抗干扰处理方法

抗干扰处理方法
抗干扰处理方法

PLC抗干扰处理办法一、模拟量抗干扰处理办法

、模拟量类型:

模拟量输入类型(可根据客户需求定制)

模拟量输出类型

模拟量输入抗干扰处理办法

热电偶

特点:

1.测温范围广:

2.K型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。

3.E型:在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用

4.J型:既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工;

5.S型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期1600℃。在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶;

注意:

1.热电偶不能和强电放在一个线槽内

2.使用隔离型热电偶(信号线与屏蔽线分开的热电偶)

处理方法:

1.检测冷端温度,冷端(查看冷端寄存器)与室温(环境温度)是否一致,如有偏差,现将冷端修正准确;

1.冷端温度温度正常时,将EK热电偶放在外部,不接其他负载,且不能与强电放在一个线槽时检测温度(AD模拟量对应寄存器)

2.将机壳接地,EK模拟量的线上加锡箔纸,并与其它干扰源隔开

3.加104瓷片电容、磁环做防干扰处理

4.开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线

5.集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。

6.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。

7.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设

8.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。

9.采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC。

PT100

特点:

1.测温范围:~℃,线距越长线损越大

注意:

1.三线制PT100需要并成两线制接线,AD端接信号线,其余两根接在GND端

2.线距左右,若测温距离长需使用特殊的延长线(线损小)

3.滤波,(1)电容滤波:如果串模干扰频率比被测信号频率高,则采用输入低同滤波器来抑制高频串模干扰,(这里我们可以采用一个47UF\16V的电解电容来处理)(2)数字滤波:PLC内部有特需寄存器,可以改变数值的大小来确定温度采集的频率。

4.采用双绞线作为信号线:串模干扰和被测信号的频率相当,这时很难用滤波的方法消除,此时可在信号源到PLC之间选用带屏蔽层的双绞线作为信号电缆,并确保接地正确可靠。采用双绞线作为信号线的目的是减少电磁干扰,双绞线能使各个小环路的感应电势相互抵消。

5.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。

6.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设

7,采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。

8,采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC NTC10K/50K/100K

特点:

1.测温范围:

2.精度最高

3.测温距离长,可靠性高。

4.抗干扰性强。

处理办法:

1.采用带屏蔽的双绞线做为信号线并正确接地。

2.信号线与其他的线需要分开布线。

3.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。

电压(0-10V)

注意:

1.干扰小,特殊规格有干扰时在外部加104瓷片电容

处理办法:

1.有干扰时加104瓷片电容进行滤波

2.进行正确有效的接地

3.采用带屏蔽的双绞线做为信号线并正确接地。

4.信号线与其他的线需要分开布线。

5.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。

电流(0-20mA/4-20mA)

注意:

1.限制输入电流,若输入电流大于20mA会烧坏通道

处理办法:

1.有干扰时加104瓷片电容进行滤波。

2.进行正确有效的接地。

3.采用带屏蔽的双绞线做为信号线并正确接地。

4.信号线与其他的线需要分开布线。

5.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。

模拟量输出抗干扰处理办法

电压(0-10V)

1.有干扰时加104瓷片电容进行滤波

2.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。

3.采用带屏蔽的双绞线做为信号线并正确接地。

4.在信号线上面加磁环。

5.信号线与其他的电源线分开布线

6.外接设备尽量与PLC保持一定距离。

7.感性负载尽量不要与PLC放在同一个电箱内,并保持一定的距离。

电流(0-20mA)

1.有干扰时加104瓷片电容进行滤波

2.进行正确有效的接地

3.采用带屏蔽的双绞线做为信号线并正确接地。

4.信号线与其他的线需要分开布线。

5.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。10

二、开关量抗干扰处理办法

开关量输入输出

处理方法:

1.输入、输出线应用双绞线且屏蔽层应可靠接地,以抑制共摸干扰。

1.强电、弱电分开布线,不可共地

2.有强电干扰时,在电源端加磁环

3.根据机壳类型进行正确有效的接地处理

4.才用可靠性强,隔离性能好的开关电源

5.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。

6.将PLC的I/O线和大功率线分开走线,如必须在同一线槽内,分开捆扎交流线、直流线,若条件允许,分槽走线最好,这不仅能使其有尽可能大的空间距离,并能将干扰降到最低限度。

7.利用信号隔离器解决干扰问题也是很理想的办法,其原理是首先将PLC接收的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号或不同信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间绝对独立。只要在有干扰的地方,输入端和输出端中间加上这种隔离器,就可有效解决干扰问题。

8.正确选择接地点,完善接地系统。良好的接地是保证PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。接地的目的通常有两个,其一为了安全,其二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一

三.变频器干扰的抑制

处理方法:

(1)加隔离变压器,主要是针对来自电源的传导干扰,可以将绝大部分的传导干扰阻隔在隔离变压器之前。

(2)使用滤波器,滤波器具有较强的抗干扰能力,还具有防止将设备本身的干扰传导给电源,有些还兼有尖峰电压吸收功能。

(3)使用输出电抗器,在变频器到电动机之间增加交流电抗器主要是减少变频器输出在能量传输过程中线路产生电磁辐射,影响其它设备正常。[

(4)信号线与动力线必须分开走线

(5)模拟量控制信号线应使用双股绞合屏蔽线,电线规格为.

四.地线的正确接地

(1)信号地。输入端信号元件的地;(2)交流地。交流供电电源的N线;(3)屏蔽地。

为防止静电和磁场感应而设置的外壳或金属丝网,通过专门的铜导线将其接入地下;(4)保护地。将机器设备的外壳或设备内独立器件的外壳接地,用于保护人身安全和防止设备漏电。

为了抑制附加在电源及输入、输出端的干扰,应对PLC系统进行良好的接地。一般情况下,接地方式与信号频率有关,当频率低于1MHz时,可用一点接地;高于10MHz时,采用多点接地;在1~10MH之间时,通常情况下,PLC控制系统采用一点接地,将所有地线端子和相近接地点相连接,以获得最好的抗干扰能力。接地线截面积不能小于2mm2,接地电阻不能大于100Ω,接地线使用专用地线。

五.预防措施:

(1)屏蔽法:屏蔽法就是将热电偶信号线穿在铁管或者其他金属屏蔽物内进行屏蔽。这样可以防止电磁干扰和高压电场的干扰。使用这种方法时应该将铁管和其他屏蔽物进行良好的接地。

(2)隔离法:隔离法就是将热电偶悬空安装,使热电偶不与炉壁的耐火砖接触,热电偶与支架之间也采用绝缘物进行隔离,这种方法可以很好的预防高温漏电的干扰。

(3)接地法:这种方法是将测量回路进行接地处理,把干扰引入大地从而保障仪器的测量准确性,这种方法有两种接地形式:第一是热电偶参考端接地,第二种是热电偶测量端接地,注意:接地端不能与强电共地。

六.通讯口抗干扰处理办法

RS232口

处理方法:

1.加信号隔离器

2.采用带屏蔽的电缆线做为信号线

3.可靠有效的接地

RS485口

处理方法:

