pH对剩余污泥厌氧发酵产生的COD_磷及氨氮的影响

pH对剩余污泥厌氧发酵产生的COD_磷及氨氮的影响
pH对剩余污泥厌氧发酵产生的COD_磷及氨氮的影响

pH 对剩余污泥厌氧发酵产生的COD 、磷及氨氮的影响

苑宏英1,2,张华星1,陈银广1*,周琪1

(11同济大学污染控制与资源化研究国家重点实验室,上海 200092;21天津城市建设学院,天津 300384)

摘要:城市污水处理厂产生的污泥按照来源的不同可以分为初沉污泥和剩余污泥,通过采用控制pH 值的方法,在20~22e 条件下,研究了剩余污泥在不同pH 条件下厌氧发酵的情况.结果表明:将剩余污泥的pH 值控制为810~1010,在20d 的厌氧发酵时间内,溶出的COD(SCOD)要大于pH 为510~710,特别是pH=1010和pH=1110时的SCOD 值是pH=610时的10倍左右,并且第8d 产生的挥发性脂肪酸(VFA)也为碱性条件大于酸性条件;但酸性条件下溶出的磷及氨氮大于碱性条件.关键词:剩余污泥;厌氧发酵;pH 调节

中图分类号:X705 文献标识码:A 文章编号:025023301(2006)0721358204

收稿日期:2005207207;修订日期:2005209214

基金项目:国家高技术研究发展计划(863)青年基金项目

(2004AA649330),教育部留学回国人员资助项目

作者简介:苑宏英(1974~),女,博士研究生,讲师,主要研究方向为

污水处理及资源化.

*通讯联系人,E 2mail:yg2chen@https://www.360docs.net/doc/f6334689.html,

Impact of pH on the Generation of COD,Phosphorous and Ammonia 2Nitrogen During the Anaerobic Fermentation of Excess Activated Sludge

YUAN Hong 2ying

1,2

,Z HANG Hua 2xing 1,CHEN Yin 2guang 1,Z H OU Qi

1

(11State Key Labor ator y of Pollution Control and Resources Reuse,Tongji University,Shanghai 200092,China;21Tianjin Institute of Urban Construction,Tianjin 300384,China)

Abstr act:There are mainly two kinds of sludge in t he municipal wastewater treatment plant,i.e.,primary and secondary sludge.T his study investigated the effect of pH ,ranging from 410~1110,on hydrolysis in ter ms of soluble chemical oxygen demand (SCOD)production in the anaer obic solubilization of excess activated sludge at 20~22e .It was found t hat when the value of pH was 810~1010,the pr oduction quantity of SCOD wer e higher than pH=510~710.Especially when t he pH was 1010or 1110,the value of SCOD was almost 10times of pH=610dur ing the whole fermentation of 20days.And volatile fatty acids (VF A)production on the 8th day under alkaline condition was higher than that under acidic condition.Key words:excess sludge;anaerobic fermentation;pH controlled

随着城市化进程的加快,城市生活污水处理行业发展越来越快,但是产生的污泥量也越来越多.自80年代以来,欧美国家城市生活污水处理污泥产出量大增,欧盟12国年产污泥(干重)650万t [1],美国为1000万t,日本为240万t [2],中国到2003年大部分城市的污水处理率为20%左右,年产大量污泥[3].如何实现污泥的减量化、稳定化、资源化、无害化是城市污水处理厂面临的重大难题.

污泥发酵产生的脂肪酸对于生物高效除磷是十分必要的.当废水的进水COD 浓度较低且脂肪酸的量难以满足除磷菌的需要时,将污水处理厂污泥进行水解酸化获取用于生物除磷需要的如乙酸和其他挥发性脂肪酸(volatile fatty acids,VFA)等生物易降解基质是可行的.显然,污泥经过这样的生物处理,既产生生物除磷过程所需的有机酸,又减少了污泥对环境的污染.

80年代以来,国外针对于厌氧消化的水解酸化阶段的研究越来越多了.大多利用污水处理厂的初

沉池污泥水解发酵来产生VFA,也有采用初沉污泥和剩余污泥的混合污泥进行研究[4~6]

.国内的研究

多数是对较高浓度的污水进行水解酸化,单独针对于城市污水厂污泥产酸的研究较少[7].

在影响污泥厌氧发酵的因素中,pH 值是重要的参数之一.许多研究者发现污泥经过适当的碱液处理或者调节pH 值至810以上,可以提高污泥的水解速率.Vlyssides 等发现将污泥的pH 值调为1110,同时温度控制为90e 时,10h 后溶解性COD(soluble chemical oxygen demand,SCOD)达到70000mg/L,是总COD(total chemical oxygen demand,TCOD)的90%以上[8]

.但是作者并没有对VFA 的产生进行研究.本课题对比了20~22e 条件下,将剩余污泥的pH 值控制在410~1110进行厌氧发酵时的

第27卷第7期2006年7月

环 境 科 学ENVIRONMENTAL SCIENCE

Vol.27,No.7Jul.,2006

SCOD 、VFA 、溶解性磷酸盐(PO 3-42P )及氨氮(NH +42N)的产生情况及变化规律.1 材料与方法

111 试验装置与运行

试验采用9个直径为100mm,高为250mm 的有机玻璃反应器,其有效体积为115L.采用上海司乐仪器厂生产的数显搅拌器对污泥进行搅拌,搅拌速度控制为60~70r/min,使污泥能够搅拌均匀但不产生漩涡.装置如图1所示.厌氧发酵时间为20d,使用2mol/L NaOH 或者2mol/L HCl 调节pH 值,每天12h 调节1次,每次调节前测定pH 值,发现其变化在0~013之间,因而能控制pH 值在所要求的范围内.从装置中的上、中、下3个取样口分别取样,混合均匀后进行测定.试验重复进行了3次,数据取3次的平均值

.

图1 试验装置简图

Fig.1 Schematic of experimental apparatus

112 剩余污泥来源和特性

剩余污泥取自上海某水厂的回流污泥泵房,其各项特性数值见表1.

表1 剩余污泥的初始特性/mg #L -1

Table 1 Characteristics of the ex cess activated sludge/mg #L -1

项目平均值

标准偏差pH 618012TSS 13808 743VSS 10815

159SCOD 41 21TCOD 13407 573B OD 55417 440PO 3-42P 4519915氨氮(NH +42N)

17 9184碳水化合物(以COD 计)1522 332总蛋白质(以COD 计)8180 103油脂(以COD 计)131 8

113 测定方法

pH 、总悬浮固体(total suspended solids,TSS)、挥发性悬浮固体(volatile suspended solids,VSS)、

SCOD 、TCOD 、BOD 5、PO 3-42P 、NH +42N 和总凯氏氮(total Kjeldahl 2nitrogen,T KN )根据美国APHA 标准方法[9],碳水化合物采用蒽酮测定方法[10],油脂采用称重法[9]

.总蛋白质通过计算得到[11]

.VFA 采用气相色谱H P5890测定,载气为氮气,监测器为FID,色谱柱为30m @0132mm @0125mm CPWAX52CB,进样器和检测器的温度分别设为200e 和220e ,炉温在110e 运行4min,然后以10e /min 的速度升温到220e ,每次进样110L L.2 结果与讨论

图2为不同pH 值条件下,SCOD 随发酵时间的变化.图3为20d 厌氧发酵时间内,pH 值对SCOD 的影响.

图2 不同pH 值时SCOD 随发酵时间的变化

Fi g.2 Changes of SCOD at different pH and time

图3 pH 值对SCOD 的影响(20d 内)Fig.3 Impacts of pH val ue on SCOD with i n 20days

从图2和图3中可以看出,在20d 的厌氧发酵时间内,将剩余污泥的pH 值调为810~1110时,溶出的SCOD 明显比pH 410~710时的高,且SCOD 的大小顺序为pH1110>pH1010>pH 910>pH 810;

在pH 值调为410~710的范围内,SCOD 的大小顺

1359

7期环 境 科 学

和pH=1110时的平均SCOD是pH=610时的10倍左右.除了pH值调为610,其他的情况都是pH 值调节比不调节更加利于增高SCOD的值.在20d 的厌氧发酵时间内,不调节pH值的SCOD变化值与pH=710时的值比较接近,原因可能是剩余污泥的初始pH值为618与pH=710比较接近.

