生物质制氢进展论文

生物质制氢进展论文
生物质制氢进展论文

生物质制氢研究进展

摘要:生物质制氢是一项利用微生物的生理代谢作用分解有机物从而产生氢气的生物工程技术,具有产氢稳定性好、产氢能力高等优点,是一种符合可持续发展战略的可再生能源。本文介绍了生物质制氢的方法及研究进展。

关键词:生物质制氢进展

中图分类号:tq116.29 文献标识码:a 文章编

号:1672-3791(2011)10(c)-0000-00

氢气作为一种极为理想的“绿色能源”,其发展前景是十分光明的,人们对氢能开发和利用技术的研究一直进行着不懈的努力。常规的制氢方法主要有水电解法、水煤气转化法、甲烷裂化法等,这些方法均需耗费大量能量。水电解法是国内外广泛采用的制氢方法,电解槽在标准状况下制取1立方米氢气(纯度为99.5%)实际电能消耗是4.5-6.0kw/h。电解法制氢还需配套纯水制备系统和碱液配制使用设备,使氢气生产成本较高。随着氢气用途的日益广泛,其需求量亦迅速增加,常规的制氢方法已不能适应社会发展的需要,研究开发更为经济的、有良好环保性能的、可再生的制氢技术成为当今世界的热门课题之一,也是社会可持续发展的需要。

生物制氢技术作为一种无污染的清洁生产技术,已在世界上引起广泛重视,越来越多的科学家投身并致力于生物制氢技术的研究开发和应用,日本、美国等一些国家为此成立了专门机构,并建立了生物制氢的发展规划,以期通过对生物制氢技术的基础性和应用

生物质制氢技术研究进展

中国生物工程杂志 China B i otechnol ogy,2006,26(5):107~112 生物质制氢技术研究进展 于 洁 1,2  肖 宏 13 (1中国科学院上海生命科学研究院生命科学信息中心 上海 200031 2中国科学院研究生院 北京 100039) 摘要 氢能以其清洁,来源及用途广泛等优点成为最有希望的替代能源之一,用可再生能源制氢是氢能发展的必然趋势。由于生物质制氢具有一系列独特的优点,它已成为发展氢经济颇具前景的研究领域之一。生物质制氢技术可以分为两类,一类是以生物质为原料利用热物理化学方法制取氢气,如生物质气化制氢,超临界转化制氢,高温分解制氢等热化学法制氢,以及基于生物质的甲烷、甲醇、乙醇的化学重整转化制氢等;另一类是利用生物转化途径转换制氢,包括直接生物光解,间接生物光解,光发酵,光合异养细菌水气转移反应合成氢气,暗发酵和微生物燃料电池等技术。综述了目前主要的生物质制氢技术及其发展概况,并分析了各技术的发展趋势。关键词 生物质 制氢 气化 高温分解 超临界水 微生物电池中图分类号 Q819 收稿日期:2006201209 修回日期:2006204210 3通讯作者,电子信箱:hxiao@sibs .ac .cn 化石能源的渐进枯竭,国际市场油价的日高一日,给我国高速发展的社会经济带来越来越大的压力。根据国家海关总署提供的资料,我国从1993年变为石油净进口国。过去的10年中,我国石油需求量几乎翻了一番。同时,环境生态问题与国家安全问题日益受到各国的高度重视,新替代能源的研制和开发已成为各国科研生产的战略重点之一。 氢能被誉为21世纪的绿色能源。氢气的燃烧只产生水,能够实现真正的“零排放”。相比于目前已知的燃料,氢的单位质量能量含量最高,其热值达到 143MJ /kg,约为汽油的3倍,并且氢的来源广泛。鉴于 化石能源的不可再生性及其造成的环境污染问题,特别是石化资源渐趋枯竭,利用可再生能源制氢已成为当务之急和氢能发展的长久之计。目前,“氢经济”已引起世界很多国家的高度重视,并已被纳入发展计划。 生物质制氢技术不同于风能、太阳能、水能之处在于生物质制氢技术不仅可以有“生物质产品”的物质性生产,还可以参与资源的节约和循环利用。例如气化制氢技术可用于城市固体废物的处理,微生物制氢过 程能有效处理污水,改造治理环境。微生物燃料电池 (MFC ),可以处理人类粪便、农业和工业废水等有机废 水。微生物发酵过程还能生产发酵副产品,例如重要的工业产品辅酶Q ,微生物本身又是营养丰富的单细胞蛋白,可用于饲料添加剂等。 1 技术概述及研究进展 生物质制氢技术可以分为两类,一类是以生物质为原料利用热物理化学原理和技术制取氢气,如生物质气化制氢,超临界转化制氢,高温分解制氢等。以及基于生物质的甲烷、甲醇、乙醇转化制氢;另一类是利用生物途径转换制氢,如直接生物光解,间接生物光解,光发酵,光合异养细菌水气转移反应合成氢气,暗发酵和微生物燃料电池技术。基于生物质发酵产物的甲烷、甲醇、乙醇等简单化合物也可以通过化学重整过程转化为氢气。目前生物质制氢的研究主要集中在如何高效而经济地转换和利用生物质。高温裂解和气化制氢适用于含湿量较小的生物质,含湿量高于50%的生物质可以通过细菌的厌氧消化和发酵作用制氢。有些湿度较大的生物质亦可利用超临界水气化制氢 [1] 。 一些主要的生物质制氢原料及常用方法见表1。