1.加信号隔离器

2.采用带屏蔽的双绞线做为信号线

3.可靠有效的接地

RS422口

处理方法:

1.加信号隔离器

2.采用带屏蔽的双绞线做为信号线

3.可靠有效的接地

三、电源端抗干扰处理办法

处理方法:

1.电源端有干扰时,AC220输入加滤波器DC24V加磁环进行滤波

2.强电、弱电分开布线,不可共地

3.根据机壳类型进行正确有效的接地处理

4、在输入侧采用隔离变压器、电抗器

5、输出侧采用不接地、PLC单独接地

6、PLC屏蔽处理

7、信号线用屏蔽单端接地远离电源

单片机抗干扰能力

单片机抗干扰能力 单片机的抗干扰性能历来为大家所重视,现在市面上的单片机就我所接触过的,就有 十家左右了,韩国的三星和现代;日本的三菱,日立,东芝,富士通,NEC;台湾的 EMC,松汉,麦肯特,合泰;美国的摩托罗拉,国半的cop8系列,microchip系列,TI 的msp430系列,AVR系列,51系列,欧洲意法半导体的ST系列。。。。。。 这些单片机的抗干扰性能大多数鄙人亲自测试过,所用机器是上海三基出的两种 高频脉冲干扰仪,一种是欧洲采用的标准,一种是日本采用的标准;

日本的标准是高 频脉冲连续发出,脉冲宽度从50ns到250ns可调,欧洲采用的标准是脉冲间歇(间歇 时间和发出时间可调)发出,脉宽也是从50ns到250ns可调;我们国家采用的是欧洲 标准。 一般情况下,脉冲干扰这一项能够耐受2000V以上就算不错了(好像我国家电标准 是1200V),有些可以达到3000V,于是很多人为此很得意。 单片机在高频脉冲干扰下程序运行是否正常,或者说抗干扰是否通过,有些人以

程序不飞掉,或者说“死机”为标准,有些人以不复位并且程序正常运行为标准。 很多情况下,芯片复位程序是可以继续运行的,表面上看的不是很清楚。我一般就看 单片机在干扰下是否复位,复位了我就认为不行了。不复位并且程序正常运行当然比 复位来说要好了。 好多人看到自己做的电路抗干扰达到2000V或者3000V就很高兴,实际上芯片的抗 干扰并不一定就很好。这里我不能不说一下日本的标准,高频脉冲连续发出的形式。 别小看一个连续和一个间歇的区别,实际上,大家如果有机会,用日本的标准测试一

下你的芯片和电路,你就会发现,几乎和欧洲标准差别很大很大,采用日本标准你会 很伤心,因为大多数单片机过不了! 日本的标准是1600V。上面我提到的十几家单片机: 意法的也就是ST的≥1800 三菱的≥1800 富士通和日立的≥1600V nec的≥1500 东芝的≥1300V 摩托罗拉的≥1300

射频电路板抗干扰设计

射频电路板抗干扰设计摘要:为保证电路性能,在进行射频电路印制电路板( PCB)设计时应考虑电磁兼容性,这对于减小系统电磁信息辐射具有重要的意义。文中重点讨论按元器件的布局与布线原则来最大限度地实现电路的性能指标,达到抗干扰的设计目的。通过几个实验测试事例,分析了影响印制板抗干扰性能的几个不同因素,说明了印制板制作过程中应采取的实际的解决办法。 引言随着通信技术的发展,无线射频电路技术运用越来越广,其中的射频电路的性能指标直接影响整个产品的质量,射频电路印制电路板( PCB)的抗干扰设计对于减小系统电磁信息辐射具有重要的意义。射频电路PCB的密度越来越高, PCB设计的好坏对抗干扰能力影响很大,同一电路,不同的PCB设计结构,其性能指标会相差很大。电磁干扰信号如果处理不当,可能造成整个电路系统的无法正常工作,因此如何防止和抑制电磁干扰,提高电磁兼容性,就成为设计射频电路PCB时的一个非常重要的课题。 电磁兼容性EMC是指电子系统在规定的电磁环境中按照设计要求能正常工作的能力。电子系统所受的电磁干扰不仅来自电场和磁场的辐射,也有线路公共阻抗、导线间耦合和电路结构的影响。在研制设计电路时,希望设计的印制电路板尽可能不易受外界干扰的影响,而且也尽可能小地干扰影响别的电子系统。 设计印制板首要的任务是对电路进行分析,确定关键电路。这就是要识别哪些电路是干扰源,哪些电路是敏感电路,弄清干扰源可能通过什么路径干扰敏感电路。射频电路工作频率高,干扰源主要是通过电磁辐射来干扰敏感电路,因此射频电路PCB板抗干扰设计的目的是减小PCB板的电磁辐射和PCB 板上电路之间的串扰。 1 射频电路板设计 1. 1 元器件的布局 由于SMT一般采用红外炉热流焊来实现元器件的焊接,因而元器件的布局影响到焊点的质量,进而影响到产品的成品率。而对于射频电路PCB设计而言, 电磁兼容性要求每个电路模块尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此元器件的布局也影响到电路本身的干扰及抗干扰能力,直接关系到所设计电路的性能。故在进行射频电路PCB 设计时除了要考虑普通PCB设计时的布局外,主要还须考虑如何减小射频电路中各部分之间的相互干扰、如何减小电路本身对其他电路的干扰以及电路本身的抗干扰能力。 根据经验,射频电路效果的好坏不仅取决于射频电路板本身的性能指标,很大部分还取决于与CPU处理板间的相互影响,因此在进行PCB设计时,合理布局显得尤为重要。布局的总原则是元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;根据经验元器件间最少要有

系统抗干扰和PCB设计

系统抗干扰 一、下面的一些系统要特不注意抗电磁干扰: 1、微操纵器时钟频率特不高,总线周期特不快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微操纵器: 选用外时钟频率低的微操纵器能够有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。尽管方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微操纵器产生的最有阻碍的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 微操纵器要紧采纳高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段专门长线引到输入阻抗相当高的输入端,反射问题就专门严峻,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。

信号在印制板上的延迟时刻与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。能够粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微操纵器构成的系统中常用逻辑电话元件的Tr(标准延迟时刻)为3到18ns之间。 当信号的上升时刻快于信号延迟时刻,就要按照快电子学处理。现在要考虑传输线的阻抗匹配,关于一块印刷线路板上的集成块之间的信号传输,要幸免出现T d>Trd的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则: 信号在印刷板上传输,其延迟时刻不应大于所用器件的标称延迟时刻。 3、减小信号线间的交叉干扰: A点一个上升时刻为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时刻是Td。在D点,由于A点信号的向前传输,到达B点后的信号反射和A B线的延迟,Td时刻以后会感应出一个宽度为Tr的页脉冲信号。在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时刻的两倍,即2Td的正脉冲信号。这确实是信号间的交叉干扰。干扰信号的强度与C 点信号的di/at有关,与线间距离有关。当两信号线不是专门长时,AB上看到的实际是两个脉冲的迭加。 CMOS工艺制造的微操纵由输入阻抗高,噪声高,噪声容限也专门高,数字电路是迭加100~200mv噪声并不阻碍其工作。若图中AB线是一模拟信号,这种干