对图2中4~20d内的SCOD值进行线性回归,见表2.发现除了pH=710的情况,其余的比较符合y=kx+c,线性回归相关系数R2都在0190以上,且c值与T4值(第4d时的SCOD值)较接近,所以可以认为x值为时间t(t\4),从而有:

y=k(t-4)+c(t\4)

可见,将剩余污泥的pH值控制为酸性410~ 610或者碱性810~1110,在长时间的厌氧发酵过程中(大于4d左右),SCOD值与时间成正比.

表2不同pH值时SC OD值的变化

Table2The changes of SCOD under different pH

pH k/mg#(L#d)-1c/mg#L-1T4/mg#L-1R2

41077155139212018211400196

51052176124914014781860195

610231087511948621140198

710841527421768711570179

81086143159216016551050197

91099180252311027721800191

1010146135487911055841260197

1110134120672011070491230195

不调pH601586411648161100196

将20d厌氧发酵产生的VFA进行分析,发现第8d产生量最多.图4给出第8d不同pH调节下的VFA值.从图4可以看出,将pH值调为碱性810~ 1010有利于VFA的产生,这与SCOD的变化规律相符,即溶出SCOD较多,其转化为VFA的绝对值也较高.与SCOD变化不同的是,pH=410不利于VFA的产生,其值低于pH值不调时的情况;pH= 1010时产生的VFA最高.可见极端的pH值,并不总是利于VFA的产生,比如pH=1110溶出的SCOD值最高,但是产生的VFA不是最高,pH= 410溶出的SCOD值高于不调pH值,但是产生的VFA最低.这说明在本试验条件下,pH=410和pH =1110可能是产酸的2种极端情况,许多水解产酸酶丧失了活性.总的说来,pH值调为碱性利于VFA 的产生,特别是pH=1010时的VFA值较高,可以认为pH=1010是本试验条件下的厌氧发酵产酸的最优pH值.

图5与图6分别为20d厌氧发酵时间内,PO3-42P和NH+42N随pH值的变化情况.从图5可以看出,酸性条件下产生的PO3-42P明显高于碱性,近中性条件(pH=710和pH=810)产生的PO3-42P 浓度与不调pH值时接近且为最低;酸调节情况下, pH=510时溶出的PO3-42P浓度最高,而pH=1010和pH=1110时溶出的PO3-42P浓度比较接近;另外,除了pH值不调的情况,其他pH值时溶出的PO3-42P浓度基本上随着厌氧发酵时间的延长而增加.从图5中可以看出,与PO3-42P变化相同的是NH+42N的溶出也是酸性条件大于碱性条件,且pH =510时溶出的NH+42N浓度最高.与之不同的是,碱性条件下(pH=910,pH=1010和pH=1110),溶出的NH+42N浓度基本上随厌氧发酵时间的延长变化不大.

图4VFA随pH值的变化(第8d)

Fig.4Changes of VFA un der different pH on the8th day

图5PO3-

4

2P随pH值的变化(20d内)

Fig.5Changes of PO3-42P at different pH(withi n20d)

图6NH+42N随pH值的变化(20d内)

Fig.6Changes of NH+42N at different pH(withi n20d)

总之,对污泥厌氧水解发酵产酸的研究仍处于

1360环境科学27卷

现象描述阶段,其产酸机理及关键微生物仍需进一步深入研究.

3结论

(1)对剩余污泥进行pH值调节,能够实现SCOD值的大幅度增高.调为碱性的SCOD值明显高于调为酸性的SCOD.特别是将污泥的pH值调为1010或1110时,20d的厌氧发酵时间内,可使SCOD值增加到8000和9000mg/L左右,约占T COD的70%.

(2)将剩余污泥的pH值控制为酸性410~610或者碱性810~1110,在较长时间的厌氧发酵过程中(大于4d左右),SCOD值与时间成正比.

(3)将20d厌氧发酵产生的VFA进行分析,发现第8d产生量最多.且pH值调为810~1010产生的VFA值大于pH值510~710,pH=1010可认为是本试验条件下厌氧发酵产酸的最优pH值.

(4)酸性条件下溶出的PO3-42P浓度明显高于碱性,中性条件(pH=710和pH=810)产生的PO3-42P浓度与不调pH值比较接近且为最低.

(5)氨氮的溶出基本上也是酸性条件大于碱性条件.

参考文献:

[1]黄懂宁.城市污泥处置概述[J].环境科学动态,1999,(4):

17~29.[2]叶子瑞.国内外污泥处置和管理现状[J].环境卫生工程,

2002,10(2):85~88.

[3]何品晶,顾国维,李笃中,等.城市污泥处理与利用[M].

北京:科学出版社,2003.

[4]Banerjee A,Elefsiniotis P,Tuhtar D.The effect of additi on of

potato2processi ng wastewater on the acidgenesis of pri mary

sludge under varied hydraulic retention time an d temperature

[J].J.B iotechn.,1999,72:203~212.

[5]Hatzicons tantinou G J,Yannakopulos P,Andreadskis A.

Primary s ludge hydrolysis for biological nutrient removal[J].

Wat.Sci.Tech.,1996,34(2):417~423.

[6]Moser2Engeler R,Udert K M,Wild D,et al.Products from

primary sludge fermentation and their suitabi lity for nutrient

removal[J].Wat.Sci.T ech.,1998,38(1):265~273. [7]邵丕红,高南飞,崔志新,等.废水高效水解酸化试验研究

[J].长春工程学院学报(自然科学版),2004,5(1):15~17.

[8]Vlyssides A G,Klarlis P K.Th ermal2alkaline solubilizati on of

waste activated sludge as a pre2treatment stage for anaerobic

digesti on[J].B ioresource Technology,2004,91:201~206. [9]APHA Standard Methods for the Examination of Water and

Wastewater[M].(20th ed).Wash i ngton D C:APHA/

AWWA/WEF,1998.

[10]Jenkins D,Richard M G,Daigger G T.Manual on the causes

and control of activated sludge bulking and foaming[M].(2nd

editon)Boca Raton,Florida:Lewis Publi shers,1993.

[11]Miron Y,Zeeman G,Jules B van L,et al.The role of sludge

retention time i n the hydrolysis and acidification of lipids,

carbohydrates and proteins during digestion of primary sludge i n

CST R s ystems[J].Wat.Res.,2000,34(5):1705~1713.

