个在第二面与中心之间。 (1)从第一面向第二面瞧 (2)从第二面向第一面瞧 (3)在水中

扬大工程光学课程设计20140412

工程光学课程设计 班级 学号 姓名 一、目的 了解光学系统外形尺寸计算在光学系统设计中的作用,学习和掌握外形尺寸计算的内容和一般方法。根据使用要求确定光学系统整体结构尺寸的设计过程称为光学系统的外形尺寸计算。光学系统的外形尺寸计算要确定的结构内容包括系统的组成、各光组元的焦距、各光组元的相对位置和横向尺寸。 外形尺寸计算基本要求: 第一,系统的孔径、视场、分辨率、出瞳直径和位置; 第二,几何尺寸,即光学系统的轴向和径向尺寸,整体结构的布局; 第三,成像质量、视场、孔径的权重。 二、要求 对题中所涉及的光学系统 ⑴按照工作原理正确作出光路图并能正确描述; ⑵完整叙述及列举计算的过程,步骤要详细不能省略中间中程; ⑶完成设计报告 三、内容 (一)只包括物镜和目镜的望远系统 计算一个镜筒长L=f1′+f2′=200+(学号最后两位)mm,放大率Γ= -24+(学号最后一位),视场角2ω=1°40′的刻普勒望远镜的外形尺寸。 1、求物镜和目镜的焦距;

图1只包括物镜和目镜的望远系统结构图 2、求物镜的通光孔径D1。可根据望远系统的有效放大率求出D1。 3、求出瞳直径D1’; 4、视场光阑的直径D3; 5、目镜的视场角2ω′; 6、求出瞳距lz′; 7、求目镜的口径D2; 8、目镜的视度调节(目镜相对视场光阑的移动量x); 9、选取物镜和目镜的结构。 (二)带有棱镜转像系统的望远镜 双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为: 1、望远镜的放大率Γ=8倍; 2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D=30mm); 3、望远镜的视场角2ω=10°; 4、仪器总长度在110mm左右,视场边缘允许50%的渐晕; 5、棱镜最后一面到分划板的距离 14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。 6、lz′=8~10mm 要求计算棱镜转像望远镜的各类尺寸

课程设计报告模板)

课程设计报告模板()

————————————————————————————————作者: ————————————————————————————————日期: ?

课程设计(论文)任务书 软件学院软件+电商专业09级(2)班 一、课程设计(论文)题目基本模型机设计与实现 二、课程设计(论文)工作自2011年6月 20 日起至2011年 6月 24日止。 三、课程设计(论文) 地点:计算机组成原理实验室(5#301) 四、课程设计(论文)内容要求: 1.课程设计的目的 通过课程设计的综合训练,在掌握部件单元电路实验的基础上,进一步掌握整机 概念。培养学生实际分析问题、解决问题和动手能力,最终目标是想通过课程设计的形式,帮助学生系统掌握该门课程的主要内容,更好地完成教学任务。 2.课程设计的任务及要求 1)基本要求? (1)课程设计前必须根据课程设计题目认真查阅资料; (2)实验前准备好实验程序及调试时所需的输入数据; (3)实验独立认真完成; (4)对实验结果认真记录,并进行总结和讨论。 2)课程设计论文编写要求 (1)按照书稿的规格撰写打印课设论文 (2)论文包括目录、绪论、正文、小结、参考文献、附录等 (3)正文中要有问题描述、实验原理、设计思路、实验步骤、调试过程与遇到问题的解决方法、总结和讨论等 (4)课设论文装订按学校的统一要求完成 3)课设考核 从以下几方面来考查:

(1)出勤情况和课设态度; (2)设计思路; (3)代码实现; (4)动手调试能力; (5)论文的层次性、条理性、格式的规范性。 4)参考文献 [1]王爱英.计算机组成与结构[M]. 北京:清华大学出版社, 2007. [2] 王爱英. 计算机组成与结构习题详解与实验指导[M]. 北京:清华大学出版社, 2007. 5)课程设计进度安排 内容天数地点 构思及收集资料1图书馆 实验与调试 3 实验室 撰写论文 1 图书馆 6)任务及具体要求 设计实现一个简单的模型机,该模型机包含若干条简单的计算机指令,其中至少包括输入、输出指令,存储器读写指令,寄存器访问指令,运算指令,程序控制指令。学生须根据要求自行设计出这些机器指令对应的微指令代码,并将其存放于控制存储器,并利用机器指令设计一段简单机器指令程序。将实验设备通过串口连接计算机,通过联机软件将机器指令程序和编写的微指令程序存入主存中,并运行此段程序,通过联机软件显示和观察该段程序的运行,验证编写的指令和微指令的执行情况是否符 合设计要求,并对程序运行结果的正、误分析其原因。 学生签名: 亲笔签名 2011年6月20 日 课程设计(论文)评审意见 (1)设计思路:优( )、良()、中( )、一般()、差( ); (2)代码实现:优()、良()、中()、一般()、差();