如何提高视频的抗干扰能力

视频监控系统中的各种干扰解决方法大全监控系统在各领域中的应用越来越多,在不同环境、不同安装条件和不同施工人员下,由于线路、电气环境的不同,或是在施工中疏忽,容易引发各种不同的干扰。这些干扰就会通过传输线缆进入闭路电视监控系统,造成视频图像质量下降、系统控制失灵、运行不稳定等现像,直接影响到整个系统的质量。因此了解视频监控系统有哪些干扰,有助于根据不同的情况采取相应的措施,对提高监控系统工程质量,确保系统的稳定运行非常有益。 1视频监控中的各种干扰 1.1木纹状的干扰 这种干扰的出现,轻微时不会淹没正常图像,而严重时图像就无法观看了(甚至破坏同步)。这种故障现象产生的原因较多也较复杂。大致有如下几种原因: (1)视频传输线的质量不好,特别是屏蔽性能差(屏蔽网不是质量很好的铜线网,或屏蔽网过稀而起不到屏蔽作用)。与此同时,这类视频线的线电阻过大,因而造成信号产生较大衰减也是加重故障的原因。此外,这类视频线的特性阻抗不是75Ω以及参数超出规定也是产生故障的原因之一。由于产生上述的干扰现象不一定就是视频线不良而产生的故障,因此这种故障原因在判断时要准确和慎重。只有当排除了其它可能后,才能从视频线不良的角度去考虑。若真是电缆质量问题,最好的办法当然是把所有的这种电缆全部换掉,换成符合要求的电缆,这是彻底解决问题的最好办法。 (2)由于供电系统的电源不“洁净”而引起的。这里所指的电源不“洁净”,是指在正常的电源(50周的正弦波)上叠加有干扰信号。而这种电源上的干扰信号,多来自本电网中使用可控硅的设备。特别是大电流、高电压的可控硅设备,对电网的污染非常严重,这就导致了同一电网中的电源不“洁净”。比如本电网中有大功率可控硅调频调速装置、可控硅整流装置、可控硅交直流变换装置等等,都会对电源产生污染。这种情况的解决方法比较简单,只要对整个系统采用净化电源或在线UPS供电就基本上可以得到解决。

抗干扰设计原则

> 抗干扰设计原则 1.电源线的设计 (1)选择合适的电源 (2)尽量加宽电源线 (3)保证电源线、底线走向和数据传输方向一致 (4)使用抗干扰元器件 (5)电源入口添加去耦电容(10~100uf) 2.[ 3.地线的设计 (1)模拟地和数字地分开 (2)尽量采用单点接地 (3)尽量加宽地线 (4)将敏感电路连接到稳定的接地参考源 (5)对pcb板进行分区设计,把高带宽的噪声电路与低频电路分开 (6)尽量减少接地环路(所有器件接地后回电源地形成的通路叫“地线环路”)的面积 3.. 4.元器件的配置 (1)不要有过长的平行信号线 (2)保证pcb的时钟发生器、晶振和cpu的时钟输入端尽量靠近,同时远离其他低频器件(3)元器件应围绕核心器件进行配置,尽量减少引线长度 (4)对pcb板进行分区布局 (5)考虑pcb板在机箱中的位置和方向 (6)缩短高频元器件之间的引线 4.】 5.去耦电容的配置 (1)每10个集成电路要增加一片充放电电容(10uf) (2)引线式电容用于低频,贴片式电容用于高频 (3)每个集成芯片要布置一个的陶瓷电容 (4)对抗噪声能力弱,关断时电源变化大的器件要加高频去耦电容 (5)电容之间不要共用过孔 (6)去耦电容引线不能太长 5.— 6.降低噪声和电磁干扰原则 (1)尽量采用45°折线而不是90°折线(尽量减少高频信号对外的发射与耦合) (2)用串联电阻的方法来降低电路信号边沿的跳变速率 (3)石英晶振外壳要接地 (4)闲置不用的们电路不要悬空 (5)时钟垂直于IO线时干扰小 (6)尽量让时钟周围电动势趋于零

(7)IO驱动电路尽量靠近pcb的边缘 (8)- (9)任何信号不要形成回路 (10)对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略 (11)通常功率线、交流线尽量在和信号线不同的板子上 6.其他设计原则 (1)CMOS的未使用引脚要通过电阻接地或电源 (2)用RC电路来吸收继电器等原件的放电电流 (3)总线上加10k左右上拉电阻有助于抗干扰 (4)采用全译码有更好的抗干扰性 (5)~ (6)元器件不用引脚通过10k电阻接电源 (7)总线尽量短,尽量保持一样长度 (8)两层之间的布线尽量垂直 (9)发热元器件避开敏感元件 (10)正面横向走线,反面纵向走线,只要空间允许,走线越粗越好(仅限地线和电源线)(11)要有良好的地层线,应当尽量从正面走线,反面用作地层线 (12)保持足够的距离,如滤波器的输入输出、光耦的输入输出、交流电源线和弱信号线等(13)长线加低通滤波器。走线尽量短截,不得已走的长线应当在合理的位置插入C、RC、或LC低通滤波器。 (14)> (15)除了地线,能用细线的不要用粗线。 7.布线宽度和电流 一般宽度不宜小于(8mil) 在高密度高精度的pcb上,间距和线宽一般(12mil) 当铜箔的厚度在50um左右时,导线宽度1~(60mil) = 2A 公共地一般80mil,对于有微处理器的应用更要注意 8.} 9.电源线尽量短,走直线,最好走树形,不要走环形 9.布局 10.首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。 在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。 在确定特殊元件的位置时要遵守以下原则: (1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。 (2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

数字电子系统的抗干扰设计

数字电子系统的抗干扰设计 摘要:主要描述了数字电子系统中不易解决的电源噪声干扰和传导干扰问题,并介 绍了几种解决问题的途径和方法。 关键词:电源;传导;干扰;抑制 1 引言 每个电气工程师和电气工程技术人员都希望他所设计的设备工作可靠,不会被其它设备干扰,也不会干扰其它设备。但是,由于电气噪气和电磁干扰几乎无处不在,所以,我们设计的产品往往达不到这些目标。如果不能有效地解决这些问题,我们可能必须放弃这些项目或者采取修修补补的办法,这样一来既浪费了我们投资项目的所有时问、资金和努力,又可能使产品性能大打折扣。 二:一般在工作的开始就必须将干扰措施设计成产品。这一般包含四个步骤的过程: (1)了解干扰的类型和来源 干扰源:是指产生干扰的元件、 设备或信号,用数学语言描述:du/dt, di/dt大的地方就是干扰源。如:继电器、