1361

7期环境科学

餐厨垃圾厌氧发酵特性研究

餐厨垃圾厌氧发酵特性研究 摘要:为了实现餐厨垃圾的资源化利用,解决日益严重的餐厨垃圾处理问题,我们以南阳师范学院食堂餐厨垃圾为原料,通过检测分析pH、VFA、产气量等指标,讨论酸化过程及各指标对系统厌氧发酵产沼气性能的影响,得出餐厨垃圾厌氧发酵最佳工艺条件,从而更好的对餐厨垃圾进行厌氧发酵的处理,达到使垃圾减量,环境污染减少的目的。关键词:餐厨垃圾;厌氧发酵;沼气;影响因素;资源化 OF EAT HUTCH GARBAGE ANAEROBIC FERMENTATION CHARACTERISTICS RESEARCH Abstract:in order to achieve the eat hutch garbage recycling use, the growing problem of eat hutch garbage disposal, and we are in the dining room to eat hutch garbage in nanyang normal university as a raw material, through the analysis of the tes t in dices such as pH, VFA, gas production, acidification process are discussed and the indexes of anaerobic fermentation bio-gas production performance of the system, the optimum technological conditions of eat hutch waste anaerobic fermentation, thereby better to eat hutch waste anaerobic fermentation processing, to make waste reduction, reduce environmental pollution. Key words: eat hutch garbage; Anaerobic fermentation. Bio-gas; Influencing factors; Resource recovery 1餐厨垃圾概述 1.1餐厨垃圾来源 餐厨垃圾又称泔脚,是家庭、饮食单位抛弃的剩饭剩菜以及厨房余物的统称,也是城市生活垃圾的重要组成部分[1]。餐厨垃圾是食物垃圾中最主要的一种,其成分复杂,主要是油、水、果皮、蔬菜、米面、鱼、肉、骨头以及废餐具、塑料、纸巾等多种物质的混合物。我国餐厨垃圾数量十分巨大,并呈快速上升趋势。

醋糟厌氧发酵制氢的影响因素研究_马海乐

农产品加工·学刊 2009年第10期 收稿日期:2009-07-30 基金项目:镇江市国际合作项目(GJ2007010,GJ2008010);镇江市工业攻关项目(GY2007002)。作者简介:马海乐(1963-),男,陕西人,博士,教授,博士生导师,研究方向:生物资源高效利用技术。 E-mail :mhl@https://www.360docs.net/doc/f6334689.html, 。 0引言 醋糟是利用粮食原料生产食醋过程中排放的有机废弃物,长期以来都作为垃圾被填埋。人们对醋糟的利用有过不少研究[1~3],大多着眼于作为饲料或食用菌栽培料。但前者烘干成本过高,后者处理量少,均不能从根本上解决问题。所以对醋糟的处理,既是制醋行业的一大难题,又是城市环境卫生治理的一大难点。 有机废弃物厌氧发酵制氢技术是近年来国内外研究的新领域,该技术能够高效降解有机质,并且发酵 以后的底物能够用作有机肥料[4,5]。因此,将有机废弃物用于厌氧发酵制氢,既能解决有机废弃物的处理问题,又可获得清洁能源──氢气。目前采用各种有机废水和有机固体废弃物进行生物发酵制氢的研究已有很多,其中包括利用糖蜜废水、酿酒废水、植物淀粉生产废水、纤维素微晶以及城市有机固体垃圾等发酵产氢[6~10]。 樊耀亭等人以牛粪堆肥或活性污泥作为天然混合产氢菌来源,分别对啤酒糟、玉米秸秆、芝麻饼、玉米芯等进行厌氧发酵,均得到了较好的产氢效果[11~13]; 醋糟厌氧发酵制氢的影响因素研究 马海乐1,2,3,刘瑞光1,3,王振斌1,2,3,顾顺1,3,R uihong Zhang 4,3 ( 1.江苏大学食品与生物工程学院,江苏镇江212013; 2.江苏省农产品生物加工与分离工程技术研究中心,江苏镇江212013; 3.美国加州大学—中国江苏大学生物质能联合研究中心,江苏镇江212013; 4.Department of Biological &Agricultural Engineering ,University of California-Davis ,Davis ,CA 95616,USA )摘要:以预处理后的牛粪为接种物,以醋糟为发酵底物进行厌氧发酵产氢试验,研究了底物预处理方法、发酵温度、 底物浓度、初始pH 值、微量金属元素添加量对产氢量的影响。结果表明,用体积分数0.7%的HCl 静置处理24h 为最佳预处理方法,且在最佳发酵条件(发酵温度35℃,底物浓度175g/L ,初始pH 值6.0)下,微量金属元素营养液添加量为2%时,产氢效果最好,累积产氢量为46.91mL/g TS 。关键词:醋糟;厌氧发酵;氢气;响应面法;优化中图分类号:TS209文献标志码:A doi :10·39691jissn ·1671-9646(X )·2009·10· 006Research on Influence Factors of Hydrogen Production from Vinegar Residue by Anaerobic Digestion M a Haile 1,2,3,Liu Ruiguang 1,3,Wang Zhenbin 1,2,3,Gu Shun 1,3,Ruihong Zhang 4,3 ( 1.School of Food and Biological Engineering ,Jiangsu University ,Zhenjiang ,Jiangsu 212013,China ; 2.Jiangsu Provincial Research Center of Bio-process and Separation Engineering of Agri-products ,Zhenjiang ,Jiangsu 212013,China ; 3.Joint Bio-energy Research Center of Jiangsu University and University of California-Davis ,Zhenjiang ,Jiangsu 212013,China ; 4.Department of Biological &Agricultural Engineering ,University of California-Davis ,Davis , CA 95616,USA ) Abstract :Vinegar residue was digested with culture from the enriched cattle manure under anaerobic condition to produce hydrogen.The effect of pretreatment method of vinegar residue ,fermentation temperature ,substrate concentration ,initial pH and supplement of trace metals on the hydrogen yield was investigated.The results showed that the best pretreatment method were that vinegar residue was placed in 0.7%HCl for 24h ,and maximal hydrogen yield 46.91mL/g TS was obtained under fermentative temperature 35℃,substrate concentration 175g/L ,initial pH 6.0and trace metals solution supplement 2%.Key words :vinegar residue ;cattle manure ;anaerobic digestion ;hydrogen 第10期(总第187期)农产品加工·学刊 No.102009年10月 Academic Periodical of Farm Products Processing Oct. 文章编号:1671-9646(2009)10-0026-04