生物质制氢发展和前景研究

生物质制氢发展和前景研究 作者袁超 学号 201206030121 摘要:氢气作为一种清洁无污染的新型能源越来越受到人们的关注。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害,已经逐渐引起了人们的重视。 Abstract:Hydrogen as a clean pollution-free new energy more and more get the attention of people. Compared with the traditional hydrogen production methods, biological hydrogen production technology of low energy consumption, harmless to the environment, has gradually aroused people's attention 关键词;发酵;制氢;酶;影响因素;前景;生物制氢 前言:据估计,地球上每年生长的生物质总量约相当于目前世界总能耗的l0倍,我国年产农作物秸秆6亿多t,可利用生物质资源约30亿t。从资源本身的属性来说,生物质是能量和氢的双重载体,生物质自身的能量足以将其含有的氢分解出来,合理的工艺还可利用多余能量额外分解水,得到更多的氢。生物质能是低硫和二氧化碳零排放的洁净能源,可避免化石能源制氢过程对环境的污染,从源头上控制

二氧化碳排放。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害[ 1 ]。该文章从生物质制氢的原理入手,综述了多种生物质制氢方法,并以生物质制氢为中心对生物利用进行讨论。 正文 1生物制氢的方法 1.1生物质催化气化制氢 生物质催化气化制氢是加入水蒸气的部分氧化反应,类似于煤炭气化的水煤气反应,得到含氢和较多一氧化碳的水煤气,然后进行变换反应使一氧化碳转变,最后分离氢气。由于生物质气化产生较多焦油,研究者在气化器后采用催化裂解的方法以降低焦油并提高燃气中氧含量,催化剂为镍基催化剂或较。为便宜的白云石、石灰石等。气化过程可采用空气或富氧空气与水蒸气一起作为气化剂,产品气主要是氢、一氧化碳和少量二氧化碳。气化介质不同,燃料气组成及焦油含量也不同。使用空气时由于氮的加入,使气化后燃气体积增大,增加了氢气分离的难度;使用富氧空气时需增加富氧空气制取设备[2]。Dernmirbas[3]认为含水质量分数在35%以下的生物质适合采用气化制氢技术。