雷电、电机、可控硅、高频时钟等都可能 (2)在设计电路时尽量消除或减小这些干扰对系统的影响; (3)设计线路板、导线的结构尽量消除这些问题,必要时,使用干扰抑制器件; (4)将系统分成模块调试,保证每个子系统组装正确无误、工作正常,在进行进一步组装前不会有任何问题。通过一开始就正确地设计系统,经常提前完成任务,成本也较低。 干扰一般有电源噪声干扰、空间干扰(即场干扰)和传导干扰。空间干扰都通过电磁波辐射窜人系统;传导干扰则通过与系统相连接的导线,如,以与前向通道和后向通道等进人系统;电源噪声干扰有过压、欠压、浪涌电压、尖峰电压等。2.1抗干扰设计的几个原则: 即尽可能的减小干扰源的du/dt, di/dt。这是抗干扰设计中最优先考虑和 最重要的原则,常常会起到事半功倍的 效果。减小干扰源的du/dt主要是通过 在干扰源两端并联电容来实现。减小干 扰源的di/dt则是在干扰源回路串联电 感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: ①继电器线圈增加续流二极管,消

过零比较器的性质及其抗干扰能力的提高

过零比较器的性质及其抗干扰能力的提高 1114211班郝建响01 能够实现对两个或多个进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序的比较功能的或装置称为比较器。其基本功能是对两个输入电压进行比较,并根据比较结果输出高电平或低电平电压,据此来判断输入信号的大小和极性。电压比较器常用于自动控制、波形产生与变换,模数转换以及越限报警等许多场合。比较器是将一个模拟电压与一个基准电压相比较的。比较器的两路输入为,输出则为信号,当输入电压的差值增大或减小时,其输出保持恒定。 过零比较器被用于检测一个输入值是否是零。原理是利用比较器对两个输入电压进行比较。两个输入电压一个是参考电压Vr,一个是待测Vu。一般Vr从正相输入端接入,Vu从反相输入端接入。根据比较输入电压的结果输出正向或反向饱和电压。当参考电压已知时就可以得出待测电压的测量结果,参考电压为零时即为过零比较器。 用比较器构造的过零比较器存在一定的测量误差。当两个输入端的电压差与开环放大倍数之积小于输出阈值时探测器都会给出零值。例如,开环放大倍数为106,输出阈值为6v时若两输入级电压差小于6微伏探测器输出零。这也可以被认为是测量的不确定度。 零电平比较器(过零比较器) 电压比较器是将一个模拟输入信号ui与一个固定的参考电压UR进行比较和鉴别的电路。 参考电压为零的比较器称为零电平比较器。按输入方式的不同可分为反相输入和同相输入两种零电位比较器,如图1(a)、(b)所示 (a)反相输入;(b)同相输入

通常用阈值电压和传特性来描述比较器的工作特性。 阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号UTH表示。 估算阈值主要应抓住输入信号使输出电压发生跳变时的临界条件。这个临界条件是集成运放两个输入端的电位相等(两个输入端的电流也视为零),即U+=U–。对于图1(a)U–=Ui, U+=0, UTH=0。 传输特性是比较器的输出电压uo与输入电压ui在平面直角坐标上的关系。 画传输特性的一般步骤是:先求阈值,再根据电压比较器的具体电路,分析在输入电压由最低变到最高(正向过程)和输入电压由最高到最低(负向过程)两种 情况下,输出电压的变化规律,然后画出传输特性。 分析如下电路: 1)R11作为上拉电阻,作用不大,取值范围很宽,当运放使用LM358的时候,不用也可以。不过,有些比较器是集电极开路的,当使用集电极开路的比较器的时候,这个上拉电阻是必须的。 2)运算放大器组成一个施密特触发器(也叫做滞回触发器),使触发信号有一个滞回,从而使触发后能够可靠翻转,避免小的干扰信号造成触发器误动作。R10叫做滞回电阻,也可以称作正反馈电阻。 由于有了R10,电路才有了滞回特性。调节R10的大小,可以调节滞回的深浅。当R10 无穷大(开路)的时候,电路就失去了滞回特性,从而变成了一个单纯的比较器。 为了更好地说明R10 的作用,我们假定VCC是10伏。那么,当没有R10的时候(R10 开路),输入到2脚的电压低于5负的时候,1脚输出为高电平。2脚高于5伏的时候,1脚输出低电平。这里没有滞回特性。运放就是作为一个比较器。如果在5伏左右,有一个零点几伏的干扰信号叠加进来,就会使比较器产生误动作,频繁地来回翻转。

控制系统抗干扰设计与措施

控制系统抗干扰设计与措施 发表时间:2019-01-25T15:03:19.950Z 来源:《基层建设》2018年第35期作者:刘江山[导读] 摘要:控制系统的抗干扰能力关系到整个系统的可靠运行。 国网新疆电力有限公司电力科学研究院新疆维吾尔自治区乌鲁木齐市 830011 摘要:控制系统的抗干扰能力关系到整个系统的可靠运行。抗干扰设计可以通过设备选型和综合抗干扰设计进行,采用优质电源、铠装屏蔽电缆以及选择正确的接地方式等措施提高抗干扰能力。 关键词:控制系统、电磁干扰、抗干扰设计 1概述 随着科学技术的发展,控制系统在工业中的应用越来越广泛。控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力关系到整个系统的可靠运行。自动化系统中所使用的各种类型控制系统,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多在强电电路和设备所造成的恶劣电磁环境中运行。要提高控制系统可靠性,这就要求控制系统生产厂家用提高设备的抗干扰能力;同时在工程设计、安装调试和使用维护中引起高度重视,增强系统的抗干扰性能。 2控制系统中电磁干扰源及对系统的影响 2.1系统信号的干扰 控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损坏。对于隔离性能差的系统,还将导致信号间互相干扰。控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。 接地是提高电子设备电磁兼容性的有效手段之一。正确的接地,既能抑制电磁干扰,又能抑制设备向外发出干扰;而错误的接地反而会引入严重的干扰信号,使控制系统无法正常工作。 此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,形成干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响控制系统内逻辑电路和模拟电路的正常工作。控制系统工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响控制系统的逻辑运算和数据存储,造成数据混乱、程序故障或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 2.2控制系统内部的干扰 主要由系统内部元器件及电路间的互相电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器间的互相不匹配使用等。这属于控制系统制造厂对系统内部进行电磁兼容设计内容,但要选择具有较多应用业绩或经过考验的系统。 3控制系统工程的抗干扰设计为了保证系统在工业电磁环境中免受或减少内外电磁干扰,必须从设计阶段开始便采取抑制措施:抑制干扰源、切断或衰减电磁干扰的传播途径、提高装置和系统的抗干扰能力。 控制系统的抗干扰是一个系统工程,要求制造单位设计生产有较强抗干扰能力的产品,使用部门在工程设计、安装调试和运行维护中予以全面考虑,才能保证系统的电磁兼容性的运行可靠性。 3.1设备选型 在选择设备时,首先要选择有较高抗干扰能力的产品,尤其是抗外部干扰能力,如采用浮空技术、隔离性能好的控制系统系统;其次还应了解生产厂给出的抗干扰指标,如共模拟制比、差模拟制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作;另外是靠考查其在类似工作中的应用实绩,国内工业现场的电磁干扰相比欧美地区高许多,对系统抗干扰性能要求更高,因此要求进口设备的抗干扰能力更高。 3.2综合抗干扰设计 主要考虑来自系统外部的几种干扰抑制措施。主要包括:对控制系统及外引线进行屏蔽以防空间辐射电磁干扰;对外引线进行隔离、滤波,特别是动力电缆,分层布置,以防通过外引线引入传导电磁干扰;正确设计接地点和接地装置,完善接地系统。另外还必须利用软件手段,进一步提高系统的安全可靠性。 4抗干扰措施 4.1采用性能优良的电源 在控制系统中,电源占有极重要的地位。电源干扰串入控制系统主要通道(如CPU电源、I/O电源等)、变送器供电电源和与控制系统具有直接电气连接的仪表供电电源等耦合进入的。现在,对于控制系统供电的电源,一般都采用隔离性能较好电源,而对于变送器和控制系统的供电电源,并没受到足够的重视,虽然采取了一定的隔离措施,但效果不大。所以,对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少控制系统的干扰。目前采用在线式不间断供电电源(UPS)供电,提高供电的安全可靠性。并且UPS还具有较强的干扰隔离性能,是一种理想电源。 4.2电缆的选择及敷设 为了减少动力电缆辐射电磁干扰,尤其是变频装置馈电电缆,采用了铠装屏蔽动力电缆,从而降低了动力线产生的电磁干扰。 不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层敷设,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敷设,以减少电磁干扰。 4.3正确选择接地方式,完善接地系统 接地的目的通常有2个,其一为了安全,其二为了抑制干扰。完善的接地系统是控制系统抗电磁干扰的重要措施之一。 信号源接地时,屏蔽层应在信号侧接地;不接地时,应在控制系统侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏电缆连接时,各屏蔽层应相互连接好,并经绝缘处理。选择适当的接地处单点接地。

