含轴裂纹汽车水泵转子系统动力学特性分析

含轴裂纹汽车水泵转子系统动力学特性分析
含轴裂纹汽车水泵转子系统动力学特性分析

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

转子动力学知识

2转子动力学主要研究那些问题 答:转子动力学是研究所有不旋转机械转子及其部件和结构有关的动力学特性,包括动态响应、振动、强度、疲劳、稳定性、可靠性、状态监测、故障诊断和控制的学科。这门学科研究的主要范围包括:转子系统的动力学建模与分析计算方法;转子系统的临界转速、振型不平衡响应;支承转子的各类轴承的动力学特性;转子系统的稳定性分析;转子平衡技术;转子系统的故障机理、动态特性、监测方法和诊断技术;密封动力学;转子系统的非线性振动、分叉与混沌;转子系统的电磁激励与机电耦联振动;转子系统动态响应测试与分析技术;转子系统振动与稳定性控制技术;转子系统的线性与非线性设计技术与方法。 3转子动力学发展过程中的主要转折是什么 答:第一篇有记载的有关转子动力学的文章是1869年Rankine发表的题为“论旋转轴的离心力”一文,这篇文章得出的“转轴只能在一阶临界转速以下稳定运转”的结论使转子的转速一直限制在一阶临界以下。最简单的转子模型是由一根两端刚支的无质量的轴和在其中部的圆盘组成的,这一今天仍在使用的被称作Jeffcott转子的模型最早是由Foppl在1895年提出的,之所以被称作“Jeffcott”转子是由于Jeffcott教授在1919年首先解释了这一模型的转子动力学特性。他指出在超临界运行时,转子会产生自动定心现象,因而可以稳定工作。这一结论使得旋转机械的功率和使用范围大大提高了,许多工作转速超过临界的涡轮机、压缩机和泵等对工业革命起了很大的作用。但是随之而来的一系列事故使人们发现转子在超临界运行达到某一转速时会出现强烈的自激振动并造成失稳。这种不稳定现象首先被Newkirk发现是油膜轴承造成的,仍而确定了稳定性在转子动力学分析中的重要地位。有关油膜轴承稳定性的两篇重要的总结是由Newkirk和Lund写出的,他们两人也是转子动力学研究的里程碑人物。 4石化企业主要有哪些旋转机械,其基本工作原理是什么 汽轮机:将蒸汽的热能转换成机械能的涡轮式机械。工作原理:在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。作用与功能:主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活的供热需要。 燃气轮机:是一种以空气及燃气为介质,靠连续燃烧做功的旋转式热力发动机。主要结构由三部分:压气机,燃烧室,透平(动力涡轮)。作用与功能:以

汽车系统动力学习题答案分析解析

1.汽车系统动力学发展趋势 随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容,随着多体动力学的发展及计算机技术的发展,使汽车系统动力学成为汽车CAE技术的重要组成部分,并逐渐朝着与电子和液压控制、有限元分析技术集成的方向发展,主要有三个大的发展方向: (1)车辆主动控制 车辆控制系统的构成都将包括三大组成部分,即控制算法、传感器技术和执行机构的开发。而控制系统的关键,控制律则需要控制理论与车辆动力学的紧密结合。 (2)多体系统动力学 多体系统动力学的基本方法是,首先对一个由不同质量和几何尺寸组成的系统施加一些不同类型的连接元件,从而建立起一个具有合适自由度的模型;然后,软件包会自动产生相应的时域非线性方程,并在给定的系统输入下进行求解。汽车是一个非常庞大的非线性系统,其动力学的分析研究需要依靠多体动力学的辅助。 (3)“人—车—路”闭环系统和主观与客观的评价 采用人—车闭环系统是未来汽车系统动力学研究的趋势。作为驾驶者,人既起着控制器的作用,又是汽车系统品质的最终评价者。假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就