水电解制氢的最新进展与应用

水电解制氢的最新进展与应用 一、绿色能源氢能及其电解水制氢技术进展 摘要:随着环境污染日益严重,越来越多的研究关注于绿色无污染能源,其中氢能清洁无污染、高效、可再生,是未来最有潜力的能源载体。利用电解水技术制氢是目前最有潜力的技术,也是一种经济有效的技术。绍了氢能的研究现状和水电制氢技术,着重介绍了碱性电解槽、子交换膜电解技术以及固体氧化物水电解技术,对现有技术进行了总结。 1.氢能的研究现状 美国: 1990年,美国能源部(DOE)启动了一系列氢能研究项目。 2001年以来,美国政府制订了《自有车协作计划》、《美国氢能路线图》。 2004年2月,美国能源部出台的“氢态势计划”,并提出2040年美国将实现向氢经济的过渡。 美国能源部、国防部、交通部、国家科学基金、美国宇航局和商务部以及8个国家实验室、2所大学和19 个公司签署了研发合同。 欧盟: 2001 年11 月启动的“清洁能源伙伴计划”,欧盟拨款1850万欧元支持汉堡、伦敦等10个城市的燃料汽车示范项目。 2008年11 月初欧盟、欧洲工业委员会和欧洲研究社团联合制订了2020年氢能与燃料电池发展计划。 日本: 1993年就制订了“新阳光计划”,预计到2020年投资30亿美元用于氢能关键技术的研发。并计划在2020年实现燃料电池汽车500 万辆,建成燃料电池发电系统10000MW。 我国: 2003年11月我国加入了“氢能经济国际合作伙伴(IPHE)”,成为IPH首批成员国之一。《国家中长期科学和技术发展规划纲要(2006-2020年)》和《国家“十一五”科学技术发展规划》中都列入了发展氢能和燃料电池的相关内容。 相对而言,我国在氢能和燃料电池汽车领域的技术研发工作开始得较晚,这方面的标准体系尚未形成,然而通过国内研究单位的协作努力,在材料、基础设施、燃料电池堆、整车集成等方面都已取得阶段性进展,目前已有多家企业与联合国发展计划署和全球环境基金合作,开展燃料电池客车的公交线路试运行。 2 水电解氢能的制备技术进展 发展到现在,已有三种不同种类的电解槽,分别为碱性电解槽#聚合物薄膜电解槽和固体氧化物电解槽。 ①碱性电解槽 碱性电解槽是发展时间最长、技术最为成熟的电解槽,具有操作简单、#成本低的优点,其缺点是效率最低,槽体示意图如图1 所示。国外知名的碱性电解水制 氢公司有挪威留坎公司、格洛菲奥德公司和冰岛雷克雅维克公司等。电解槽一般采 用压滤式复极结构或箱式单极结构,每对电解槽压在1.8~2.0V,循环方式一般采用 混合碱液循环方式。

甲烷的应用研究进展

论文目录 摘要 (1) 关键词 (1) 1甲烷在合成领域的应用 (1) 1.1甲烷的直接氧化制合成气 (1) 1.2甲烷催化裂解制氢 (2) 1.3甲烷部分氧化制合成气 (2) 1.4甲烷/CO2重整反应 (3) 1.5甲烷水蒸气转化 (3) 1.6甲烷自热重整技术 (4) 2甲烷在其它领域的应用 (5) 2.1 甲烷探测仪的开发利用 (5) 2.2 甲烷工艺在工业上的应用 (5) 2.3甲烷传感器研究进展 (5) 3甲烷的研究发展展望 (6) 4 致谢...................................................................... 错误!未定义书签。 参考文献 (6) Application Research Progress Of Methane (7) 字数统计(7721字)

甲烷的应用研究进展 摘要:本文简单介绍了我国天然气资源状况,系统阐述了近些年来其在合成及其它领域的应用研究,主要包括甲烷的直接转化制合成气,催化裂解制氢,部分氧化制合成气,与CO2重整反应,水蒸气转化和自热重整技术;甲烷探测器的研究利用。最后,提出了对甲烷应用研究的展望。 关键词:甲烷转化应用进展 甲烷在自然界分布很广,是天然气、沼气、油田气及煤矿坑道气的主要成分,但含量分布不均,根据我国第二轮油气资源调查评论结果,我国152个沉积盆地和地区的常规天然气资源量(不包括溶解气)为380400亿m3,其中陆上大约占78.60%,海上21.40%。我国天然气资源总量约占世界天然气资源总量的10%[1],贮藏量占世界第17位,它集中分布在我国中部、西部和海域,埋深超过3500m和自然地理环境恶劣的黄土高原、山地和沙漠的天然气超过了总量的59%[2]。天然气的主要成分是甲烷,是人们生活中的主要燃料,其实甲烷的应用远不止简单的燃烧,它在很多领域都发挥着重要作用,因此对于甲烷应用的研究有着重大意义。 1甲烷在合成领域的应用 甲烷的转化和利用包括以甲烷为原料合成燃料和基础化学品的一切过程,从已有的天然气化工利用技术来看,甲烷的转化包括直接转化和间接转化[3]。 1.1甲烷的直接氧化制合成气 在甲烷的直接氧化利用中,研究较多的技术是甲烷直接氧化制甲醇,甲烷氧化偶联制烯烃等。 甲醇是重要的基础化工产品和化工原料,由甲烷合成甲醇的方法有多相催化氧化法、均相催化氧化法、熔盐氧化法、等离子体转化法、酶催化氧化法和光催化氧化法等[4]。陈立宇等[5]以V2O5为催化剂,在发烟硫酸中进行了甲烷液相选择性氧化的研究工作,考察了V2O5催化剂用量、反应温度、反应时间、发烟硫酸浓度等工艺条件对反应收率的影响,进行了甲烷液相选择性氧化的催化机理探讨和宏观动力学推导。甲烷在部分氧化反应中首先转化为硫酸甲酯,后者进一步水解得到甲醇。甲烷转化率可达54.5%,选择性45.5%。桑丽霞等[6]在固定床环隙反应器中,150℃MoO3-TiO2/SiO2光催化气相甲烷和水合成了甲醇和氢,甲醇的选择性达到了87.3%。 甲烷直接转化制烯烃是天然气直接转化利用中重要的方法之一,在关于制作工艺的研究之外,王凡,郑丹星等[7]在甲烷氧化偶联制烯烃时的热力学平衡限度有了一定研究,其实验结果表明,在甲烷氧化偶联制烯烃体系中,H2、CO的生成相对容易,C2产物(C2H4、C2H6)不容易生成。通过计算,得到了该体系有利于烯烃生成的反应条件,500℃-800℃、1.5MPa、烷氧摩尔比为7。魏迎旭等[8]合成了具有CHA结构的SAPO- 34和具有金属杂原子的MeAPSO-34(Me=Mn,Co和Mg)分子筛。采用