高浓度氨氮工业废水应用厌氧氨氧化技术处理的可行性分析

高浓度氨氮工业废水应用厌氧氨氧化技术处理的可行性分析 发表时间:2016-11-07T16:38:30.967Z 来源:《基层建设》2016年14期作者:丁伟文 [导读] 摘要:在氨氮工业废水的处理过程中通常都会采用厌氧氨氮氧化技术进行处理。厌氧氨氮氧化技术是一种新型的生物脱氮技术,在对工业氨氮废水的处理过程中有非常好的效果。在处理过程中不需要添加任何其他的有机物质和碳源,而且反应过程中产生的污泥量非常小,所以厌氧氨氮氧化技术具有有非常实用的工艺价值。 佛山市和利环保科技有限公司广东佛山 528000 摘要:在氨氮工业废水的处理过程中通常都会采用厌氧氨氮氧化技术进行处理。厌氧氨氮氧化技术是一种新型的生物脱氮技术,在对工业氨氮废水的处理过程中有非常好的效果。在处理过程中不需要添加任何其他的有机物质和碳源,而且反应过程中产生的污泥量非常小,所以厌氧氨氮氧化技术具有有非常实用的工艺价值。近年来,这种工艺技术的应用已经也来越广泛。本文对于这种处理技术的当前发展现状进行了介绍,并结合工作经验对于处理过程中的一些处理的原理及可行性进行了分析,希望能对工业氨氮废水的处理有所帮助。 关键词:工业废水;高浓度氨氮废水;废水处理;可行性分析 随着当前环境污染问题的加剧,对于工业废水的处理问题已经成为社会关注的焦点。在对工业废水的处理过程中氨氮的含量是处理结果的一个重要观察指标。这也是我国环境保护所面临的一个挑战,如何有效的减少工业废水的氨氮含量。目前在工业废水的处理过程中,主要是应用硝化/反硝生物脱氮技术进行处理的。应用这种处理方法虽然与传统的物理或者化学方法相比具有一定的优势,但是由于在反应过程中需要的能量较高造成能耗严重,而且处理效率低,产生的污泥量大。厌氧氨氮氧化技术的出现对于这些问题的解决提供了一种良好的途径。该技术在上个世纪90年代开始在工业废水的处理中应用的[1],主要是针对高浓度的工业废水进行处理应用。本文对于工业废水中常见的氨氮、有机物等物质对氨氮厌氧菌的影响进行了分析,并推应用氨氮氧化技术在工业废水处理中应用的可行性进行了探讨。 1、厌氧氨氮氧化技术的概念及应用现状 厌氧氨氮氧化技术(anaerobic ammonium oxidation,Anammox)是一种新兴的工业废水处理技术。这以技术在反应过程中主要是指在反映环境厌氧或者缺氧的状况下,经过厌氧氨氮氧化的微生物以溶液中的NO2—N作为直接的受体,将周围的NH4+-N直接氧化为氮气的生物化学过程。在工业废水的处理过程中,通过厌氧氨氮氧化技术处理,与传统的处理工艺相比,在曝气量以及有机碳源和所需要的运行费用方面都有很大幅度的降低,而且在反应过程中产生的污泥的数量很少。所以这种处理技术为我国的氨氮废水中低碳氮难处理、而且耗能较高、污泥产生量大等问题的解决带来了新的希望[2]。 目前相关的研究表明,在应用厌氧氨氮氧化技术进行工业废水的处理过程中,利用酵母对废水进性流化床处理后NH4+-N和NO3—N的浓度以及氮气的产生率都明显的得到提高。在应用厌氧氨氮氧化对工业废水进行处理时,常选用的厌氧氨氮菌大多都属于浮霉菌科目,这一种类的菌类大多存在于海洋中,部分也存在于实验室的器皿中。在厌氧反应中,主要是以NH4+-N和NO2—N作为反应的底物进行。不过由于废水中的NO2—N含量并不是很高,所以在进行厌氧氨氮氧化反应前需要通过硝化来实现对于NO2—N的积累,以达到厌氧反应所需的要求。在当前的应用反应中,对于厌氧氨氮氧化反应主要有两方面的问题还需要进行解决,第一个问题是在反应过程中,厌氧菌自身的增殖速率非常低;第二个问题是在反应过程中,高浓度的氨氮废水C/N比较低。这两方面的问题制约了厌氧氨氮氧化技术在工业废水处理过程中的进一步应用。 二、高浓度氨氮工业废水的特征分析 根据我国的相关数据统计,在2011年我国所排放的工业废水中含有的氨氮含量为29万吨,这一数字相当庞大。在这些工业废水的排放中,氨氮的含量排放量较多的几个行业分别是石化行业、焦化行业、化工行业以及制革行业等,如图1所示:图1:我国不同行业的工业废水水质情况 从图中我们可以看出,不同行业的的废水排放情况大不相同,其中焦化和石化行业所排放的工业废水中所含有的氨氮含量较高。不过由于一些制药企业所排放的工业废水中所含有的大量的COD以及重金属物质,所以无法直接通过厌氧氨氮氧化技术进行处理。一般在处理过程中需要首先对高浓度的氨氮工业废水进行厌氧消化处理,然后再进行厌氧氨氮氧化处理。 3.工业废水的水质对厌氧氨氮氧化的影响 厌氧氨氮氧化技术主要的处理对象就是工业废水,尤其是针对污泥水。这类废水中除了含有较高浓度的氨氮以外,还含有一些有机物质以及一些有毒的物质。这些有毒的物质对于厌氧氨氮氧化技术的应用形成了限制。相关研究表明,在工业废水中随着氯霉素物质浓度不断提高,厌氧氨氮菌的活性受到的抑制作用不断加强,不过在这一领域的研究结论上,不同研究者所得出的结论差别较大。比如Mora等人的研究表明当氯霉素的浓度小于1000mg·L-1时根本不会对厌氧氨氮菌的活性产生任何影响。但是Graaf等人的研究则表明当氯霉素的浓度大于20mg·L-1时就已经对厌氧氨氮菌的活性产生严重影响了,实验表明,其活性至少下降了40%[4]。 另外,工业废水中的污泥浓度、底物浓度以及一些其他类型的物质的浓度都会对厌氧氨氮菌的活性产生重要影响。虽然微生物菌类经过训话对于这些有毒有害的物质具有一定的扛耐性,但是由于许多有毒物质的浓度较高,对于厌氧氨氮菌的活性影响是非常大的。尤其是

餐厨垃圾处理技术总结

餐厨垃圾处理技术大总结 垃圾处理是环境保护的一大难题,餐厨垃圾是生活垃圾的主要组成部分,餐厨垃圾在众多种类垃圾中具有独特性,水分含量高、有机物质丰富等等使餐厨垃圾处理成为难题,餐厨垃圾应当统一按固体废物处理方法进行处理。针对各异的应用范围与实际情况实际选择恰当的方法。处理方法归纳后主要有物理法、化学法、生物法等;具体的处理技术包括填埋、焚烧、堆肥、发酵等方式,总之餐厨垃圾处理资源化再利用呈现多样化的趋势。 1、填埋法 填埋处理是一种简单且普遍的垃圾处理方法。但是会局限垃圾资源的综合回收利用,而且占用大量的土地,污染环境。 2、焚烧法 将餐厨垃圾和生活垃圾混在一起进行焚烧处理或建立垃圾焚烧厂,通过垃圾焚烧产生的热量进行发电。 3、堆肥法 依靠着自然界广泛分布的细菌、放线菌、真菌等微生物,在人工控制的条件之下,把餐饮废渣的水分蒸发掉,经干燥后磨碎,把餐饮废渣通过一系列处理工序转变为可供农业生产使用的有机复合肥,防止有害气体的产生。 堆肥化处理主要包括有:好氧堆肥,蚯蚓堆肥。 4、厌氧发酵 厌氧发酵技术是指利用垃圾生产沼气并将其转化为电能与燃气,对厌氧消化罐中产生的残渣进行二次发酵堆肥处理。国际上常用的有干式、湿式两种工艺。 餐厨垃圾进行厌氧消化可得到沼气、氢气、乙醇或者乳酸等。

工艺流程如下图: 5、生产生物柴油 生物柴油指以动植物油脂为原料,通过酯交换而生产的柴油,也可称之为再生燃油。地沟油通过酸、碱两步法、分离反应法、完全催化法等工艺制成生物油。 工艺流程如下图: 6、生化处理机 选取自然界生命活力和增殖能力强的高温复合微生物菌种,在生化处理设备里,对食品、餐厨垃圾等有机垃圾进行高温高速发酵,使各种有机物得到降解与转化。 7、饲料化技术 餐厨垃圾中含有丰富的有机营养成分,转化为饲料具有相当的优势。饲料化可分为生物法与物理法。

厌氧生物处理的影响因素

厌氧生物处理的影响因素 厌氧生物处理的基本原理 三阶段论——1979年由Bryant提出 1) 水解阶段:碳水化合物(脂肪、蛋白质)在水解发酵菌作用下转化为糖类、挥发性脂肪酸VFA、(较高级有机酸)氨基酸、水和二氧化碳; 2) 酸化阶段(产酸产乙酸阶段):挥发性脂肪酸在产氢产乙酸菌作用下转化成H2、CO2、乙 酸: CH3CH2COOH→CO2↑+CH3COOH+H2↑ 3) 产甲烷阶段:最后两组生理不同的产甲烷菌,有共同的产物: 4H2+CO2→CH4↑+2H2O —— (28%)CO2被还原的反应 2CH3COOH→2CH4↑+2CO2↑ —— (72%)乙酸脱羧的反应 ,CH3COOH脱羧。 厌氧生物处理的影响因素 (1) 温度。存在两个不同的最佳温度范围(55℃左右,35℃左右)。通常所称高温厌氧消化和低温厌氧消化即对应这两个最佳温度范围。 甲烷菌对温度的适应性很差,根据其生存的适宜温度范围,甲烷菌可分为两类,即中温甲烷菌(适宜温度33-35℃)和高温甲烷菌(适宜温度50-53℃)。当温度超出适宜温度范围时,厌氧消化反应速率则急剧下降。厌氧消化的允许温度波动范围为±1.5-2.0℃。当波动范围为±3℃时,就会严重抑制消化速率。当波动范围超过±5℃时,就会使有机酸大量积累而破坏厌氧消化过程的正常运行。 (2) pH值。厌氧消化最佳pH值范围为6.8~7.2。 产酸细菌对酸碱度不及甲烷细菌敏感,其适宜的pH值范围较广,在4.5-8.0之间。产甲烷菌要求环境介质pH值在中性附近,最适宜pH值为7.0-7.2,pH6.6-7.4较为适宜。在厌氧法处理废水的应用中,由于产酸和产甲烷大多在同一构筑物内进行,故为了维持平衡,避免过多的酸积累,常保持反应器内的pH值在6.5-7.5(最好在6.8-7.2)的范围内。 (3) 有机负荷。 ① 厌氧生物反应器的有机负荷通常指的是容积负荷,其直接影响处理效率和产气量。在一定范围内,随着有机负荷的提高,产气量增加,但有机负荷的提高必然导致停留时间的缩短,即进水有机物分解率将下降,从而又会使单位质量进水有机物的产气量减少。 ② 厌氧处理系统的正常运转取决于产酸和产甲烷速率的相对平衡,有机负荷过高,则产酸率有可能大于产甲烷的用酸率,从而造成挥发酸VFA的积累使pH值迅速下降,阻碍产甲烷阶段的正常进行。严重时导致产甲烷作用的停顿,整个系统陷于瘫痪状态,调整恢复起来非常困难。