不存在了。因此,在人—车闭环系统中的驾驶员模型研究,也是今后汽车系统动力学研究的难题和挑战之一。除驾驶员模型的不确定因素外,就车辆本身的一些动力学问题也未必能完全通过建模来解决。目前,人们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,而车辆的最终用户是人。因此,对车辆系统动力学研究者而言,今后一个重要的研究领域可能会是对主观评价与客观评价关系的认识 2.目前汽车系统动力学的研究现状 汽车系统动力学研究内容范围很广,包括车辆纵向运动及其子系统的动力学响应,还有车辆垂向和横向动力学内容。及行驶动力学和操纵动力学。行驶动力学研究路面不平激励,悬架和轮胎垂向力引起的车身跳动和俯仰运动;操纵动力学研究车辆的操纵稳定性,主要是轮胎侧向力有关,引起的车辆侧滑、横摆、和侧倾运动。汽车系统动力学的研究可以分为三个阶段: 阶段一(20世纪30年代) ①对车辆动态性能的经验性的观察 ②开始注意到车轮摆振的问题 ③认识到车辆舒适性是车辆性能的一个重要方面 阶段二(30年代—50年代) ①了解了简单的轮胎力学,给出了轮胎侧偏角的定义 ②定义不足转向和过度转向 ③建立了简单的两自由度操纵动力学方程

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

铁道车辆系统动力学作业及试地的题目详解

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。

8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视为弹性体。 16、簧上质量:车辆支持在弹性元件上的零部件,车体(包括载重)及摇枕质量 17、簧下质量:车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。 18、一般车辆(结构对称)的垂向振动与横向振动之间是弱耦合,因此车辆的垂向和横向两类振动可以分别研究。 19、若车体质心处于纵垂对称面上,但不处于车体的横垂对称面上,则车体的浮沉振动将和车体的点头振动耦合起来。

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

车辆系统动力学试题及答案

西南交通大学研究生2009-2010学年第( 2 )学期考试试卷 课程代码 M01206 课程名称 车辆系统动力学 考试时间 120 分钟 阅卷教师签字: 答题时注意:各题注明题号,写在答题纸上(包括填空题) 一. 填空题(每空2分,共40分) 1.Sperling 以 频率与幅值的函数 ,而ISO 以 频率与加速度的函数 评定车辆的平稳性指标。 2.在轮轨间_蠕滑力的_作用下,车辆运行到某一临界速度时会产生失稳的_自激振动_即蛇行运动。 3.车辆运行时,在转向架个别车轮严重减重情况下可能导致车辆 脱轨 ,而车辆一侧全部车轮严重 减重情况下可能导致车辆 倾覆 。 4.在车体的六个自由度中,横向运动是指车体的横移、 侧滚 和 摇头 。 5.在卡尔克线性蠕滑理论中,横向蠕滑力与 横向 蠕滑率和 自旋 蠕滑率呈相关。 6.设具有锥形踏面的轮对的轮重为W ,近似计算轮对重力刚度还需要轮对的 接触角λ 和 名义滚动圆距离之半b 两个参数。 7.转向架轮对与构架之间的 横向定位刚度 和 纵向定位刚度 两个参数对车辆蛇行运动稳定性影 响较大。 8. 纯滚线距圆曲线中心线的距离与车轮 的_曲率_成反比、与曲线的_曲率_成正比。 9.径向转向架克服了一般转向架 抗蛇行运动 和 曲线通过 对转向架参数要求的矛盾。 10.如果两辆同型车以某一相对速度冲击时其最大纵向力为F ,则一辆该型车以相同速度与装有相同缓冲器 的止冲墩冲击时的最大纵向力为_21/2F _,与不装缓冲器的止冲墩冲击时的最大纵向力为_2F_。 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