生物制氢

生物制氢 环工1402 2014011315许江东 摘要:基于2H2+O2=2H2O,氢气燃烧不产生CO2这种温室气体,所以氢气被称为清洁能源,具有广大的应用前景,导致制氢技术具有很高的研究价值。简要概述了生物制氢的几种方法,包括光发酵、暗发酵、两步发酵、光解水等技术,并在此基础上,探讨可能的突破方向。 关键字:生物制氢;光解水;光发酵;暗发酵;两步发酵 引言 如果把社会比作一台机器,那么能源就是这台机器必不可少的能量来源。现如今全球大部分的能源来自于化石燃料的燃烧,这不仅产生了大量的CO2等温室气体,还浪费了这种不可再生能源。氢气燃烧仅产生水,而且放热远大于碳水化合物。氢气燃烧的最高热值是122 kJ/g,比碳水化合物燃料高2.75倍【1】。在生物制氢之前,已经有了一些制氢技术。 ①水电解法:以铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液,阳极产生02,阴极产生H2。该方法成本较高,在电解过程只有15%的电能最终被转化为氢能,高达85 %的电能得不到合理利用被白白地浪费掉。但产品纯度大,可直接生产99.7%以上纯度的氢气。目前工业用氢总量的4%来源于水电解法。 ②热化学法:这种方法采用高温热解进行制氢,水在3000 °C条件下会发生热化学反应,生成H2和02。该方法对温度的要求较高,因此设备和能源的要求和花费较大,虽然经过研究人员的不懈努力,现在已经将热解温度降低到1000°C,但是与其他方法相比依然成本过高消耗过大。 ③等离子化学法:以石油、煤、天然气与水蒸气等物质为原料进行一系列反应生成水煤气,然后将水煤气和水蒸气一起通过灼热的Fe203(氧化剂)后就会产生C02和H2,经过简单的气体分离和干燥技术即可得到氢气。 ④光电化学法:这是一种比较新的方法,主要原理就是利用一些半导体材料和电解质溶液使其组成光电化学电池,在阳光照射下通过电化学方法生产出H2的过程。 而生物制氢法是通过发酵微生物或光合微生物的作用,在适当的工程条件下

如何撰写综述性论文

如何撰写综述性论文 第一部分什么是综述? 综述,其中综是综合,述,更多的不是叙述,而是评述和述评。只评述还不够,还要就观点、材料和方法进行综述。“综”是要求对文献资料进行综合分析、归纳整理,使材料更精练明确、更有逻辑层次;“述”就是要求对综合整理后的文献进行比较专门的、全面的、深入的、系统的论述。总之,文献综述是作者对某一方面问题的历史背景、前人工作、争论焦点、研究现状和发展前景等内容进行评论的科学性论文。 文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文,它是科学文献的一种。 文献综述是反映当前某一领域中某分支学科或重要专题的最新进展、学术见解和建议。它往往能反映出有关问题的新动态、新趋势、新水平、新原理和新技术等等。 学写综述,至少有以下好处: ①通过搜集文献资料过程,可进一步熟悉科学文献的查找方法和资料的积累方法;在查找的过程中同时也扩大了知识面; ②查找文献资料、写文献综述是科研选题及进行科研的第一步,因此学习文献综述的撰写也是为今后科研活动打基础的过程; ③通过综述的写作过程,能提高归纳、分析、综合能力,有利于独立工作能力和科研能力的提高; ④文献综述选题范围广,题目可大可小,可难可易。 第二部分综述的类型 文献综述有两种,一种是“大综述”,就一个领域的文献的总结。另一种是“小综述”。这个综述的目的主要不是为了向其他人介绍前沿,而是为了推出自己的论述和模型,是以述带论,就是说明现有的研究状况如何,缺在哪里,我准备做的贡献是什么。所以,这种综述并不强求非常全面细致,而应该侧重介绍与自己的研究直接相关的文献。 第三部分综述的写作过程和方法 怎样写文献综述?形式可大可小,看8-10篇与科研课题相关的文献,进行高度的总和、概述、分析,从概念到理论,不要出现摘要堆积;在内容上,与科研课题结合起来。写文献