氨氮对厌氧发酵的影响

~ 氨氮对厌氧发酵的影响 厌氧发酵是处理有机废弃物并实现其资源化利用的有效手段,然而厌氧发酵作为生物处理技术一种,必然存在着生化抑制反应。存在的生化抑制反应主要有:pH抑制、氢抑制、挥发性有机酸(VFA)和氨氮的抑制等。高浓度的氨氮就是有机废弃物厌氧生物处理中常遇到的一个难题。 本文阅读大量文献,集中研究氨氮在厌氧发酵过程中的产生机理、抑制浓度等规律,以期待解决或者避免氨氮在产甲烷发酵过程中的抑制反应情况,为今后的厌氧发酵提供理论和技术支持。 1氨氮的产生机理 在有机垃圾厌氧消化的过程中,氮的平衡是非常重要的因素,尽管进入消化系统中的硝酸盐能被还原成氮气,但其仍将存在于系统中。由于厌氧微生物细胞的增殖很少,只有很少的氮转化为细胞,大部分可生物降解的有机氮在厌氧发酵 降解过程中形成水解产物-氨氮,主要以铵离子NH 4+-N和游离氨NH 3 形式存在。 因此消化液中氨氮的浓度都高于进料的氨氮浓度,系统中的总氮是守恒的。 氨态氮主要是通过氨基酸的降解产生,其分解主要通过偶联进行氧化还原脱氮反应,这需要两种氨基酸同时参与,其中一个氨基酸分子进行氧化脱氮,同时产生的质子使另外一个氨基酸的两个分子还原,两个过程同时伴随着氨基酸的去除。如丙氨酸和甘氨酸的降解: CH 3CHNH 2 COOH(丙氨酸)+2H 2 O→CH 3 COOH+CO 2 +NH 3 +4H+ CH 2NH 2 COOH(甘氨酸)+4H+→2CH 3 COOH+2NH 3 ] 两个反应合并即为: CH 3CHNH 2 COOH+2CH 2 NH 2 COOH+2H 2 O→3CH 3 COOH+CO 2 +3NH 3 由于氨基酸的降解的能够产生NH 3 ,因此在这一过程会影响到溶液的pH值。 NH 3的存在对厌氧过程非常重要,一方面,NH 3 是微生物的营养物质,细菌利用氨

污泥厌氧发酵产酸研究

污泥厌氧发酵产酸研究 1 引言 据统计,至“十二五”期末我国湿污泥量(含湿量80%)将突破4600万t,而污泥厌氧消化技术以其低能耗、高产出的经济优势成为污泥资源化利用的主要技术之一.除厌氧消化产甲烷以外,污泥产挥发性脂肪酸(VFA)也是实现污泥资源化的有效途径,近年来,越来越多的学者开始关注污泥厌氧发酵产挥发性脂肪酸.目前,有关污泥厌氧发酵产酸的研究主要集中在通过改进装置构型、产酸微生物生态、优化控制运行条件,如控温、pH等条件因素来提高产酸效率.已有研究表明,通过调节发酵污泥底物的C/N比可增加发酵产酸量并调控其产酸类型,然而,目前研究人员对污泥厌氧发酵产酸过程中不同C/N比与关键酶酶活及有机酸产酸量间的关系并不清楚.仅有为数不多的研究,如优化C/N比条件作为酒精发酵的实验模型研究,而对于数学模型则没有报道.数学模型法作为现代科学研究的重要手段,它有助于描述和理解生物处理系统的反应过程,可为工程设计提供理论上的指导;还有助于工艺的优化和控制,从而更好地指导实际生产运行. 多元线性回归是一种理想的描述多个因素之间关系的数学方法,能较好地确定被解释变量和解释变量之间的关系,在很多领域得到了应用(常盛等,2011).因此,本研究通过设置不同C/N比条件来调控污泥厌氧发酵产酸,在Matlab7.0平台上建立多元线性回归函数模型,拟合C/N比、关键酶酶活和产酸类型之间的关系,以期为今后污泥发酵产酸条件调控研究和工程放大提供参考. 2 材料与方法 2.1 实验材料 2.1.1 污泥与种泥 原始污泥取自无锡市太湖新城污水处理厂,发酵底物是经过热碱预处理的污泥上清液.污泥采集后置于阴凉处,风干10 d,采用机械粉碎仪粉碎,再过30目筛,密封置于-15 ℃冰柜中保存. 接种污泥来源于无锡某柠檬酸厂上流式厌氧污泥反应器(UASB)中的厌氧颗粒污泥.在 100 ℃下煮沸2 h以杀死产甲烷菌(Logan et al., 2002),然后导入有效容积为2 L的UASB中进行驯化,活化种泥中的产酸菌(郭磊等,2008),驯化温度为35 ℃.每日监测驯化种泥的pH值,待种泥驯化后出水pH值降低至4.0左右,稳定3~5 d后,认为种泥驯化成功.原始污泥和污泥预处理液及接种种泥的性质见表 1. 表 1 原始污泥、污泥预处理液和接种污泥的性质

餐厨垃圾处理厌氧工艺完整版

餐厨垃圾处理厌氧工艺完整版 厨垃圾是城市日常生活中产生的最为普遍的废弃物,属于城市生活垃圾,其主要成分包括淀粉类食物、植物纤维、肪类等有机物,具有含水率高,油脂、盐份含量高,易腐烂发臭,不利于普通垃圾车运输等特点。这类垃圾若不经,会对环境造成极大的危害。 厨垃圾主要来源于餐饮服务业、家庭和企事业单位食堂等产生的食物加工下脚料(厨余)和食用残余(泔脚)。随济的飞速发展,城市化进程的逐渐加快,餐厨垃圾的产量呈现出逐年上升的趋势。在国内的大型,特大型城市中如深圳等,餐厨垃圾的日产量已达数千吨,全国餐厨垃圾的年产量达到千万吨,单纯填埋的话,占用大量土地,产生和填埋气体也需要后期处理,耗费大量人力,物力。 厨垃圾目前在很多城市尚未进行规范化管理,收集容器摆放地环境脏乱,孳生和招引蚊、蝇、鼠、蟑螂等害虫,易害人民的身体健康。垃圾收集地附近容易产生难闻气味,引起人们感官上的反感;由于餐厨垃圾含水量较高的特性程中存在一系列问题。运输车辆不规范,易发生餐厨垃圾外漏和倾洒,严重影响市容、市貌和交通;最主要的是城垃圾多被养殖户收集,作为养殖饲料直接使用,垃圾未经处理进入人类食物链,危及人民群众的身体健康;同时地起来重新炼制成为廉价食用油,在市场上再次流通,危害人民群众的身体健康。 存在问题的同时,餐厨垃圾因其富含有机物也可作为潜在的能源供应体。通过恰当的处理方法,可以释放出蕴藏在能量,转化为电能,热能,作为常规能源载体的有效补充。在当前我国能源供应日趋紧张的时期,寻求新能源迫在厨垃圾通过成熟工艺技术获取能源不失为合理的解决方案。 厨垃圾概况 餐厨垃圾性质 集的餐厨垃圾成分复杂,不仅包括宾馆、饭店的剩菜、剩饭还包括大量废旧餐具、破碎的器皿,厨房的下脚料等,皮、蔬菜、米面,鱼、肉、骨头以及废餐具、塑料、纸巾等多种物质的混合物。糖类含量高,以蛋白质、淀粉和动,且盐分、油脂含量高。以中国南方某城市为例,下表详细给出了餐厨垃圾的组分与成份: :餐厨垃圾组分 食物垃圾 纸张 金属 骨头 木头 织物 塑料 油脂 75.1% - 90.1% 0.8% 0.1% 5.2% 1.0% 0.1% 0.7%