共2页 第1页 5.什么是稳定的极限环? 极限环附近的内部和外部都收敛于该极限环,则称该极限环为稳定的极限环。 6.轨道不平顺有几种?各自对车辆的哪些振动起主要作用? 方向、轨距、高低(垂向)、水平不平顺。方向不平顺引起车辆的侧滚和左右摇摆。轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。高低不平顺引起车辆的垂向振动。水平不平顺则引起车辆的横向滚摆耦合振动。 三.问答题 (每题15分,共30分) 1.已知:轮轨接触点处车轮滚动圆半径r ,踏面曲率半径R w ,轨面曲率半径R t , 法向载荷N ,轮轨材料的弹性模量E 和泊松比o 。试写出Hertz 理论求解接触椭圆 长短半径a 、b 的步骤。P43-P44 根据车轮滚动圆半径、踏面在接触点处的曲率半径、钢轨在接触点处的曲率半径得到A+B 、B-A ,算得cos β,查表得到系数m 、n ,然后分别根据钢轨和车轮的弹性模量E 和泊松比σ,求得接触常数k ,得出轮轨法向力N ,然后带人公式求得a 、b 。 2. 在车辆曲线通过研究中,有方程式 ()W f r y f w O W μψλ212 1 2 222 * 11=??? ?????+???? ?? 二.简答题 (每题5分,共30分) 1.与传统机械动力学相比,轨道车辆动力学有何特点? 2.轮轨接触几何关系的计算有哪两种方法,各有何优缺点? 解析和数值方法。数值方法可以用计算机,算法简单,效率高,但存在一定误差;解析方法是利用轮轨接触几何关系建立解析几何的方式求解,比较准确,但是计算繁琐,方法难于理解。 3.在车辆系统中,“非线性”主要指哪几种关系? 轮轨接触几何非线性、轮轨蠕滑关系非线性、车辆悬挂系统非线性 4.怎样根据特征方程的特征根以判定车辆蛇行运动稳定性?。 根据求出的特征根实部的正负判断车辆蛇行运动的稳定性,当所有的特征根实部均为负时,车辆系统蛇行运动稳定,存在特征根为零或者负时,车辆系统的蛇行运动不稳定。

汽车系统动力学

第一节 历史回顾 《汽车系统动力学》教学大纲 、课程性质与任务 1. 课程性质:本课程是车辆工程专业的专业选修课。 2. 课程任务:本课程要求学生学习和掌握车辆系统的主要行驶性能,如牵引性能、车 辆的动态载荷、转向动 力学等。研究路面不平度激励的振动。 了解该领域世界发展及最新成 果。通过学习本课程,掌握汽车动力学分析的一般的理论和方法, 析、从事该领域研究、开发奠定基础。 二、课程教学基本要求 本课程是研究所有与汽车系统运动有关的学科, 其内容可按车辆运动方向分为纵向、 垂 向和侧向动力学三大部分。要求学生了解车辆动力学建模的基础理论、 轮胎力学及汽车空气 动力学基础之外,重点理解受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动 力学,以及行驶动力学(垂向)和操纵动力学(侧向)内容。运用系统方法及现代控制理论,结 合实例分析,介绍了车辆动力学模型的建立、 计算机仿真、动态性能分析和控制器设计的方 法,同时使学生对常用的车辆动力学分析软件有所了解。 问、课堂讨论等)(30%)。成绩评定采用百分制, 60分为及格。 三、课程教学内容 绪篇概论和基础理论 第一章 车辆动力学概述 1?教学基本要求 让学生了解车辆动力学的历史发展、研究内容和范围、车辆特性和设计方法、术语、 标准和法规、发展趋势。 2. 要求学生掌握的基本概念、理论、技能 法、发展趋势。 3. 教学重点和难点 教学重点是车辆动力学的研究内容和范围、 车辆特性和设计方法。教学难点是车辆特性 和设计方法。 4. 教学内容 为今后汽车系统动力学分 成绩考核形式:末考成绩(闭卷考试) (70%) +平时成绩(平时测验、作业、课堂提 通过本章教学使学生了解车辆动力学的历史发展、 研究内容和范围、车辆特性和设计方