抗干扰设计原则

抗干扰设计原则-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

抗干扰设计原则 1.电源线的设计 (1)选择合适的电源 (2)尽量加宽电源线 (3)保证电源线、底线走向和数据传输方向一致 (4)使用抗干扰元器件 (5)电源入口添加去耦电容(10~100uf) 2.地线的设计 (1)模拟地和数字地分开 (2)尽量采用单点接地 (3)尽量加宽地线 (4)将敏感电路连接到稳定的接地参考源 (5)对pcb板进行分区设计,把高带宽的噪声电路与低频电路分开 (6)尽量减少接地环路(所有器件接地后回电源地形成的通路叫“地线环路”)的面积 3.元器件的配置 (1)不要有过长的平行信号线 (2)保证pcb的时钟发生器、晶振和cpu的时钟输入端尽量靠近,同时远离其他低频器件 (3)元器件应围绕核心器件进行配置,尽量减少引线长度 (4)对pcb板进行分区布局 (5)考虑pcb板在机箱中的位置和方向 (6)缩短高频元器件之间的引线 4.去耦电容的配置 (1)每10个集成电路要增加一片充放电电容(10uf) (2)引线式电容用于低频,贴片式电容用于高频 (3)每个集成芯片要布置一个的陶瓷电容 (4)对抗噪声能力弱,关断时电源变化大的器件要加高频去耦电容 (5)电容之间不要共用过孔 (6)去耦电容引线不能太长 5.降低噪声和电磁干扰原则 (1)尽量采用45°折线而不是90°折线(尽量减少高频信号对外的发射与耦合)(2)用串联电阻的方法来降低电路信号边沿的跳变速率 (3)石英晶振外壳要接地 (4)闲置不用的们电路不要悬空 (5)时钟垂直于IO线时干扰小 (6)尽量让时钟周围电动势趋于零 (7)IO驱动电路尽量靠近pcb的边缘 (8)任何信号不要形成回路 (9)对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略

如何提高工控设备的抗干扰能力-

如何提高工控设备的抗干扰能力? 工控设备的核心问题,就是抗干扰能力,如果抗干扰能力不够高,那么,这个设备就是没有多大用处。 要提高工控设备的抗干扰能力,首先就是要学会正确的使用plc。 1.PLC的内核电源和输入输出接口电源应该独立。 绝大多数的用户,在设计系统电源时,只有一个电源,PLC的内核和接口都用这个电源。懂得光耦原理的人就会发现,这种接法,会把光耦旁路掉,也就是说,光耦完全没有起到隔离的作用,整个PLC完全是在“裸奔”,没有任何的保护能力,非常危险的!正确的做法是多加一个电源,专门只给PLC内核供电。输入输出接口可以共用一个电源。 2.PLC的输出口如果接到感性负载,例如电磁阀,继电器等有线圈的负载,需要在负载两端反向加一个吸收二极管。具体的方法,可以到我们的网站查看产品的接线图。 如果没有这个反向二极管,在电磁阀或继电器断开的瞬间,会产生一个反向电动势。这个反向电动势,和输出口的电源叠加在一起,会大大超过输出三极管(或场效应管)的电压承受极限,导致三极管击穿。对于反向二极管的参数,只要是电流不小于继电器电流,耐压不低于接口电源电压就

行了,像1N4004,1N4007都没有任何问题。另外,市场上的电磁阀,接线如果标有正负极的,就表示里面已经有了吸收电路,不用外接二极管了。 3.电源的选择。 干扰信号都是高频信号。比较典型的干扰信号源有变频器,可控硅调压电路。现在市面上的电源大多是开关电源,体积小,效率也很高,但是,最大的缺点就是,高频干扰信号可以长驱直入。而过去的老式电源,里面有个很大体积的变压器那种,体积大,效率低,但是对于高频干扰信号却可以很有效的抑制。所以,在选择内核电源时,应该选择老式变压器电源。 如果找不到老式变压器电源,可以在开关电源前接一个1:1的隔离变压器,或在内核电源的输入端接共模线圈,用来阻隔高频干扰。 4.布局。 干扰有2个途径,一是导线传导,二是空间辐射传导。以上的1和3就可以解决导线传导的干扰。对付空间干扰,最有效的办法就是加屏蔽罩(千万不要以为加屏蔽罩是可有可无的)。配电柜就是个很好的屏蔽罩。但是,屏蔽罩对于来自内部的干扰却束手无策。由于继电器甚至接触器一般也装配在在配电柜里面,继电器在断开的瞬间会产生一个高频干扰,这个干扰就会通过空间辐射,干扰PLC的工作。这时

浅谈雷达干扰与反干扰技术

浅谈雷达干扰与抗干扰技术 近年来,由于电子对抗技术的不断进步,干扰与抗干扰之间的斗争亦日趋激烈。面对日益复杂的电子干扰环境,雷达必须提高其抗干扰能力,才能在现代战争中生存,然后才能发挥其正常效能,为战局带来积极影响。 一、雷达干扰技术 1、对雷达实施干扰的目的和方法 雷达干扰的目的是使敌方雷达无法获得探测、跟踪、定位及识别目标的信息,或使有用的信息淹没在许多假目标中,以致无法提取真正的信息。 根据雷达工作原理,雷达是通过辐射电磁波在空间传播至目标,由目标散射回波被雷达接收实现探测目标。因此对雷达实施干扰可以从传播空间和目标这两处着手。具体来说就是辐射干扰信号,反射雷达信号,吸收雷达信号三个方面。 为了实现对雷达实现有效的干扰,一般需要满足下面几个条件。空间上,干扰方向必须对准雷达,使得雷达能够接收到干扰信号。频域上,干扰频率必须覆盖雷达工作频率或者和雷达工作频点相同。能量上,干扰的能量必须足够大,使得雷达接收机接收的能量大于其最小可接收功率(灵敏度)。极化方式上,干扰电磁波的极化方式应当和雷达接收天线的极化方式尽量接近,使得极化损失最小。信号形式上,干扰的信号形式应当能够对雷达接收机实施有效干扰,增加其信号处理的难度。 2、雷达干扰分类 雷达面临的复杂电子干扰可分为有意干扰和无意干扰两大类,这两者又分别包括有源和无源干扰,具体如下图所示。