温度对畜禽粪便厌氧发酵影响

温度对厌氧发酵工艺的影响参数 温度不仅影响着厌氧发酵的产气速度,也影响着产气量,在一定温度范围内,产气速度和产气量与温度呈现正相关,随着温度的升高,发酵周期、产气时间和发酵启动时间在缩短。 一般来说,甲烷菌有3个适宜生长的温度范围,分为:低温(10℃~30℃)、中温(30℃~40℃)和高温(50℃~60℃),所以对应着3种优势微生物种群:嗜冷微生物、嗜温微生物和嗜热微生物。相应的厌氧处理工艺分别为:低温厌氧发酵、中温厌氧发酵和高温厌氧发酵。 1、温度对厌氧消化期的影响 厌氧消化的发酵周期(发酵周期意味着在相同时间内消化处理废弃物的量,直接反映了厌氧消化效率。一般在实际生产中,以产气量达到总气量的90%以上即可认为发酵基本完成,为一个发酵周期。)、产气时间和发酵启动时间和温度有很大关系。随着温度的升高,发酵周期、产气时间和发酵启动时间都在缩短。因此,在实际生产中可以提高发酵的环境温度,加快厌氧消化的启动,同时也可以缩短水力滞留期,处理更多的料液,提高产气量。 2、温度对厌氧发酵产气量和产气速度的影响 由表4和表5可见,温度不仅影响着产气速度,也影响着产气量,在一定温度范围,产气速度和产气量与温度呈正相关。但是,发酵原料总的产气量却不受温度的影响,所以,在厌氧发酵中要尽可能的提高发酵环境的温度,提高产气速度和产气量,从而利用更多的废物料,变废为宝。

3、温度对厌氧发酵产甲烷含量的影响 由表6可知,在不同温度条件下,厌氧发酵沼气特性是不同的,在它们都进入发酵启动时间时,以高温条件下,甲烷气体含量最高。因为存在底物的驯化适应阶段,该试验只能在一定程度上说明温度条件与产气性的关系,无法定量地说明它们之间的关系。 4、温度突变对厌氧发酵的影响 发酵温度的突变会对厌氧发酵产生影响。当温度在±3℃的变化时,消化速度受到抑制;当温度在±5℃的急剧变化时,产气量就会迅速降低,甚至会停止产气。一旦温度条件得到恢复,厌氧发酵也会恢复工作。有研究表明:温度突降后,产气量几乎降为0,总挥发性脂肪酸(VFA)和乙酸、丙酸含量快速积累,pH也随之下降。但系统较高的缓冲能力使得pH在正常范围内波动,并不影响反应器的运行。所有这些参数在温度恢复后经过一段时间均能恢复至温度变化前的状态。 基于温度对厌氧发酵的重要作用,所以,在实际的生产中,尽可能地在优势微生物种群活动范围内提高厌氧发酵的环境温度,同时应注意温度的变化。 (1)尽可能以高温厌氧发酵系统来处理环境污水,虽然存在温度较难控制和系统的不稳定等不利因素,但较之中温和低温发酵,仍然具有很多优势,如能加速菌群的繁殖,促进复杂有机原料的水解反应,较高的甲烷生产率。 (2)加强保温技术的研究、保温材料的研制和推广工作。

氨氮的危害及防治措施

水产养殖中氨氮的危害及防治措施 衢江区水利局王俏俏 随着工业污染排放、畜禽养殖业污水排放、生活污水排放、水产养殖中过量投喂饲料行为等,淡水养殖水体中氨氮超标致使水生生物中毒死亡的的事情频繁发生,给养殖户带来极大的经济损失。 一、水体中氨氮的积累和危害 池塘养鱼水体中的总氨氮一般以两种形式即非离子氨(NH3)和铵离子(NH4+)存在,在pH值小于7时,水中的氨几乎都以NH4+的形式存在,在pH大于11时,则几乎都以NH3的形式存在,温度升高,NH3的比例增大。氨氮对水生生物的危害主要是指非离子氨的危害,非离子氨进入水生生物体内后,对酶水解反应和膜稳定性产生明显影响,表现出呼吸困难、不摄食、抵抗力下降、惊厥、昏迷等现象,甚至导致水生生物大批死亡。另外,在生物体内富集的高浓度氨氮可转化为亚硝酸盐后对生物体产生危害,而亚硝酸盐又是强氧化剂,不仅会使生物体中毒,它还有致癌作用。 二、氨氮超标的防治措施 根据《渔业水质标准》,水产养殖生产中,应将氨的浓度控制在0.02mg/L以下。目前,可以从以下三个方面降低水体中氨氮的含量,防治氨氮中毒。 (一)科学进行养殖生产 1、做好清淤工作,经常换水,保持水体新鲜。

2、饲料过量投喂是造成氨氮污染的主要原因之一,因此要减少饵料系数,提高饲料使用率,减少养殖生物的粪便排泄量。 3、用盐酸或醋酸调节PH值,降低PH值至7.0以下,降低氨氮毒性,再用沸石粉、麦饭石等吸附剂去除水体中的氨氮。 (二)利用微藻减少水体中的氨氮 微藻是一种单细胞藻类,以水为电子供体,以光能作为能源,利用氮、磷等营养物质合成有机质。能吸收水体中的氨氮并将其转换合成氨基酸等含氮物质,是水生生物的天然饵料。微藻还能产生大量的氧气,水体中充足的氧气能促进亚硝酸盐向硝酸盐的转化,同时可减少水体因缺氧而形成的恶臭气味,改善水体生态环境,抑制和减轻氨氮对鱼类的毒害作用,提高鱼类食欲和饲料利用率,促进鱼类生长发育。 (三)利用微生物制剂减少水体中的氨氮 微生物制剂是从天然环境中筛选出来的微生物菌体经培养、繁殖后制成的含有大量有益菌的活性菌制剂。一般微生物制剂分为液态、固态(粉状)两大类。养殖水体是一个由多种微生物组成的动态平衡系统,有益菌和有害菌共存。当向水体添加有益微生物,通过大量繁殖成为优势种群可抑制有害病菌的生长,同时通过有益微生物的新陈代谢,可降低水中过剩的营养物质和其他有害物质,对去除水体中的氨态氮、有机质、增加溶解氧等方面有明显的调节作用,同时也调节水体的pH值,促进底泥中氮磷的释放,促进浮游生物