工程光学课程设计

工程光学课程设计 设计名称:工程光学课程设计 院系名称: 专业班级: 学生姓名: 学号: 指导教师: XXX教务处制 20 13 年12 月

工程光学课程设计评分表 最后成绩的以优(90~100)、良(80~89)、中(70~79)、及格(60~69)和不及格(少于60分)五级给出。

第1章引言 1.1 简单介绍 对于实际的光学系统来说,它的成像往往是非完善成像,对于怎样来判断一个光学系统的性能的优劣,是光学设计中遇到的一个重要问题.在当前计算机辅助科研、教学的迅猛发展过程中,计算机辅助光学系统设计已成为光学设计不可缺少的一种重要手段.其中,由美国焦点软件公司所发展出的光学设计ZEMAX,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是可以运算Sequential及Non-Sequential的软件.其主要特色有分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG等,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 但是,这里必须强调一点的是,ZEMAX软件只是一个光学设计辅助软件,也就是说,该软件不能教你怎么去进行光学设计,而只是能对你设计的光学系统进行性能的优化以达最佳成像质量所以,在应用本教程进行光学辅助设计之前,您最好先学习一下光学设计的有关知识:首先是几何光学基础,几何光学是光学设计的基础,要做光学设计必须懂得各种光学仪器成像原理,外形尺寸计算方法,了解各种典型光学系统的设计方法和设计过程.实际光学系统大多由球面和平面构成。记住共轴球面系统光轴截面内光路计算的三角公式,了解公式中各参数的几何意义是必要的,具体公式可参考有关光学书籍,在此就不一一介绍了。对于平面零件有平面反射镜和棱镜,它们的主要作用多为改变光路方向,使倒像成为正像,或把白光分解为各种波长的单色光.在光学系统中造成光能损失的原因有三点:透射面的反射损失、反射面的吸收损失和光学材料内部的吸收损失。其次是像差理论知识,对于一个光学系统,一般存在7种几何像差,他们分别是球差、彗差、像散、场曲、畸变和位置色差以及倍率色差.另外,还必须了解一点材料的选择和公差的分配方面的知识,以及一些光学工艺的知识,包括切割,粗磨,精磨,抛光和磨边,最后还有镀膜和胶合等。

工程光学习题解答

第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则 可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:

课程设计报告【模板】

模拟电子技术课程设计报告设计题目:直流稳压电源设计 专业电子信息科学与技术 班级电信092 学号 200916022230 学生姓名夏惜 指导教师王瑞 设计时间2010-2011学年上学期 教师评分 2010年月日

昆明理工大学津桥学院模拟电子技术课程设计 目录 1.概述 (2) 1.1直流稳压电源设计目的 (2) 1.2课程设计的组成部分 (2) 2.直流稳压电源设计的内容 (4) 2.1变压电路设计 (4) 2.2整流电路设计 (4) 2.3滤波电路设计 (8) 2.4稳压电路设计 (9) 2.5总电路设计 (10) 3.总结 (12) 3.1所遇到的问题,你是怎样解决这些问题的12 3.3体会收获及建议 (12) 3.4参考资料(书、论文、网络资料) (13) 4.教师评语 (13) 5.成绩 (13)

昆明理工大学津桥学院模拟电子技术课程设计 1.概述 电源是各种电子、电器设备工作的动力,是自动化不可或缺的组成部分,直流稳压电源是应用极为广泛的一种电源。直流稳压电源是常用的电子设备,它能保证在电网电压波动或负载发生变化时,输出稳定的电压。一个低纹波、高精度的稳压源在仪器仪表、工业控制及测量领域中有着重要的实际应用价值。 直流稳压电源通常由变压器、整流电路、滤波电路、稳压控制电路所组成,具有体积小,重量轻,性能稳定可等优点,电压从零起连续可调,可串联或关联使用,直流输出纹波小,稳定度高,稳压稳流自动转换、限流式过短路保护和自动恢复功能,是大专院校、工业企业、科研单位及电子维修人员理想的直流稳压电源。适用于电子仪器设备、电器维修、实验室、电解电镀、测试、测量设备、工厂电器设备配套使用。几乎所有的电子设备都需要有稳压的电压供给,才能使其处于良好的工作状态。家用电器中的电视机、音响、电脑尤其是这样。电网电压时高时低,电子设备本身耗供电造成不稳定因家。解决这个不稳定因素的办法是在电子设备的前端进行稳压。 直流稳压电源广泛应用于国防、科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等的直流供电。 1.1直流稳压电源设计目的 (1)、学习直流稳压电源的设计方法; (2)、研究直流稳压电源的设计方案; (3)、掌握直流稳压电源的稳压系数和内阻测试方法。 1.2课程设计的组成部分 1.2.1 设计原理