有意干扰无意干扰有源干扰无源干扰有源干扰 无源干扰遮盖性干扰欺骗性干扰自然界的人为的欺骗性干扰遮盖性干扰自然界的人为的噪声调频干扰复合调频干扰噪声调相干扰随机脉冲干扰距离欺骗干扰角度欺骗干扰速度欺骗干扰等箔条走廊干扰箔条区域干扰反雷达伪装雷达诱饵宇宙干扰雷电干扰等工业干扰友邻干扰等鸟群干扰等 人工建筑干扰 地物、气象干扰 {友邻物体干扰{{{{{{{{{{{{{{ 雷达干扰 二、雷达抗干扰技术 雷达抗干扰的主要目标是在与敌方电子干扰对抗中保证己方雷达任务的顺利完成。雷达抗干扰措施可分为两大类:(1)技术抗干扰措施;(2)战术抗干扰措施。技术抗干扰措施又可分为两类:一类是使干扰不进入或少进入雷达接收机中;另一类是当干扰进入接收机后,利用目标回波和干扰的各自特性,从干扰背景中提取目标信息。这些技术措施都用于雷达的主要分系统如天线、发射机、接收机、信号处理机中。 1、与天线有关的抗干扰技术 雷达通过天线发射和接收目标信号,但同时可能接收到干扰信号,可以通过在天线上采取某些措施尽量减少干扰信号进入接收机。如提高天线增益,可提高雷达接收信号的信干比;控制天线波束的覆盖与扫描区域可以减少雷达照射干扰机;采用窄波束天线不仅可以获得高的天线增益,还能增大雷达的自卫距离、提高能量密度,还可以减少地面反射的影响,减小多径的误差,提高跟踪精度;采用低旁瓣天线可以将干扰限制在主瓣区间,还可以测定干扰机的角度信息,并能利用多站交叉定位技术,测得干扰机的距

控制系统抗干扰分析及解决方法

控制系统抗干扰分析及解决方法 【摘要】工业控制系统的检测信号一般比较微弱,干扰信号不能有效解决,则会严重影响系统的正常工作。尤其是现在单片机ARM 技术的广泛应用,对信号的要求也越来越高,微弱的干扰都会影响整个系统的稳定性。本文以开发设计、检测调试过程中的实际经验为例,从原理图设计、PCB布线等方面详细讲述了干扰信号的产生及消除方法,是理论与实际的经验总结。 【关键词】抗干扰;信号;毛刺 1 概述 工业控制系统的任务是根据现场的测量信号,经分析比较后控制继电器完成预定操作。但现场测量信号往往比较微弱,比如负荷电流、零序电流、电压等,由于干扰信号的存在,当干扰信号强度较大时,有用的测量信号淹没在杂乱的干扰信号中,系统无法得到正确的测量结果,严重影响系统的正常工作,甚至造成误判或误动。本文以馈电开关保护器研发过程中发现的电磁干扰及处理方法加以叙述,供同行们借鉴参考。 2 干扰的形成及处理 该馈电开关采用外部开关电源供电,本身噪声及纹波较大,若直接送给保护器系统,将形成较大的干扰源,解决方法是利用磁珠与电容组成L型滤波电路,磁珠的电感量不易大,以直插(3.5*6mm)或六孔磁珠为宜,电容选用470uF/50V 电解电容。磁珠可以减缓因电流突变产生的干扰,而电容则可以减缓因电压突变产生的干扰。 (1)模拟地与数字地要物理分开,从器件布局、PCB走线、铺地都要隔离,然后通过一磁珠或0Ω电阻连接。磁珠选用直插的,电阻的功率要大,1W为宜,若表贴器件选择1812封装。 (2)每个数字器件的VCC附近布置一个0.01uF陶瓷电容,用于减小高低电平变化时产生的突变干扰,俗称“去耦”。 (3)模拟信号在放大器处理过程中每步增加一个0.01uF陶瓷电容,该电容对高频信号敏感,可有效的将高频干扰信号滤除,而对工频待测信号则不敏感,允许传感器信号正常通过。 (4)开关量采用光耦隔离,开关量输入的隔离光耦采用TLP181或TLP121,该光耦的导通压降0.3mm。2)布线不拐90°弯。3)尽量少过孔,过孔的焊盘外径为孔径的一倍关系,如0.7/0.35mm。4)地线不走线,以铺地连接。交流电源不得进入铺地范围,铺地采用网格形式。5)器件布局规则:继电器、电源远离CPU、模拟量采样电路。6)晶振器件下面不得走线。

单片机控制系统的抗干扰设计

单片机控制系统的抗干扰设计 摘要:单片机相关控制的灵敏度和系统所受的干扰具有一定的正相关关系,对 单片机的控制系统而言,具有较高的灵敏度才能确保系统运行正常,但灵敏度越高,系统受到的干扰就越强,设计单片机控制系统时需要重视其抗干扰能力,确 保系统能够稳定运行。 关键词:单片机;控制系统;抗干扰设计 引言 单片机控制系统是集通信技术、计算机技术以及自动化控制技术于一体的工 业通用自动控制系统,其不但操作便捷、扩展性能好,而且还具有较强的控制功能,目前已在我国电力、化工、交通以及冶金等行业得到广泛的应用。但由于工 业作业环境较为恶劣,使得单片机容易被电源波形畸变、电磁设备启停等影响而 受到干扰,使得信号接收能力大大下降,进而对测量的质量与效率造成了影响, 严重的还会对单片机的软件、硬件造成损坏,使其难以正常运作。所以,加强单 片机控制系统的抗干扰设计,正确掌握其干扰源,并采取针对性的改进措施来提 高其抗干扰能力,对单片机控制系统功能的正常发挥有着重要的作用。 1系统干扰源及干扰因素 1.1现场干扰源 电磁干扰一般分为两类,即传导和辐射。传导类型的干扰主要是通过金属、 电感、电容以及变压器传播的;而辐射类型干扰的传播途径很多,比如设备外壳 和外壳上的缝隙,设备间的连接电缆,甚至是一根导线也可以成为辐射类型干扰 的传统途径。这两种干扰往往是相辅相成的,并且在干扰吸收上可以相互转化。 在测控系统中,电磁干扰主要通过“场”进入,即电磁干扰源的能量通过电磁场传 递给测控系统。电场主要是电容性耦合干扰,在导线和电路分布的电容中,干扰 信号进入测控系统。而磁场干扰是互感性耦合干扰,借助导线和电路的互感耦合,干扰信号进入测控系统。 1.2单片机控制系统自身干扰源 单片机控制系统自身干扰源主要包括了散粒噪声、热噪声、常模噪声、共模 噪声以及接触噪声等几方面内容。散粒噪声是由于晶体管基区内的载流子发生随 即扩散,与电子空穴发生复合反应而形成的,其主要存在于半导体原件内部;热 噪声是指在没有连接电源的情况下,仍然有微弱电压存在于电阻两端,电阻两端 出现电子热运动而形成的噪音电压;常模噪声即线间感应噪声或对称噪声,往往 难以将其完全消除;共模噪声恰好与常模噪声相反,其指的是地感应噪声、不对 称噪声或是纵向噪声,该类噪声可以进行消除,但也可由共模噪声转变为常模噪声;接触噪声通常是由于两种材料进行不完全接触,使得电导率出现变化而产生的,常出现在导体连接部位。 2单片机硬件抗干扰设计 2.1电源电路的设计 在单片机控制系统中,将模拟电路电源和逻辑电路电源分离,不仅有利于去 除电源耦合逻辑电路产生的干扰,还可以抑制通过电源耦合对ECU干扰。那么单 片机控制系统电源电路设计过程中,可以采用7812和7805三端稳压集成芯片, 对电源进行负压差保护,避免因其中一个稳压电源故障导致整个电路崩溃。为改 善电源波形,可以采用低通滤波器,从而减少以高次谐波为主的干扰源,从而确