厌氧发酵工艺

环化系环测1001 李园方 厌氧发酵 1前言 餐厨垃圾是城市生活垃圾中有机相的主要来源。餐厨垃圾以蛋白质、淀粉类、食物纤维类、动物脂肪类等有机物质为主要成分, 是能源和肥料潜在的资源。餐厨垃圾含水率高达75% ~ 90%, 渗沥液易通过渗透作用污染地下水, 产生出大肠杆菌等病原微生物, 直接危害人体健康[ 1] 。另外, 餐厨垃圾处理过程中也会产生大量的高浓度有机废水, 如果处理不当, 将造成巨大的环境污染和资源浪费。宁波市于2009 年6月建成了一座餐厨垃圾废水厌氧 发酵工程, 经过2个月的调试运转, 于2009年8月开始正式运行。现将该工程情况介绍如下。 2废水概况 餐厨垃圾经提油处理和加工成饲料的处理后会产生大量有机废水, 该工程废水处理量约为110m3 d- 1, 其水质pH 为3. 5 ~ 4. 0, CODC r 80 ~ 1602废水概况餐厨垃圾经提油处理和加工成饲料的处理后会产生大量有机废水, 该工程废水处理量约为110m3 d- 1, 其水质pH 为3. 5 ~ 4. 0, CODC r 80 ~ 1603工艺流程根据工艺流程, 餐厨垃圾废水制沼气及发电主 要为以下三个步骤。 3-1厌氧发酵调试阶段 活性污泥的培养及驯化对反应器的正常运行至关重要。本项目的

接种污泥取自宁波骆驼沼气站(该沼气站以猪粪为原料)。 ( 1)污泥驯化初期(时间10天)。投入一定量的接种污泥, 再加入稀释后的废水( CODCr < 10 g L- 1 )一起投入改进型升流式厌氧污泥床反应器( UASB )中, 调节pH 至中性, 使污泥恢复活性。 ( 2)污泥驯化中期(时间30天)。投入一定量的接种污泥, 餐厨垃圾废水稀释为50% ( CODC r 40~ 80 g L- 1 ) , 出水水质良好。污泥性质基本稳定,上清液澄清透明。这表明, 活性污泥开始驯化, 适应餐厨垃圾废水。 ( 3)污泥驯化后期(时间20天)。餐厨垃圾废水提高到进料COD 浓度80~ 120 g L- 1, 保持一个 水力停留期。随着餐厨垃圾废水投加量的增加, 出水COD有所提高, 但仍能保持较高的COD 去除率。较长时间稳定的去除率表明, 污泥已基本适应餐厨垃圾废水的特性, 活性污泥驯化完成。 3-2厌氧发酵阶段 该工程采用2000m3 的改进型升流式厌氧污泥床反应器进行厌 氧发酵制沼气, 发酵装置外观见图1。该反应器处理效率高, 耐负荷能力强, 出水水质相对较好, 沼泥生成量小, 具有防堵防爆的特点, 其 结构、运行操作维护管理相对简单, 造价也相对较低。具有良好的沉淀性能和聚凝性能的污泥在下部形成污泥层, 运行一段时间后, 出水悬浮物增加, 需要按时排泥。 该工程设计为连续投料的工业化生产工艺路线。厌氧发酵启动后,

厌氧发酵原理及其工艺

1.4 实验研究目的,技术路线 我国目前的农作物发酵制沼气技术与发达国家相比,起步较晚,大型项目的运行经验相对较少。由于我国幅员辽阔,不同地域的农作物资源种类不同,其物理和化学性质也有较大的差别,加之我国不同地区年平均气温差别较大,使我国农作物厌氧发酵制备沼气的大型项目难有统一的设计参数标准。对于不同的大型沼气项目,必须结合项目实际的农作物种类和物性、气候条件、供热条件、沼液和沼渔的消纳和后续处理工艺、农作物的价格和最大运输半径、原料的储存和供料方式、发电机组的选型等因素进行综合考虑,才能使项目实施后获得最佳的经济和社会效益。 根据我国农作物制备沼气技术的应用现状,结合本文研究的农作物制备沼气项目实际案例,本文的研究目的为:;研究发酵原料的物理化学性质和产气率,提出合理估算农作物(主要是黄瓜藤)和粒径的方法,为项目实例提供工艺选择、系统设计和经济性计算提供可靠依据。 为了实现上述目的,本文研究内容主要集中如下几个方面: (1)研究农作物破碎预处理的特点,为合理计算破碎预处理能耗提供计算方法。 (2)研究了黄瓜藤的鲜活度对发酵产气量和产气速率等因素的影响。 (3)不同投配率对发酵产气量和产气速率等因素的影响;为了厌氧发酵反应的持续反应,同时还研究不同投配率对于pH值的影响。 1.5 论文章节安排 本论文共包括六章内容。 第一章介绍课题的研究背景,国内能源消费和可再生能源利用现状,以及课题的主要研究内容和意义。 第二章厌氧发酵反应制备沼气的基本原理和影响参数。

第三章阐述农作物的破碎原理,从中说明粒度与能耗间的关系,并且从能耗的角度分析不同粒度的颗粒的耗能情况。 第四章针对需要采用实验方法对各个因素进行研究,确定实验的数据测量的方法以及实验进行过程中需要的注意事项,防止实验失败。 第五章实验采用定制CSTR厌氧反应器对黄瓜藤在中温条件下进行厌氧消化反应实验,研究系统的稳定性能和产气性能。 第六章作出对课题的总结和展望,总结本课题的研究成果,并提出不足之处和以后还需进一步研究的方向。

污水处理中氨氮超标的几种原因及解决办法

氨氮超标的几种原因及解决办法 一、有机物导致的氨氮超标 CN比小于3的高氨氮污水,因脱氮工艺要求CN比在4~6,所以需要投加碳源来提高反硝化的完全性。当时投加的碳源是甲醇,因为某些原因甲醇储罐出口阀门脱落,大量甲醇进入A池,导致曝气池泡沫很多,出水COD,氨氮飙升,系统崩溃。 分析:大量碳源进入A池,反硝化利用不了,进入曝气池,因为底物充足,异养菌有氧代谢,大量消耗氧气和微量元素,因为硝化细菌是自养菌,代谢能力差,氧气被争夺,形成不了优势菌种,所以硝化反应受限制,氨氮升高。 解决办法: 1、立即停止进水进行悶爆、内外回流连续开启 2、停止压泥保证污泥浓度 3、如果有机物已经引起非丝状菌膨胀可以投加PAC来增加污泥絮性、投加消泡剂来消除冲击泡沫 二、内回流导致的氨氮超标 内回流导致的氨氮超标有两方面原因:内回流泵有电气故障(现场跳停扔有运行信号)、机械故障(叶轮脱落)和人为原因(内回流泵未试正反转,现场为反转状态)。 分析:内回流导致的氨氮超标也可以归到有机物冲击中,因

为没有硝化液的回流,导致A池中只有少量外回流携带的硝态氮,总体成厌氧环境,碳源只会水解酸化而不会完全代谢成二氧化碳逸出。所以大量有机物进入曝气池,导致了氨氮的升高。 解决办法: 内回流的问题很好发现,可以通过数据及趋势来判断是否是内回流导致的问题:初期O池出口硝态氮升高,A池硝态氮降低直至0,PH降低等,所以解决办法分三种情况: 1、及时发现问题,检修内回流泵就可以了 2、内回流已经导致氨氮升高,检修内回流泵,停止或者减少进水进行悶爆 3、硝化系统已经崩溃,停止进水悶爆,如果有条件、情况比较紧迫可以投加相似脱氮系统的生化污泥,加快系统恢复。 三、PH过低导致的氨氮超标 PH过低导致的氨氮超标有三种情况: 1.内回流太大或者内回流处曝气开太大,导致携带大量的氧进入A 池,破坏缺氧环境,反硝化细菌有氧代谢,部分有机物被有氧代谢掉,严重影响了反硝化的完整性,因为反硝化可以补偿硝化反应代谢掉碱度的一半,所以因为缺氧环境的破坏导致碱度产生减少,PH降低,低于硝化细菌适宜的PH之后硝化反应受抑制,氨氮升高。这种情况可能有些同行会遇到,但是从来没从这方面找原因。 2.进水CN比不足,原因也是反硝化不完整,产生的碱度少,导致