02---Samcef Rotor在发动机转子动力特性分析中的应用---周传月

Samcef Rotor在发动机转子动力特性分析中的应用 周月1 ,宗克勤2 传 (1.北京东方极峰科技有限公司,北京100081 ;2.哈尔滨第703研究所,哈尔滨100036) 摘 要:本文首先介绍了依托Samcef Field和Samcef Rotor软件搭建的发动机转子动力特性集成仿真分析系统。其次介绍了转子动力特性分析软件Samcef Rotor的特点、模型及分析功能。最后以四个工程应用实例,着重介绍了Samcef Rotor软件在发动机转子动力特性分析中的应用。 关键词:Samcef Rotor,转子,动力特性,有限元分析 1 引言 随着工业的高速发展,旋转机械转速不断增加,性能不断提高。特别是航空燃气涡轮发动机和舰船用燃气轮机,由于其转速加大,推重比不断提高,因而带来了转子部件的负荷的增加。旋转机械的动力学问题历来就是发动机设计和研究人员关注的问题。发动机是高技术和高可靠性的复杂产品,尤其是高速旋转的转子系统,在其产品开发中有着极其复杂和严格的要求。发动机转子动力学问题是发动机研制和开发的一个重要问题。在转子动力学研究中,计算仿真分析(CAE)具有很重要的地位。无论是讨论转子的动力学特性,分析转子的各种动力学现象,还是进行转子系统的设计,解决旋转机械的有关工程问题等,都离不开计算分析工作。在转子动力学的发展历史中,计算方法与理论研究和工程应用是同步发展的。随着计算机技术和软件技术的飞速发展,计算仿真分析的重要性更为突出。甚至一些无法用理论分析方法解决的复杂问题,也可以使用数值计算的方法得到结果,或通过计算机仿真,揭示某些难以用理论分析方法或实验观察获得的新现象。 在传统的转子动力学分析中,计算分析的主要内容是关于转子弯曲振动的临界转速、不平衡响应和稳定性。有时,还有各种激励下的谐波响应和瞬态响应计算。有些转子系统还需要计算扭转振动的固有频率和响应。随着转子动力学研究工作的深入发展,人们发现轴承、轴承座、支承基础,以及其它有关结构对转子的动力学特性有很大的影响,因而有必要把轴承、轴承座、密封,甚至设备的基础也纳入到转子系统中。SAMTECH公司一直致力于转子动力学数值计算方法的研究,在著名的发动机公司的支持下,开发了大型商业化转子动力学分析软件Samcef Rotor。 SAMTECH公司(https://www.360docs.net/doc/f816842660.html,)是欧洲最大的CAE软件公司之一,是著名的有限元分析软件Samcef的开发商。SAMTECH公司的前身是比利时列日大学(University of Liege)的宇航实验室,该实验室自从1965年就从事开发商业化的有限元分析软件Samcef的开发。Samcef软件的开发者于1986年脱离列日大学而创建了SAMTECH公司。SAMTECH与航空和航天工业(SNECMA, EADS, AIRBUS, …),以及防卫、汽车、能源、造船和机床等工业有密切的合作。 Samcef系列软件是世界上广泛应用的有限元分析软件。Samcef包括通用有限元分析软件,如前后处理软件Samcef Field、线性分析软件Samcef Linear和非线性分析软件Samcef Mecano等,以及很多特定的专业软件,如转子动力分析软件Samcef Rotor,高压电缆静动力学分析软件Samcef HVS等。其中转子动力分析模块Samcef Rotor是目前世界上唯一的单轴或多轴转子动力学特性大型有限元分析软件。图1是依托Samcef Rotor软件和Samcef Field软件搭建的发动机的转子动力特性集成仿真分析系统。此系统是一完整的转子建模和仿真分析环境,包含发动机转子动力特性分析的各个方面。

水泵故障分析报告

泵类故障大汇总,也许就能解决你的问题! 2016-07-05泵阀之家 泵阀之家合作伙伴,点击下方蓝色字体进入 江南泵阀--专业氟塑料泵--值得信赖 ★泵阀管行业,企业管理软件免费送★ 有氟密管阀- 国内非金属阀门专业制造商 离心泵常见故障及解决方法01泵不吸水 故障分析: ?吸入阀有杂物或未打开,或吸入管堵塞 ?管路系统密封性差 ?从轴封处吸入空气 ?灌泵系统故障 解决方法:

?打开吸入阀,排除杂物,疏通吸入管。 ?检察管路,尤其分段试压连接法兰处,堵漏。?更换轴封,压紧填料密封 ?检查及维修灌泵系统 02泵不能启动 故障分析: ?原动机发生故障(包括电源); ?泵卡住; ?填料函压得太紧; ?排出阀门未关。 解决方法: ?检查电源及原动机情况; ?再次盘车确定联轴器情况; ?放松填料; ?管进出口阀门,再次启动。