电子产品的抗干扰能力和电磁兼容性要点

如何提升电子产品的抗干扰能力和电磁兼容性 在研制带处理器的电子产品时,如何提升抗干扰能力和电磁兼容性? 1、下面的一些系统要特别注意抗电磁干扰? (1) 微控制单元时钟频率特别高,总线周期特别快的系统。 (2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 (3) 含微弱模拟信号电路以及高精度A/D 变换电路的系统。 2、为增加系统的抗电磁干扰能力采取如下措施? (1) 选用频率低的微控制单元? 选用外时钟频率低的微控制单元可以有效降低噪声和提升系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制单元产生的最有影响的高频噪声大约是时钟频率的3 倍。 (2) 减小信号传输中的畸变 微控制单元主要采用高速CMOS 技术制造。信号输入端静态输入电流在1mA 左右,输入电容10PF 左右,输入阻抗相当高,高速CMOS 电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端透过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd〉Tr 时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3 到1/2 之间。微控制单元构成的系统中常用逻辑电话组件的Tr(标准延迟时间)为3 到18ns 之间。 在印制线路板上,信号透过一个7W 的电阻和一段25cm 长的引线,在线延迟时间大致在4~20ns 之间。也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过孔数目也应尽量少,最好不多于2 个。 当信号的上升时间快于信号延迟时间,就要按照快电子学处理。此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td〉Trd 的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则? 信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。 (3) 减小信号线间的交叉干扰? A 点一个上升时间为Tr 的阶跃信号透过引线A B 传向B 端。信号在AB 在线的延迟时间是Td。在D 点,由于A 点信号的向前传输,到达B 点后的信号反射和AB 线的延迟,Td 时间以后会感应出一个宽度为Tr 的页脉波信号。在 C 点,由于AB 上信号的传输与反射,会感应出一个宽度为信号在AB 在线的延迟时间的两倍,即2Td 的正脉波信号。这就是信号间的交叉干扰。干扰信号的强度与C 点信号的di/at 有关,与线间距离有关。当两信号线不是很长时,AB 上看到的实际是两个脉波的迭加。 CMOS 工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电路是迭加100~200mv 噪声并不影响其工作。若图中AB 线是一模拟信号,这种干扰就变为不能容忍。如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地时,这种信号间的交叉干扰就会变小。原因是,大面积的地减小了信号线的特性阻抗,信号

抗干扰设计,硬件抗干扰设计

4.5抗干扰设计 在理想情况下,一个系统的性能仅有该系统的结构及应用元器件的性能指标来决定,但是测控系统在使用过程中,由于内部或外部干扰的影响,在被测信号电压或电流上会叠加干扰信号,通常把这种干扰信号称为噪声。 在检测系统中,噪声对被测信号存在着严重影响,当被测信号微弱时,就会被干扰信号淹没掉,导致数据采集误差;在控制系统中,噪声干扰可能会导致误操作。因此,在分析和设计测控系统时,必须考虑到可能存在的干扰对系统的影响,从硬件和软件上采取相应的措施消除和抑制系统中的噪声,增强系统的抗干扰能力。 所有噪声干扰的形成必须具有三个要素:噪声源、对噪声敏感的接收电路以及噪声源到接收电路间的耦合通道。因此,抑制噪声干扰的方法相应地有三个:抑制噪声源的强度、使接收电路对噪声不敏感、抑制或切断噪声源与接收电路间的耦合通道。多数情况下,须在这三个方面同时采取措施。本自由摆平衡控制系统包括硬件设计和软件设计,所以抗干扰也从软、硬件两方面考虑。 4.5.1硬件抗干扰 1、抑制干扰源 干扰源是指产生干扰的元件、设备或信号,交流电源的干扰是电路系统的干扰源之一。电源干扰是指电源过压、欠压、浪涌以及产生的尖峰等电压噪声,通过电源内阻耦合到电路中。本次设计使用了交流稳压器,保证电源电压的稳定性,同时使用低通滤波滤掉高次谐波,改善电源波形。电路板上的每个IC的电源与地端都并接一个作为本集成电路的蓄能电容,提供和吸收集成电路开关瞬间的充放电能;另一方面旁路滤掉该器件的高频噪声。 2、切断干扰的耦合通道 信号通道,无论是传输导线还是模拟或数字输出通道,都是干扰串入的通道。本次设计中,处理器发出的脉冲信号与电机驱动电路之间采用了光电耦合器进行隔离,从而有效地抑制尖峰脉冲及其他噪声干扰。传感器的输入端也采用了运算放大器跟随输出,并设置了滤波电路,抑制输入端。这样ARM核心处理器系统与外界完全隔离开来,极大的提高了控制器的抗干扰能力,增加了系统的可靠性。 4.5.2 软件抗干扰 硬件抗干扰措施的目的是尽可能切断干扰进入测控系统通道,因此是十分必要的。但是当干扰严重时,有可能使运行程序发生混乱导致程序跑飞或进入死循环,这时需要进一步借助软件措施去克服某些干扰。软件抗干扰技术是当系统受干扰后是系统恢复正常运行或输入信号受干扰后去伪求真的一种辅助方法,具有设计灵活、节省硬件自愿等优点。 在测控系统软件中,采用了一下抗干扰方法: 1、指令冗余 程序跑飞之后,往往将一些操作数作为指令码执行,从而引起整个程序的混乱,所谓“指令冗余”,就是在一些关键的地方插入一些单字节的空操作数作为指令代码执行的错误,而是在连续执行几个空操作后,继续执行后面的程序,是程序恢复正常运行。通常只在一些对程序的流向其关键作用的指令前面插入两条NOP指令,指令冗余使用过多会降低程序执行效果。 2、利用Watchdog(看门狗)使CPU复位 当程序跑飞到一个临时构成的死循环中时,只能依靠看门狗解决。看门狗电路所起的作用是一旦CPU运行出现故障,就强制对CPU进行硬件复位,使整个系统重新处于可控状态,CPU复位是程序跑飞后使其恢复正常运行的最简单有效的方法。