厌氧发酵工艺

以农业废弃物和农产品加工废水及废渣等各种有机物为原料,在厌氧条件下利用微生物的话动,生产沼气并使有机物得到处理的过程称为沼气发酵工艺。由于发酵原料和发酵条件的不同,所采用的发酵工艺也多种多样,目前应用或研究较多的工艺类型有塞流式反应器、完全混合厌氧消化工艺、上流式厌氧污泥床反应器、升流式固体反应器等。 1.塞流式反应器(Plug Flow Reactor,简称PFR) 塞流式反应器也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,从另一端排出,它是一种结构简单、应用广泛的工艺类型。该反应器没有搅拌装置,原料在反应器内呈自然沉淀状态,一般分为四层,从上到下依次为浮渣层、上清掖、活性层和沉渣层,其中厌氧微生物活动较为旺盛的场所只局限于活性层内,因而效率较低,多于常温条件下运转。我国农村应用最多的水压式沼气池和印度的哥巴式沼气池均属PFR。近年来经过研究和改进,一些新的农村家用沼气池得到应用,如曲流布料池,集气罩式池、塞流式池,北京-Ⅰ型池等。这些沼气池的性能有所提高,产气率都达到0.5 m3/(m3·d)以上。 2.完全混合厌氧消化工艺(continual stir Tank Reactor,简称CSTR) 完全混合厌氧消化工艺即工艺是世界上使用最多、适用范围最广的一种反应器。CSTR反应器内设有搅拌装置,使发酵原料与微生物处于完全混合状态,使活性区遍布整个反应器,其效率比常规反应器有明显提高。该反应器常采用恒温连续投料或半连续投料运转。CSTR反应器应用于含有大量悬浮固体的有机废物和废水,如酒精费醪、禽畜粪便等。在CSTR反应器内,进入的原料由于搅拌作用很快与反应器内发酵液混合,其排出的料液又与发酵液的浓度相等,并且在出料时发酵微生物也一起排出,所以出料浓度一般较高,停留时间要求较长,一般需15天或更长一些时间。CSTR反应器一般负荷,中温为3-4 kg COD/(m3·d),高温为5-6 kg COD/(m3·d)。为了提高反应器效率,在应用过程常加以改进,通过延长固体停留时间(SRT)来提高产气率。该工艺的优点是处理量大,产沼气多,易启动,便于管理,投资费用低,但是水力停留时间(HRT)和SRT要求较长。 3.上流式厌氧污泥床反应器: 上流式厌氧污泥床反应器,Upflow Anaerobic Sludge Bed Reactor,简称UASB 反应器。该工艺装置的特点为在反应器上部安装有气、液、固三相分离器,反应器内所产生的气体在分离器下被收集起来,污泥和污水升流进入沉淀区,由于该区不再有气体上升的搅拌作用,悬浮于污水中的污泥则发生絮凝和沉降,它们沿着分离器斜壁滑回反应器内,使反应器内积累起大量活性污泥。在反应器的底部是浓度很高并具有良好沉降性能的絮状或颗粒状活性污泥,形成污泥床。有机污

餐厨垃圾的处理现状与发展趋势

餐厨垃圾的处理现状与发展趋势 摘要:本文介绍了餐厨垃圾的成分、特点,从技术处理的角度阐述了国内外餐厨垃圾的处理现状,探讨了餐厨垃圾的资源化技术,分析了餐厨垃圾资源化技术的现状和发展趋势。 关键词:餐厨垃圾;资源化技术;堆肥;垃圾处理 餐厨垃圾俗称泔水,是指家庭、学校、机关公共食堂以及餐饮行业的食物废料和食物残余,是城市生活垃圾的主要组成部分,在城市垃圾中所占比例为:北京37%,天津54%,上海59%,沈阳62%,深圳57%,广州57%,济南41%[1]。餐厨垃圾主要包括米和面粉类食物残余、蔬菜、植物油、动物油、肉骨、鱼刺等,物理状成固液混合态,且相当粘稠;化学成分复杂,主要包括水、无机盐、有机酸及各种大分子有机化合物(蛋白质、淀粉、纤维素、杂多糖、脂肪)等。 餐厨垃圾特点为:(1)粗蛋白和粗纤维等有机物含量较高,开发利用价值较大,但易腐并产生恶臭;(2)含水率高,不便收集运输,热值低,处理不当容易产生渗沥液等二次污染物;(3)油类和盐类(NaCl)物质含量较其它生活垃圾高,对资源化产品品质影响较大。1餐厨垃圾单独处理的必要性 以前,餐厨垃圾主要作为城市近郊养猪的饲料,由于其来源比较复杂,且富含有机质,为各种病源微生物及各种携带病源微生物的蝇虫提供良好的生长繁殖环境,可能引起疾病的传播,现已经被政府明令禁止。而在日常生活中,居民通常将餐厨垃圾混入生活垃圾中,通过塑料袋送到垃圾收集点,使城市生活垃圾的成分和特性发生了变化。 餐厨垃圾在存放、收集、转运及垃圾填埋过程中,由于其含水率和有机物含量较高,极易在较短时间内腐烂发臭和滋生蚊蝇等,极大地污染了周围环境。另外,城市垃圾的处置方法通常有焚烧和填埋,如果将城市生活垃圾进行焚烧,由于餐厨垃圾的水分含量常常高达90%左右,发热量为2100~3100KJ/Kg[2],和其它垃圾一起进行焚烧,不但不能满足垃圾焚烧发电的发热量要求(5000KJ/Kg以上)[3],反而会致使焚烧炉燃烧不充分而产生二恶英;如果将生活垃圾进行填埋,同样会因为混入的餐厨垃圾水分含量高而

影响沼气发酵的5大原因探析

影响沼气发酵的5大原因探析 沼气是利用粪便、农作物秸秆等有机物在厌氧的条件下,经过微生物生理代谢产生主要成分为CH4和CO2,还有少量的H2、H2S、CO等可燃性气体,属生物质能源。开展沼气发酵的研究有着重大的意义和作用,本文就沼气发酵的影响因素进行了探讨。 1.温度 沼气发酵可分为三个温度范围:50~65℃称高温发酵,20~45℃称中温发酵,20℃以下称低温发酵。此外,随自然温度变化的发酵方式称常温发酵。 沼气发酵受到温度和温度波动的影响。在同一温度类型条件下,由于沼气发酵微生物的代谢活动随着温度的上升而增加,在一定的温度范围内,温度越高,发酵产气速率越快;短时间内若温度波动幅度过大时,可能导致停止产气。 很多研究者对此进行了大量的研究,Harremoes等通过分析实验结果,得出了以下结论:中温厌氧消化的最佳温度为30~40℃。当温度在15℃以上时,厌氧发酵才能很好地进行。温度在10℃以下,无论产酸菌还是产甲烷菌都都受到严重抑制;温度在10℃以上,产酸菌首先开始活动,总挥发酸的产量直线上升;温度在15℃以上时,产甲烷菌的代谢活动才活跃起来,产气率明显提高,挥发酸含量迅速下降,在气温下降时必须考虑保温。 2.酸碱度(PH值) 通常沼气池中的产甲烷细菌适宜的PH值范围为6.5~7.8,PH值的变化会直接影响产甲烷菌的生存和代谢。一般情况下,沼气池的PH值应维持在6.8~7.5之间,最好在7.2左右。 pH值在5.5以下,产甲烷菌的活动完全受到抑制,而pH值上升至8甚至8.5时,仍保持一定的产气率。产酸菌的pH值范围为4.0~7.0,在超过甲烷菌的最佳pH值范围,酸性发酵可能超过甲烷

相关文档
最新文档