工程光学设计A4 C1-C3

波面:某一瞬间光波动传播所到达的曲面 光线:能够传输能量的几何线 光束:和波面对应的法线束 基本定律:光的直线传播定律、光的独立传播定律、光的反射与折射定律 实物(像):实际光线相交形成。可由人眼或接收器所接收。 虚物(像):光线的延长线相交形成,只可以被人眼观察 完善成像条件:入射波面是球面波,出射波面也是球面波;入射光是同心光束,出射光也是同心光束;物点及其像点之间任意两条光路的光程相等 近轴方程:薄透镜: 无焦系统: 垂轴放大率: 轴向放大率: 角放大率 拉赫不变量 典型光线:平行于光轴入射的光线经过系统后过像方焦点;过物方焦点的光线,经过系统后平行于光轴;倾斜于光轴入射的平行光束,经过系统后会交于像方焦平面上的一点;自物方焦平面上一点发出的光束,经系统后成倾斜于光轴的平行光束;过节点的光线相互平行 近轴理论为基础,建立起理想光学系统模型,便于分析光学系统的成像性质和规律。近轴区成完善像, 但成像范围小,光束宽度小,能量小。实际光学系统,对具有一定大小的物(视场)以宽光束(孔径)成像,成像有缺陷 光学设计的概念:根据仪器的技术参数和要求,考虑和拟定光学系统的整体方案,并计算其中各个具有独立功能的组成部分的光学参数——选择并确定各组成部分的结构型式,查取或计算其初始结构参数(半径、厚度、间隔、材料等)——逐次修改结构参数,使像差得到最佳的校正和平衡——对设计结构进行评价 光学系统设计过程:1、外形尺寸计算 2、初始结构的计算和选择 3、像差校正和平衡 4、像质评价 5、绘制光学系统图、部件图和零件图 6、编写设计说明书 进行技术答辩 国内外光学设计软件:SOD88;Zemax,CODE V,OSLO,LightTools,ASAP,TracePro 孔径选择:Entrance Pupil Diameter(EPD): 入瞳直径(物体位于无限远时)Image Space F/#: 像方F 数(f/D,只用于物距无穷远);Object Space Numerical Aperture :物方数值孔径nsin θ(有限物距);Float by Stop Size :由光阑决定入瞳大小;Paraxial working F/#: 近轴F 数,忽略像差;Object Cone Angle:物方锥角(轴上物点发出的边缘光线的半角),最大可以达到90度(物在有限远) 视场类型:Angle: 设定物方视场主光线与光轴的夹角,多用于无限共轭平行光条件下。 Object height:设定被成像物体的尺寸大小,用在有限共轭系统。Paraxial Image height:近轴像高。使用近轴光束定义系统成像的像面大小。用于需要固定像大小的设计中,使用近轴方法计算,忽略系统畸变影响,适用于视场角度较小的系统。 Real image height: 实际像高。使用实际光线计算,考虑畸变大小,适用于大视场广角系统。Zemax 计算慢。 曲率求解: Marginal ray angle :控制边缘光线的角度 Chief ray angle :控制主光线的角度 Marginal ray normal :使光学面与近轴边缘的光线垂直,可产生没有球差或慧差的光学面 Chief ray normal :使光学面与近轴主光线垂直,可产生不具慧差,像散或畸变的光线 Alplanatic :可产生没有球差,慧差,像散的等光程光学面 Pick up :使光学面的曲率随所指定面的曲率而改变Element power :可控制指定镜片的光焦度,也可控制有效焦距,设于第二面 Concentric with surface :控制曲率使曲率中心落于指定面上Concentric with radius :控制曲率使曲率中心与指定面的曲率中心在同一点 F/#:控制曲率,控制有效焦距,设于第二面 厚度求解:Marginal ray height :控制近轴边缘光线在像面上的高度,Pupil zone 在正负1之间 Chief ray height: 