03泵不排液 故障分析: ?灌泵不足(或泵内气体未排净); ?泵转向不对; ?泵转速太低; ?滤网、吸入管堵塞; ?吸入高度太高,或吸入口液体供给不足,造成吸入真空。 解决方法: ?重新灌泵; ?再次确定泵的旋转方向; ?检查电机空转转速,检查减速器的减速比,确定泵转速是否符合设计转速;?清洗滤网,疏通吸入管; ?调整吸入口管线,高于泵的入口,调整泵的上部供液系统,保证介质供应充分。

04泵排液后中断 故障分析: ?吸入管路漏气; ?灌泵时吸入侧气体未排尽; ?吸入侧突然被异物堵住,或吸入口滤器堵塞; ?吸入管脱水,大量气体吸入 解决方法: ?检查吸入侧连接处及填料函的密封情况; ?重新灌泵; ?停泵,清洗滤芯,疏通吸入管路; ?检查吸入管路是否破裂,并联进口管线上的阀门是否打开(不常用的管线)。05流量不足

车辆系统动力学 作业

车辆系统动力学作业 课程名称:车辆系统动力学 学院名称:汽车学院 专业班级:2013级车辆工程(一)班 学生姓名:宋攀琨 学生学号:2013122030

作业题目: 一、垂直动力学部分 以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析; 4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析; 8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。 模型参数为: m 1 = 25 kg ;k 1 = 170000 N/m ;m 2 = 330 kg ;k 2 = 13000 (N/m);d 2 =1000Ns/m 二、横向动力学部分 以车辆整车模型为基础,建立二自由度轿车模型,并利用二自由度模型分析计算: 1) 汽车的稳态转向特性; 2) 汽车的瞬态转向特性; 3)若驾驶员以最低速沿圆周行驶,转向盘转角0sw δ,随着车速的提高,转向盘转角位sw δ,试由 20sw sw u δδ-曲线和0 sw y sw a δ δ-曲线分析汽车的转向特性。 模型的有关参数如下: 总质量 1818.2m kg = 绕z O 轴转动惯量 23885z I kg m =? 轴距 3.048L m = 质心至前轴距离 1.463a m =

质心至后轴距离 1.585b m = 前轮总侧偏刚度 162618/k N rad =- 后轮总侧偏刚度 2110185/k N rad =- 转向系总传动比 20i =

给水泵震动大的原因分析

给水泵震动大的原因分析 针对水泵机组的各部件存在的振动,分析了产生振动的原因。从水泵的水力、机械结构设计,到泵的安装、运行、维护等方面几提出了减轻泵振动的措施。结果表明,保证泵零部件结构尺寸、精度与泵的无过载性能等水力特性相适应;保证泵的实际运行工况点与泵的设计工况点吻合;保证加工精度与设计精度的一致性;保证零部件安装质量与其运行要求的一致性;保证检修质量与零部件磨损规律的一致性,可以减轻泵的振动。 振动就是评价水泵机组运行可靠性的一个重要指标。振动超标的危害主要有:振动造成泵机组不能正常运行;引发电机与管路的振动,造成机毁人伤;造成轴承等零部件的损坏;造成连接部件松动,基础裂纹或电机损坏;造成与水泵连接的管件或阀门松动、损坏;形成振动噪声。 引起水泵振动的原因就是多方面的。泵的转轴一般与驱动电机轴直接相连,使得泵的动态性能与电机的动态性能相互干涉;高速旋转部件多,动、静平衡沐能满足要求;与流体作用的部件受水流状况影响较大;流体运动本身的复杂性,也就是限制泵动态性能稳定性的一个因素。 1 对引起泵振动原因的分析 1、1电机 电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力与转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因也能引起振动。电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。 1、2基础及泵支架 驱动装置架与基础之间采用的接触固定形式不好,基础与电机系统吸收、传递、隔离振动能力差,导致基础与电机的振动都超标。水泵基础松动,或者水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加

车辆系统动力学复习题精选.