氢能利用与制氢储氢技术研究现状

氢能利用与制氢储氢技术研究现状上海大学陈哲 关键字:氢能制氢储氢技术 目前世界各国都在因地制宜的发展核能、太阳能、地热能、风能、生物能、海洋能和氢能等新型能源,其中氢能以资源丰富、热值高、无污染等优点被认为是未来最有希望的能源之一。 一、氢能的利用与未来发展 氢能的利用方式主要有三种:(1)直接燃烧;(2)通过燃料电池转化为电能;(3)核聚变。其中最安全高效的使用方式是通过燃料电池将氢能转化为电能。目前,氢能的开发正在引发一场深刻的能源革命,并将可能成为21世纪的主要能源。 美、欧、日等发达国家都从国家可持续发展和安全战略的高度, 制定了长期的氢能源发展战略。美国的氢能发展路线图从时间上分为4个阶段:技术、政策和市场开发阶段;向市场过渡阶段;市场和基础设施扩张阶段;走进氢经济时代。从2000 年至2040年, 每10年实现一个阶段。而欧盟划分为三个阶段,即短期,从2000 年到2010 年;中期,从2010 年到2020年;中远期,从2020年到2050年。第一阶段将开发小于500 kW的固定式高温燃料电池系统(MCFCPSOFC);开发小于300kW 的固定式低温燃料电池系统( P EM) 。第二阶段是新的氢燃料家用车比例要达到5%,其他氢燃料交通工具比例达到2%。所有车的平均二氧化碳排放量减少2.8g/km,二氧化碳年排放量减少1500万t 。第三阶段是新的氢燃料家用车比例要达到35%,其他氢燃料交通工具比例达到32%。所有车的平均二氧化碳排放量减少44.8g/km,二氧化碳年排放量减少2.4亿t 。 二、制氢技术 1、矿物燃料制氢 在传统的制氢工业中,矿物燃料制氢是采用最多的方法,并已有成熟的技术及工业装置。其方法主要有重油部分氧化重整制氢,天然气水蒸气重整制氢和煤气化制氢。虽然目前90% 以上的制氢都是以天然气和煤为原料。但天然气和煤储量有限,且制氢过程会对环境造成污染,按照科学发展观的要求,显然在未来的制氢技术中该方法不是最佳的选择。

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

天然气制氢的基本原理及工业技术经验进展

天然气制氢的基本原理及工业技术进展 一、天然气蒸汽转化的基本原理 1.蒸汽转化反应的基本原理 天然气的主要成分为甲烷,约占90%以上,研究天然气蒸汽转化原理可以甲烷为例来进行。 甲烷蒸汽转化反应为一复杂的反应体系,但主要是蒸汽转化反应和一氧化碳的变换反应。 主反应: CH4+H2O===CO+3H2 CH4+2H2O===CO2+4H2 CH4+CO2===2CO+2H2 CH4+2CO2===3CO+H2+H2O CH4+3CO2===4CO+2H2O CO+H2O===CO2+H2 副反应: CH4===C+2H2 2CO===C+CO 2 CO+H2===C+H2O 副反应既消耗了原料,并且析出的炭黑沉积在催化剂表面将使催化剂失活,因此必须抑制副反应的发生。 转化反应的特点如下: 1)可逆反应在一定的条件下,反应可以向右进行生成CO和H2,称为正 反应;随着生成物浓度的增加,反应也可以向左进行,生成甲烷和水蒸气,