控制近轴主光线高度 Edge thickness :控制镜片边缘厚度,以免优化过厚或过薄 Pick up :控制厚度随指定面的厚度变化 Optical path difference :控制厚度使指定光瞳坐标处光程差维持定值 Position :控制面至指定面之间的距离保持一定 Compensator :控制面厚度与参考面厚度之和保持定值 Center of curvature :控制厚度使后光学面的位置在指定面的曲率中心上 玻璃求解:Model :用于玻璃优化 Pick up :随指定面变化 Substitute :指定玻璃库优化 Offset :在折射率及Abbe 数上增加一偏移量,用于公差计算 光学系统特性:光学特性(焦距、放大率、物距、像距等):属于物像几何尺寸共轭关系 成像特性:光学系统所成像的清晰程度以及像与物的相似性。 实际光学系统成像:以一定宽度的光束对一定大小的物体成像,不能成完善像 实际像与理想像之间的差异是像差,是光学系统成像不完善程度的描述 像质评价方法:1、设计阶段----通过计算来评定系统成像质量优劣 2、系统制造完成后-----通过对系统进行实际检验测量来评价成像质量 像差分析方法:几何像差法:以特征光线经过光学系统后出射光线在横向或纵向与理想像的偏差分析像差的方法。以几何光学为基础。优点:计算简单、意义直观 波像差法:以波动光学为基础,以实际波面和理想像的波面的偏差分析像差的方法。波像差是几何像差的综合体现。尤其对于小像差系统,波像差更能反映像质。 球差:轴上物点发出的宽光束经透镜后,不同孔径区域的光束汇聚在光轴的不同位置,在像面上形成弥散斑。轴向球差、垂轴球差、边光球差。 球差是入射高度的函数;球差反映轴上点的像差,与视场无关;球差具有轴对称性。 球差的表示、查看:2D Layout 、点列图、球差曲线、赛德尔像差系数、评价函数操作数、光扇图 球差校正:正负透镜补偿法:实际设计时,常使初级球差与二级球差相补偿,将边缘光的球差校正为零。对边光校正球差时,0.707带光球差最大 非球面校正球差:二次曲面代替球面 无球差的三个位置:L=0,L ’=0; L=L ’=r;L ’=(n+n ’)r/n ’(齐明点、不晕点) 彗差:轴外物点发出的宽光束经系统后失对称,不会聚在一点,而在像面上形成彗星状弥散斑,左右对称,上下失对称 彗差度量:通常用子午面和弧矢面上对称于主光线的各对光线,经系统后的交点相对于主光线的偏离来度量。子午彗差以这对光线与理想像面交点高度的平均值与主光线交点高度之差来表征,弧矢度量以前后光线对与理想像面交点高度的平均值与主光线交点高度之差来表征 彗差的性质:彗差与孔径、视场均有关彗差是轴外点以大孔径成像时的像差,不仅随孔径增大而增大,视场越大,彗差也越大 彗差的校正:1、改变光阑位置2、组合透镜,一般能消除球差的组合,也可以使彗差得到改善3、对称结构光学系统 彗差的表示:2D Layout 、Spot Diagrams 、Ray Fans 、评价函数操作数COMA 、Seidel Aberration 像散:轴外物点发出的锥形光束通过光学系统聚焦后,光斑在像面上子午方向与弧矢方向不一致,子午像点与弧矢像点不重合,即一个物点的成像将被聚焦为子午和弧矢两个焦线,是光学系统在两个方向聚焦能力不同而形成的。子午细光束像点和弧矢细光束像点的轴向距离为像散 像散的校正:调节视场光阑的位置;使用对称结构系统;利用非球面透镜校正 场曲:平面物体通过透镜系统后,所有平面物点聚焦后的像面不与理想像面重合,而是呈现为一个弯曲的像面。每个物点通过系统自身能成一个清晰的像点,但所有像点的集合却是一个曲面 场曲随视场变化,不能用单一视场或某一物点成像光斑来描述,此时光斑图、光扇图等都失去作用 场曲校正:优化光阑位置;对称式光学系统 畸变:实际系统,视场较大时,一对共轭物像平面上的放大率不为常数,将使像相对于物失去相似性,使像变形的缺陷称畸变 畸变是视场的函数,畸变的大小随视场的三次方成正比,视场小的光学系统畸变不显著。