雷达抗干扰

雷达抗干扰 雷达抗干扰,属于军事领域,是一种在军事对抗中对抵御敌对方干扰的方法 雷达抗干扰- 正文 无论战时或战前,军用雷达都处于电子对抗环境中。对方通过电子侦察测定雷达辐射的有关参数,以便战时有针对性地对雷达实施电子干扰或用反辐射导弹等加以摧毁,防止或减少雷达取得己方目标的有用信息(见雷达对抗)。军用雷达则应具备电子防护手段,以保证战时能有效地获取目标信息(发现目标与测定目标参数)。抗干扰就是电子防护的重要内容。 发展概况第二次世界大战时,在地面防空、海战、空战中广泛使用雷达(如用于警戒、炮火控制、探照灯控制等),促进了雷达干扰技术的发展。战争后期,普遍使用噪声调幅干扰机、铝箔条和二者的混合干扰,从而又促进了雷达抗干扰技术的发展。除雷达频段向微波波段扩展以增强抗干扰能力外,还出现了许多其他抗干扰技术。这些抗干扰技术包括:雷达工作频率的跳变;有风速补偿的动目标显示;视频信号积累器;脉冲宽度、幅度鉴别电路;采用各种自动增益控制技术或对数放大器,以防止接收机过载和减少虚警;天线旁瓣匿影器;脉冲压缩等。50年代初期,军用雷达已普遍采用变频速度为秒级的机械变频技术和动目标显示技术。50年代后期至60年代,单脉冲、脉冲压缩、频率分集、旁瓣匿影和抑制调频干扰的一些技术已在雷达中应用。70年代以来,以行波管、行波速调管、前向波放大器、微波功率晶体三极管等作发射机末级放大器的雷达,变频范围达到6%~14%。在发射周期间捷变频、寻找干扰频段空隙瞬时躲避干扰的自适应捷变频技术已普遍采用。对于难以用变频躲避的快速宽带扫频干扰,许多雷达采用宽带限幅后再匹配接收的非线性处理方法。有些雷达已采用相干旁瓣对消技术,对干扰机的方位、仰角实现定向的无源技术。复杂的编码发射波形如线性调频、相位编码等也得到普遍应用。相控阵体制使雷达频率、脉宽、重复频率、波束指向和扫描速率更有随机性。雷达采取几个重复周期变频一次,或采取程序化的重复周期间变频并利用大容量存储器,把几个周期的回波存储起来,选择同发射频率的回波进行动目标显示滤波处理,已可解决雷达捷变频与动目标显示的兼容问题。 干扰威胁雷达与一般无线电设备相比更易受到干扰,因为目标散射的能量微弱,不大的干扰能量就能超过它。对于搜索雷达,对方主要是用杂乱信号或假目标扰乱雷达操纵员的观测,造成雷达测距、测角、测速的误差;或使操纵员无法观测和使自动化目标检测的计算机过载,从而破坏雷达对目标的检测。对于跟踪雷达,则使其跟踪假目标,从而丢失对真正目标的跟踪。干扰按性质分为消极干扰和积极干扰两种。①消极干扰:又称无源干扰,靠反射或吸收雷达的辐射能量使雷达观测目标困难(见雷达无源干扰技术)。反射的办法如投放长度为雷达半波长左右的小束金属箔条、敷金属膜的介质和其他反射体等。当少量投放时,投放的瞬间其回波类似飞机回波,借以欺骗执行炮火控制任务的跟踪雷达;当大批投放时,可形成杂波走廊,对目标起掩护作用。②积极干扰:又称有源干扰,用干扰发射机产生干扰能量,可分为压制性和欺骗性干扰两类(见雷达有源干扰样式)。压制性干扰的主要目的是妨碍雷达对目标的检测,包括瞄准式噪声干扰、阻塞式噪声干扰、扫频干扰、脉冲干扰、连续波干扰等。欺骗性干扰的目的是使雷达对假目标进行检测或跟踪,从而作出错误的判断。 雷达的干扰环境空袭中对雷达施放的干扰有自卫式、护航式、远方掩护式等方式,各有不同的用途和特点。自卫式干扰是由攻击飞机自身携带的干扰器材和设备所施放的干扰,旨在保护本身不被雷达发现或不被武器控制雷达所跟踪。飞机的主要任务是攻击,因此所带的干扰机和消极干扰器材只占飞机载荷的较小部分,一般只能携带对飞机威胁最大的雷达频段的干扰设备。由于自卫式干扰能力有限,在轰炸机和战斗轰炸机的编队中往往配备一定数量专门携带干扰设备的飞机以掩护其他飞机,或彼此携带不同频段干扰设备以互相掩护。只有当掩护者与被掩护者间的距离保持在雷达的同一角度分辨单元内,护航式干扰才能奏效。远方掩护式干扰是为了补救自卫式和护航式干扰之不足,由一些专门装载干扰设备的飞机,在远离敌方的安全地区进行干扰,其干扰频段较宽、强度较大。但是,因掩护者与被掩护者不在同一地区,常是从雷达天线旁瓣对雷达进行干扰。 抗干扰方法对付高斯噪声干扰的最佳接收方法是采用匹配滤波器(见检测理论)。强干扰时,处理后的信号干扰比约为2E/N0。式中E为收到的雷达信号能量;N0为噪声干扰频谱密度。增大发射信号能量、使用高增益发射天线、采用宽频带工作,都能提高抗干扰性能。单部雷达的抗干扰能力有限;若以多种不同频段雷达组成雷达网,则易对付机载干扰设备的干扰。最佳策略是把雷达频率分布于尽可能宽的频带,以躲避干扰。如无法躲避,则可迫使干扰机功率分散于雷达频段内,从而降低每赫兹的噪声干扰功率强度。网中雷达采用的扩展频谱信号、频率分集、频率捷变,都是为达到此目的而采取的有效措施。采用分辨力高的方位、仰角接收波束,可使护航式干扰难以互相掩护。低旁瓣天线可以减少受干扰的角域,对任何干扰均有效。采用天线增益大于雷达主天线旁瓣增益的宽波束辅助天线,能使信号与主天线信号进行比较,如旁瓣匿影器,可进一步抑制旁瓣来的脉冲干扰。有自适应功能的相干旁瓣对消器,能进一步抑制包括噪声干扰在内的高占空比干扰。抗干扰效果取决于干扰机的数目、空间分布和对消器的环数。对付用M型返波管产生的宽带快速扫频干扰,采用宽带接收和限幅后匹配滤波的技术,是有效的抑制措施。对于以倍频程工作的行波管产生欺骗雷达的回答干扰,雷达不能靠变频来回避,但采用随机变化的参数(如脉宽、重复周期、波束扫描速率等)、复杂而宽带的发射波形(如线性调频、二相码、四相码等)的方法

相关文档
最新文档