称为逆反应。因此生产中必须控制好工艺条件,是反应向右进行,生成尽可能多的CO和H2。 2)气体体积增大反应一分子甲烷和一分子水蒸气反应后,可以生成一分子CO 和三分子H2,因此当其他条件确定时,降低压力有利于正反应的进行,从而降低转化气中甲烷的含量。 3)吸热反应甲烷的蒸汽转化反应是强吸热反应,为了使正反应进行的更 快、更彻底,就必须由外界提供大量的热量,以保持较高的反应温度。 4)气-固相催化反应甲烷的蒸汽转化反应,在无催化剂的参与 的条件下,反应的速度缓慢。只有在找到了合适的催化剂镍,才使得转化 的反应实现工业化称为可能,因此转化反应属于气-固相催化反应。 2.化学平衡及影响因素 3.反应速率及影响速率 在没有催化剂的情况时,即使在相当高的温度下,甲烷蒸汽转化反应的速率 也是很慢的。当有催化剂存在时,则能大大加快反应速率;甲烷蒸汽转化反应速 率对反应温度升高而加快,扩散作用对反应速率影响明显,采用粒度较小的催化 剂,减少内扩散的影响,也能加快反应速率。 4.影响析炭反应的因素 副反应的产物炭黑覆盖在催化剂表面,会堵住催化剂的微孔,降低催化剂的 活性,增加床层阻力,影响生产力。 在甲烷蒸汽转化反应中影响析炭的主要因素如下: a.转化反应温度越高,烃类裂解析炭的可能性越大。 b.水蒸气用量增加,析炭的可能性越小,并且已经析出的炭黑也会与过量 的水蒸气反应而除去,在一定的条件下,水碳比降低则容易发生析炭现 象。

生物质气化制氢

生物质气化制氢 Hydrogen Production from Biomass Gasification 院系: 环境科学与工程学院 专业: 环境工程 姓名: 陈健 学号: M201373228 导师: 胡智泉副教授

2013 年 12 月

摘要 在人类面临严重的能源危机与环境污染的背景下,世界各国都在致力于对洁净能源氢的开发和研究,并取得了一定的研究成果。生物质气化制氢是一项富有前景的制氢技术,已引起了世界各国研究者的普遍关注。 本文重点讨论生物质催化气化制氢的基本原理和基本过程,阐述了氢气的净化分离方法,指出目前我国生物质气化制氢存在的问题和将来的研究方向。 关键词:生物质;气化;制氢。

Abstract In the context of humans face with a series of serious energy crisis and environmental pollution,the world are committed to developing and researching clean energy, and it has made some achievements. The prospective future of hydrogen from biomass gasification makes it a major concern all over the world. This article focuses on the basic principles and fundamental processes of hydrogen from biomass gasification, describes the purification and separation method of hydrogen, pointed out that at present China's biomass gasification problems and future research directions. Key words: Biomass; gasification; Hydrogen production.

科技论文写作概要

科技论文写作概要 资料查询 科技论文的格式和写作技巧 论文格式与论文参考文献格式 教学论文的三种类型及其写作方法数学论文选题与写作方法 教育论文题目拟定写作步骤与技巧论文的写作要求、流程与写作技巧

一、资料查询 论文资源来自以下几个方面: 具有期刊号的正规杂志 出版物书籍类具有正规出版社及其所在地 会议论文集具有出版单位 学位论文(硕士和博士) 网络上正规发表的文章、网址、时间 注:(1) 参考资料往往以(1)(2)为主 (2) 参考杂志的级别越高越好,不能低于所报杂志出版社论文的级别 (3) 书籍类参考资料常以专注为主 2、如何查询资料 搜索步骤:校网——图书馆——电子数据库——中文数据库/外文数据库 搜索方式:录入期刊号、主题、文章名、关键词、作者、单位、ISSN(刊号),CN等。 科技论文的格式和写作技巧 什么叫科技论文,基本特征是什么 科技论文是在科学研究、科学实验的基础上,对自然科学和专业技术领域里的某些现象或问题进行专题研究,运用概念、判断、推理、证明或反驳等逻辑思维手段,分析和阐述,揭示出这些现象和问题的本质及其规律性而撰写成的论文。科技论文区别于其它文体的特点,在于创新性科学技术研究工作成果的科学论述,是某些理论性、实验性或观测性新知识的科学记录,是某些已知原理应用于实际中取得新进展,新成果的科学总结。因此,完备的科技论文应该具有科学性、首场性、逻辑性和有效性,这也就构成了科技论文的基本特征。(1)科学性——这是科技论文在方法论上的特征,它不仅仅描述的是涉及科学和技术领域的命题,而且更重要的是论述的内容具有科学可信性,是可以复现的成熟理论、技巧或物件,或者是经过多次使用已成熟能够推广应用的技术。 (2)首创性——这是科技论文的灵魂,是有别于其他文献的特征所在。它要求文章所揭示的事物现象、属性、特点及事物运动时所遵循的规律,或者这些规律的运用必须是前所未见的、首创的或部分首创的,必须有所发现,有所发明,有所创造,有所前进,而不是对前人工作的复述、模仿或解释。 (3)逻辑性——这是文章的结构特点。它要求科技论文脉络清晰、结构严谨、前提完备、演算正确、符号规范,文字通顺、图表精致、推断合理、前呼后应、自成系统。 (4)有效性——指文章的发表方式。当今只有经过相关专业的同行专家的审阅,并在一定规格的学术评议会上答辩通过,存档归案;或在正式的科技刊物上发表的科技论文才被承认为是完备有效的。 科技论文的分类 从不同的角度对科技论文进行分类会有不同的结果,从目前期刊所刊登的科技论文来看,主要涉及以下五类: 论证型——对基础性科学命题的论述与证明,或对提出的新的设想原理、模型、材料,工艺等进行理论分析,使其完善、补充或修正。如维持河流健康生命具体指标的确定,流域初始水权的分配等都属于这一类型。从事专题研究的人员写这方面的科技论文多些。 科技报告型——科技报告是描述一项科学技术研究的结果或进展,或一项技术研究试验和评价的结果,或论述某项科学技术问题的现状和发展的文件。记述型文章是它的一种特例。专业技术、工程方案和研究计划的可行性论证文章,科技报告型论文占现代科技文献的多数。从事工程设计,规划的人员写这方面的科技论文多些。 发现、发明型——技术被发现事物或事件的背景、现象、本质、特性及其运动变化规律和人