正畸变:枕形畸变,垂轴放大率随视场角的增大而增大 负畸变:桶形畸变,垂轴放大率随视场角的增加而减少 畸变的度量:绝对畸变:线畸变 相对畸变:相对于理想像高的绝对畸变,通常用百分率表示 不能用几何光线、也不能通过光斑图或波前图来预测畸变量,只能对所有物点进行光线追迹得到像面高度,作为最终评价畸变量的大小 畸变的校正:全对称系统(结构对称,物像对称)不产生畸变 单色像差:球差:轴上点像差,与孔径有关。彗差:轴外点、宽光束,失对称,光线对与主光线不能会聚。场曲(像面弯曲):无法在平直像平面上获得中心与四周都清晰的像。像散:轴外点、细光束,光线对称,光线对与主光线能够会聚,但子午与弧矢光束会聚点位置不同。畸变:轴外,像、物不相似,但不影响像的清晰度 多种像差共存:物点在主轴上时,其它像差都不出现,只有球差单独出现。光束愈宽,球差愈显著;物点与主轴间距离不大时,除球差仍将出现外,彗差将显著,光束即使不太宽,彗差还可能比球差显著;物点与主轴间距离较大而光束很细窄时,像散将最为显著,因为对于狭窄的光束,球差和彗差都不显著;像面弯曲和畸变,仅在物面特别大时才比较显著,如果光束是细窄的,那么此时像面弯曲和畸变相对说来都将不再重要 色差:对白光成像的光学系统,由于材料对不同色光的折射率不同,使各色光线具有不同的成像位置和倍率。 位置色差(轴向色差):波长不同,折射率不同,焦距不同。像面上呈现彩色弥散斑。 像差曲线:①各单色光的球差随孔径的变化②位置色差随孔径的变化③球差随色光的变化(色球差)④二级光谱 倍率色差(垂轴色差):λ变——n 变——β变——y'变 度量:F 光、C 光主光线在D 光的理想像面上的交点高度之差 缺陷:物体的像有彩色的边缘,破坏了轴外点的清晰度,造成像的模糊,在大视场下尤为严重 色差校正:单透镜本身不能消色差,校正色差必须采用正负透镜组合 色光焦点漂移曲线:双胶合透镜在两波长处焦点位置重合,色差得到校正 波象差:根据光的波动性来描述实际波面和理想波面的偏差 瑞利判据:实际波面与理想波面之间的最大波像差不超过λ/4时, 此实际波面可看作是无缺陷的 缺点:只考虑波像差的最大允许公差,没有考虑缺陷部分在整个波面面积中所占比重(局部气泡、划痕等) 中心点亮度(斯特列尔比):无像差系统:高斯像面上像点中心有最大光强度 存在像差:像点光强度分布发生变化,中心光强降低,光能量向周围扩散 中心点亮度:系统存在像差时成像衍射斑的中心亮度和不存在像差时衍射斑的中心亮度之比,记作斯特列尔比(>=0.8,成像完善) 调制传递函数MTF :一定空间频率下像的对比度与物的对比度之比。能反映物体不同空间频率成分的传递能力。一般来说,高频部分是反映物体的细节传递情况,中频部分是反映物体的层次传递情况,而低频部分则是反映物体的轮廓传递情况。MTF 曲线所围面积越大,表明光学系统所传递的信息量越多,成像质量越好,图像越清晰。 系统制造完成后实测像质:星点检验:类似点列图考察一个点光源(星点)经系统所成的像及像面前、后不同截面衍射图形的光强变化及分布,定性地评价光学系统的成像质量。一般使用带有微孔的星点板 波面测量:波像差。各种干涉系统结构+图像传感技术+计算机技术 光学传递函数测量:光栅法;针孔法 分辨率测量:分辨率:光学系统能够分辨物体细节的能力。如果一个点光源的爱里斑中心刚好和邻近的另一个点光源的爱里斑边缘相重合,则这两个点光源被认为是刚刚可以被分辨——瑞利判据 分辨本领:望远镜: 显微镜: 照相机物镜: ??? ??+='sin 'sin 1'U I r L ''I I U U -+=φh nu u n =-''i i i i d u h h '1-=+11'+=i u h EFL 11'++=i i u h BFL 2121φφφφφd -+=l l '=β()()211C C n --=φ2βα=γ1=J y u n nuy =='''D λ?22.1=θλsin 61.0?=?n y ()D f y /22.1''λ=?

工程光学课程设计.

实习报告 实习名称:工程光学课程设计院系名称:电气与信息工程专业班级:测控12-1 学生姓名:张佳文 学号:20120461 指导教师:李静

黑龙江工程学院教务处制2014 年 2 月

工程光学课程设计任务书

目录 1摘要 ...................................................................... 错误!未定义书签。2物镜设计方案 . (1) 3物镜设计与相关参数 (2) 3.1物镜的数值孔径 (2) 3.2物镜的分辨率 (3) 3.3物镜的放大倍数 (4) 3.4物镜的鉴别能力 (4) 3.5设计要求参数确定 (4) 4 显微镜物镜光学系统仿真过程 (5) 4.1选择初始结构并设置参数 (5) 4.2自动优化 (5) 4.3物镜的光线像差(R AY A BERRATION)分析 (6) 4.4物镜的波像均方差(OPD)分析 (7) 4.5物镜的光学传递函数(MTF)分析 (8) 4.6物镜的几何点列图(Stop Diagrams)分析 (10) 4.7仿真参数分析 (11) 5心得体会 (11) 6参考文献 (12)

1摘要 ZEMAX是Focus Software 公司推出的一个综合性光学设计软件。这一软件集成了包括光学系统建模、光线追迹计算、像差分析、优化、公差分析等诸多功能,并通过直观的用户界面,为光学系统设计者提供了一个方便快捷的设计工具。十几年来,研发人员对软件不断开发和完善,每年都对软件进行更新,赋予ZEMAX更为强大的功能,因而被广泛用在透镜设计、照明、激光束传播、光纤和其他光学技术领域中。 ZEMAX采用序列和非序列两种模式模拟折射、反射、衍射的光线追迹。序列光线追迹主要用于传统的成像系统设计,如照相系统、望远系统、显微系统等。这一模式下,ZEMAX 以面作为对象来构建一个光学系统模型,每一表面的位置由它相对于前一表面的坐标来确定。光线从物平面开始,按照表面的先后顺序进行追迹,追迹速度很快。许多复杂的棱镜系统、照明系统、微反射镜、导光管、非成像系统或复杂形状的物体则需采用非序列模式来进行系统建模。这种模式下,ZEMAX以物体作为对象,光线按照物理规则,沿着自然可实现的路径进行追迹,可按任意顺序入射到任意一组物体上,也可以重复入射到同一物体上,直到被物体拦截。与序列模式相比,非序列光线追迹能够对光线传播进行更为细节的分析。但此模式下,由于分析的光线多,计算速度较慢。 ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,与其它软件不同的是ZEMAX 的CAD 转文件程序都是双向的,如IGES 、STEP 、SAT 等格式都可转入及转出。而且ZEMAX可仿真Sequential 和Non-Sequential 的成像系统和非成像系统。 ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户光学设计程界面中。而且工作界面简单,快捷,很方便的就能找到我们想哟实现的功能,ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。ZEMAX能够模拟连续和非连续成像系统及非成像系统。 2物镜设计方案 消色差物镜(Achromatic)是较常见的一种物镜,由若干组曲面半径不同的一正一负胶合透镜组成,只能矫正光谱线中红光和蓝光的轴向色差。同时校正了轴上点球差和近轴点慧差,这种物镜不能消除二级光谱,只校正黄、绿波区的球差、色差,未消除剩余色差和其他波区的球差、色差,并且像场弯曲仍很大,也就是说,只能得到视场中间范围清晰的像。使用时宜以黄绿光作照明光源,或在光程中插入黄绿色滤光片。此类物镜结构简单,经济实用,常和福根目镜、校正目镜配合使用,被广泛地应用在中、低倍显微镜上。在黑白照相时,可采用绿色滤色片减少残余的轴向色差,获得对比度好的相片。消色差通常由两个分离的双胶组合透镜组成,这类物镜也称为里斯特物镜,它的倍率一般在6×至30×

EDA课程设计说明书参考格式

<>课程设计说明书 题目 院、部: 学生姓名: 指导教师:王晓丽职称助教 专业: 班级: 完成时间:

摘要(三号,黑体,居中,字间空两格字符) (空二行换行) 空4格打印摘要内容(小四号宋体,行距20)。 关键词:(摘要内容后下空一行打印“关键词”三字(小四号黑体),其后为关键词(小四号宋体),每一关键词之间用分号隔开,最后一个关键词后不打标点符号。 ABSTRACT ①居中打印“ABSTRACT”,再下空二行打印英文摘要内容。②摘要内容每段开头留四个空字符。③摘要内容后下空一行打印“Key words”,其后为关键词用小写字母,每一关键词之间用分号隔开,最后一个关键词后不打标点符号。 Key words :aaa;bbb;ccc