生物质气化制氢

生物质气化制氢Hydrogen Production from Biomass Gasification 院系: 环境科学与工程学院 专业: 环境工程 姓名: 陈健 学号: M201373228 导师: 胡智泉副教授 2013 年12 月

摘要 在人类面临严重的能源危机与环境污染的背景下,世界各国都在致力于对洁净能源氢的开发和研究,并取得了一定的研究成果。生物质气化制氢是一项富有前景的制氢技术,已引起了世界各国研究者的普遍关注。 本文重点讨论生物质催化气化制氢的基本原理和基本过程,阐述了氢气的净化分离方法,指出目前我国生物质气化制氢存在的问题和将来的研究方向。 关键词:生物质;气化;制氢。

Abstract In the context of humans face with a series of serious energy crisis and environmental pollution,the world are committed to developing and researching clean energy, and it has made some achievements. The prospective future of hydrogen from biomass gasification makes it a major concern all over the world. This article focuses on the basic principles and fundamental processes of hydrogen from biomass gasification, describes the purification and separation method of hydrogen, pointed out that at present China's biomass gasification problems and future research directions. Key words: Biomass; gasification; Hydrogen production.

生物质油重整制氢

Energy Fuels2010,24,3251–3255:DOI:10.1021/ef1000634 Published on Web04/26/2010 Upgrading of Bio-oil by Catalytic Esterification and Determination of Acid Number for Evaluating Esterification Degree Jin-Jiang Wang,Jie Chang,*and Juan Fan South China University of Technology,No.381Wushan Road,Guangzhou510641,People’s Republic of China Received January20,2010.Revised Manuscript Received April11,2010 Bio-oil was upgraded by catalytic esterification over the selected catalysts of732-and NKC-9-type ion- exchange resins.The determination of the acid number by potentiometric titration was recommended by the authors to quantify the total content of organic acids in bio-oil and also to evaluate the esterification degree of bio-oil in the process of upgrading.We analyzed the measurement precision and calibrated the method of potentiometric titration.It was proven that this method is accurate for measuring the content of organic acids in bio-oil.After bio-oil was upgraded over732and NKC-9,acid numbers of bio-oil were lowered by88.54and85.95%,respectively,which represents the conversion of organic acids to neutral esters,the heating values increased by32.26and31.64%,and the moisture contents decreased by27.74and 30.87%,respectively.The accelerated aging test and aluminum strip corrosion test showed improvement of stability and corrosion property of bio-oil after upgrading,respectively. 1.Introduction Bio-oil,a liquid product from biomass fast pyrolysis,by virtue of its environmental friendliness and energy indepen-dence,is regarded as a promising energy source and receives more and more attention.1,2Nonetheless,the drawbacks, including high acidity,low heating value,high corrosiveness, high viscosity,and poor stability of bio-oil,limit its usage as a high-grade/transportation fuel.3-5Consequently,upgrad-ing of bio-oil before use is desirable to give a liquid product that can be used in a wider variety of applications.Catalytic esterification is widely studied for this https://www.360docs.net/doc/e15541905.html,anic acids(formic acid,acetic acid,propionic acid,etc.)in bio-oils can be converted to their corresponding esters,and the quality of bio-oil will be greatly improved.Solid acid cata-lysts,solid base catalysts,6ionic liquid catalysts,7HZSM-5, and aluminum silicate catalysts8,9were investigated for esterification of bio-oils.Not only the liquid bio-oil but also the uncondensed bio-oil vapor can be esterified,and