目录(3号,黑体,居中) (空1行,以小4号黑体设置字体及大小,行间距22、字间距标准) 1 XXXXXX………………………………………………………………………… 1.1 XXXXXX……………………………………………………………………… 1.2 XXXXXX……………………………………………………………………… ┇ 2 XXXXXX………………………………………………………………………… 2.1 XXXXXX……………………………………………………………………… 2.2 XXXXXX……………………………………………………………………… ┇ 3 4 结束语 参考文献………………………………………………………………………………. 致谢……………………………………………………………………………………附录……………………………………………………………………………………

三片式物镜设计+Zemax文件截图-北交大工程光学设计作业

三片式物镜的设计 小组成员: 执笔人:

1.设计任务的具体指标及其要求 35mm相机胶片50mm焦距F/3.5 玻璃最小中心厚度与边缘厚度4mm,最大中心厚18mm 空气间隔最小2mm 可见光波段光阑位于中间透镜各透镜所用材料SK4---F2----SK4 2.入瞳直径的设定 点击Gen打开General窗口,在General系统通用数据对话框中设置孔径。在孔径类型中选择Image Space F/#,并根据设计要求在Aperture Value中输入3.5.

3.视场的设定 由于使用35mm相机胶片,其规格尺寸为36mm*24mm,Zemax中一般使用圆形像面,因此该矩形像面的外接圆半径经计算为21.7mm,0.707像高的视场高度为15.3mm。 点击Fie打开Field Data窗口,设置三个视场分别为0mm、15.3mm、21.7mm。

4.工作波长的设定 选择可见光波段,点击Wav按钮,设置Select-F,d,C(Visible),自动输入三个特征波长。

5.评价函数的选择 执行命令Editors----Mreit Function打开Mreit Function Editor编辑窗口,在Mreit Function Editor编辑窗口中执行命令Tools---Default Merit Function,打开默认评价函数对话窗口,选择RMS---Spot Radius--Centroid评价方法,并将厚度边界条件设置为玻璃最小中心厚度与边缘厚度4mm,最大中心厚18mm,空气间隔最小2mm。

6.系统的透镜参数设定 在Lens Data Editor中输入部分初始结构,设置中间透镜为光阑,设置各透镜所用玻璃材料类型。 因为此时的焦距为49.7684

课程设计报告撰写规范

.课程设计报告撰写规范

————————————————————————————————作者:————————————————————————————————日期: 2

江西理工大学应用科学学院信息工程系 课程设计规范 (试行) 信息工程系 二○一○年六月

第1章内容要求 第1章内容要求 课程设计报告由以下几个部分组成组成,依次为: I、统一的封面,封面之后为课设评分表及答辩记录表; II、摘要; III、目录; IV、课程设计总结报告正文; V、总结(本课题核心内容、特点和方案的优缺点、改进方向和意见)VI、按统一格式列出主要参考文献。 1

第2章格式要求 第2章格式要求 课程设计报告每部分从新的一页开始,各部分要求如下: 2.1封面 统一的封面(含课程设计课题名称、专业、班级、姓名、学号、指导教师等,详见第五部分“格式范例”) 2.2摘要 应概括地反映出本课程设计的主要内容,包括工作目的、实验研究方法、研究成果和结论,重点是本论文的主要工作。摘要力求语言精炼准确,建议500字以内。摘要中不要出现图片、图表、表格或其他插图材料。 关键词是为了便于作文献索引和检索工作而从论文中选取出来用以表示全文主题内容信息的单词或术语。 关键词在摘要内容后另起一行标明,一般3~5个,之间用“;”分开。 2.3 目录 目录由标题名称和页码组成,包括:正文(含结论)的一级、二级和三级标题和序号。具体格式见第五部分“格式范例”。 2.4 符号说明 如果课程设计报告中使用了大量的物理量符号、标志、缩略词、专门计量单位、自定义名词和术语等,应将全文中常用的这些符号及意义列出。如果上述符号和缩略词使用数量不多,可以不设专门的主要符号表,但在报告中出现时须加以说明。缩略词应列出中英文全称。 2

光学课程设计大纲

《光学软件课程设计》教学大纲 适用专业:光电、通信工程、电子信息工程专业 (学分:1学分,学时:20学时) 一、课程的性质和任务 光学软件课程设计是在学习工程光学,光学等基础课程的基础上,基于光学软件进行光学系统的设计,让学生了解光学设计中的主要环节,掌握光学系统的设计、开发的基本方法,以便今后从事光学仪器的设计、研发工作。 通过光学软件课程设计,以求达到如下目的: 1)要求综合运用工程光学课程中所学到的理论知识,独立完成一个设计课题。 2)通过查阅手册和文献资料,培养学生独立分析和解决实际问题的能力。 3)培养学生严肃认真的工作作风和严谨的科学态度。 二、课程的教学内容 题目1:双高斯物镜的优化设计 设计一组双高斯物镜镜头,镜头的技术指标要求如下: 1、焦距:f’=40mm; 2、相对孔径D/f’不小于1/2 ; 3、视场 5、在可见光波段设计(取d、F、C三种色光,d为主波长); 6、成像质量,MTF 轴上>35% @100 lp/mm,轴外0.707 >25%@100 lp/mm。 7、校正球差、色差、场曲、像散。 在满足前面要求的前提下,尽可能减少镜头的片数,在相同的结构情况下,MTF值越高越好。 题目2:摄影物镜的优化设计 镜头的技术指标要求如下 1、焦距:f’=12mm; 2、相对孔径D/f’不小于1/2.8; 3、图像传感器为1/2.5英寸的CCD,成像面大小为4.29mm×5.76mm; 4、后工作距>6mm

5、在可见光波段设计(取d、F、C三种色光,d为主波长); 6、成像质量,MTF 轴上>40% @100 lp/mm,轴外0.707 >35%@100 lp/mm。 7、最大畸变<1% 在满足前面要求的前提下,尽可能减少镜头的片数,在相同的结构情况下,MTF值越高越好。 三、课程的教学基本要求 1)要独立完成设计任务,通过课程设计,锻炼自己综合运用所学知识的能力,并 初步掌握镜头优化设计的方法和步骤。 2)学会查阅资料和手册,根据我们的设计目标,选择合适的初始结构。 3)ZEMAX是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、 分析、公差以及报表集中在一起,学生可以运用是ZEMAX进行镜头的优化设计,并对设计的镜头系统进行像质评价。 4)学会进行镜头优化设计及像差分析,并得出像质评价报告。 5)能够写出完整的课程设计总结报告。 四、课程的学时分配 教学内容进度 布置任务,仿真软件介绍第一周 学习ZEMAX像差控制和优化方法第一周 查询资料,确定初始结构,并进行优化设计第二周 验收设计结果第三周 验收课程设计报告第四周 五、实践性教学环节(含实验、设计、实习等)的内容安排及要求 (1)设计报告需包含:设计要求、初始结构选择与分析、像差校正、评价函数的设置、优化方法的选择、像差结果分析与评价报告、总结与体会、参考文献和辅助软件。 ①说明设计题目及要求。 ②对题目进行剖析并选择合适的初始结构。 ③对初始结构的像差结果进行分析,与我们设计目标进行比较。 ④根据选择的初始结构,进行像差控制和优化设计 ⑤对设计优化结果给出像质评价报告并与我们的设计目标进行比较。 ⑥写出自己在仿真的过程中遇到的问题、如何排除故障以及仿真结果。

工程光学练习题(英文题加中文题含答案)

English Homework for Chapter 1 1.In ancient times the rectilinear propagation of light was used to measure the height of objects by comparing the length of their shadows with the length of the shadow of an object of known length. A staff 2m long when held erect casts a shadow 3.4m long, while a building’s shadow is 170m long. How tall is the building? Solution. According to the law of rectilinear propagation, we get, x=100 (m) So the building is 100m tall. 2.Light from a water medium with n=1.33 is incident upon a water -glass interface at an angle of 45o. The glass index is 1.50. What angle does the light make with the normal in the glass? Solution. According to the law of refraction, We get, So the light make 38.8o with the normal in the glass. 3. A goldfish swims 10cm from the side of a spherical bowl of water of radius 20cm. Where does the fish appear to be? Does it appear larger or smaller? Solution. According to the equation. and n ’=1 , n=1.33, r=-20 we can get So the fish appears larger. 4.32170= x ' 'sin sin I n I n =626968 .05.145 sin 33.1sin =?= 'ο I ο 8.38='I r n n l n l n -'=-''11416.110 133 .15836.8)(5836.81165.02033.01033.11>-=??-=''= -='∴-=--+-=-'+='l n l n cm l r n n l n l βΘn′=1.50 n=1.33 water 45o I′ A

相关文档
最新文档