good results can be obtained.10Esterification was proven to occur by gas chromatography-mass spectrometry(GC-MS)or Fourier transform infrared(FITR)analysis.A GC-MS chromatogram or FITR spectrum can be used for qualitative analysis of the original and upgraded bio-oils;however, there is no quantitative method proposed for evaluating the esterification degree of bio-oils.Gas chromatography can be used to quantify the organic acids in bio-oils11-13 and to evaluate the esterification degree;however,the overlapping chromatographic peaks are difficult to discri-minate,and complicated pretreatment operations are often required. In this paper,we conducted the experiments of upgrading bio-oil by catalytic esterification over selected catalysts: 732-and NKC-9-type ion-exchange resins.Moreover,we developed a rapid method of acid number determination by potentiometric titration,which can be used to quantify the total amount of the organic weak acids in bio-oils and also to evaluate the esterification degree in the process of bio-oil upgrading.The acid number,which is expressed as milli-grams of sodium hydroxide per gram of sample in this paper (mg of NaOH/g),refers to the quantity of base required to titrate a sample in a specified solvent to a specified end point.We investigated the precision and accuracy of the method for quantifying the organic acids in bio-oils.The acid number was used as an important index for evalua-ting the follow-up upgrading process.The stability and *To whom correspondence should be addressed.Telephone:t86-20- 87112448.Fax:t86-20-87112448.E-mail:changjie@https://www.360docs.net/doc/e15541905.html,. (1)Czernik,S.;Bridgwater,A.V.Overview of applications of bio- mass fast pyrolysis oil.Energy Fuels2004,18,590–598. (2)Huber,G.W.;Iborra,S.;Corma,A.Synthesis of transportation fuels from biomass:Chemistry,catalysts,and engineering.Chem.Rev. 2006,106,4044–4098. (3)Bridgwater,A.V.;Peacocke,G.V.C.Fast pyrolysis processes for biomass.Renewable Sustainable Energy Rev.2000,4,1–73. (4)Mohan,D.;Pittman,C.U.;Steele,P.H.Pyrolysis of wood/ biomass for bio-oil:A critical review.Energy Fuels2006,20,848–889. (5)Oasmaa,A.;Czernik,S.Fuel oil quality of biomass pyrolysis oils;State of the art for the end user.Energy Fuels1999,13,914–921. (6)Zhang,Q.;Chang,J.;Wang,T.J.;Xu,Y.Upgrading bio-oil over different solid catalysts.Energy Fuels2006,20,2717–2720. (7)Xiong,W.M.;Zhu,M.Z.;Deng,L.;Fu,Y.;Guo,Q.X. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts. Energy Fuels2009,23,2278–2283. (8)Peng,J.;Chen,P.;Lou,H.;Zheng,X.Catalytic upgrading of bio-oil by HZSM-5in sub-and super-critical ethanol.Bioresour.Technol. 2009,100,3415–3418. (9)Peng,J.;Chen,P.;Lou,H.;Zheng,X.M.Upgrading of bio-oil over aluminum silicate in supercritical ethanol.Energy Fuels2008,22, 3489–3492. (10)Hilten,R.N.;Bibens,B.P.;Kastner,J.R.;Das,K.C.In-line esterification of pyrolysis vapor with ethanol improves bio-oil quality. Energy Fuels2010,24,673–682. (11)Branca,C.;Giudicianni,P.;Di Blasi,C.GC/MS characterization of liquids generated from low-temperature pyrolysis of wood.Ind.Eng. Chem.Res.2003,42,3190–3202. (12)Oasmaa,A.;Meier,D.Norms and standards for fast pyrolysis liquids;1.Round robin test.J.Anal.Appl.Pyrolysis2005,73,323–334. (13)Sipila,K.;Kuoppala,E.;Fagernas,L.;Oasmaa,A.Character-ization of biomass-based flash pyrolysis oils.Biomass Bioenergy1998, 14,103–113.

相关文档
最新文档