车辆系统动力学复习题 1.何谓系统动力学?系统动力学研究的任务是什么? 2.车辆系统动力学研究的内容和范围有哪些? 3.车辆系统动力学涉及哪些理论基础? 4.何谓多体系统动力学?多刚体系统动力学与多柔体系统动力学各有何特点?采用质量-弹簧-阻尼振动模型和多体系统模型研究车辆动力学问题各有何特点? 5.简述车辆建模的目。 6.期望的车辆特性是什么?如何来评价? 7.何谓轮胎侧偏角?何谓轮胎侧偏刚度?影响轮胎侧偏的因素有哪些? 8.何谓轮胎模型?根据车辆动力学研究内容的不同,轮胎模型可分为哪几种?整车建模中对轮胎模型需考虑的因素有哪些? 9.简述轮胎噪声产生的机理。 10.车辆空气动力学研究的主要内容有哪些?车辆的空气阻力有哪些?产生的原因是什么?试分析空气动力对车辆性能的影响。汽车空气动力学装置有那些? 11.简述风洞试验的特点? 12.车辆的制动性能主要由哪三个方面评价?试分析汽车制动跑偏的原因。 13.车辆动力传动系统由哪几部分组成?在激励作用下通常会产生何种振动?标出图示车辆简化扭振系统各部分名称?并说明其主要激振源? 14.写出货车动力传动系统动力学方程,并写出刚度阵等。 15.路面输入模型有几种?各有何特点?写出各自的表达式? 16.在整车虚拟仿真中常用的一些典型的特殊路面有哪些?各有何特点?

17.简述最新的舒适性评价标准。 18.车辆的平顺性是如何测量的? 19.车辆典型的共振频率范围通常是多少? 20.车辆行驶动力学模型是如何简化的?试写出1/4、1/2和整车系统垂直振动的微分方程式,并写成矩阵的形式。 21.车辆悬架系统的性能一般用哪3个基本参数进行定量评价?各对车辆行驶性能有何影响? 22.被动悬架存在的问题是什么?半主动悬架和主动悬架的工作原理是什么?写出其系统运动方程。 23.操纵性能的总体目标和期望的车辆操纵特性是什么? 24.基本操纵模型假设和存在最大问题是什么? 25.车辆操纵特性分析一般进行哪三种分析?其内容是什么? 26.何谓中性转向、不足转向和过多转向?各有何特点? 27.利用拉格朗日方程推导平面3自由度和5自由度汽车振动模型的运动方程,并写成矩阵形式。假定车身是一个刚体,车辆在水平面做匀速直线运动,以2个车轮不同激励和激振力F=F0cos2ωt作为系统输入。

压缩机转子动力特性及常见振动原因解析

109中国 设备 工程Engineer ing hina C P l ant 中国设备工程 2019.06 (上)压缩机转子与振动情况是影响设备运行性能与效率的重 要关键因素,本文将通过对压缩机转子的结构特点和基本原理分析,对其运动特性进行详细的解析,同时对压缩机上常 见的振动问题及原因进行系统的剖析分解。 1?转子系统特性 转子系统是一种连接轴承与支座组成的旋转部件系统, 是旋转机械中的主要工作部件。转子系统的运动特性是一个 复杂的系统,转子运转常伴有相关系列振动,给设备带来噪 声,甚至严重的元件损坏和转子失稳等害处,极大地影响了 设备的工作效率和使用寿命。见图1。图1?转子简图2?转子动力特性解析2.1 轴承动态运动特性本文以径向轴承为依据,其理想模型状态工作状况为:轴承的中心为一条静态稳定线上浮,在油膜产生的合力作用下达到载荷稳定时,轴颈的中心便达到静态稳定线的某一点和稳定。而当轴承的工作角度因为工作关系工作角度不断地增大,轴承的表面与轴颈之间形成的收敛卷吸作用不断地加大,导致转子不断地被抬起。在常规的工作状态下,转子的工作状态不断受到外界的扰动影响,轴承不仅受油膜的静态油膜托起力,还会因外界的移动和速度等因素扰动产生附加的动态油膜力,所以转子是在静态油膜力与动态油膜力共同作用下工作的非定工作状态。轴承的非定动态方程为公式(1)。(1)式中:r 为轴承轴颈的半径,mm;φ为油膜的厚度,mm;p 为油膜压力值,MPa;u 为油的动力黏度值,Ns/mm 2;ω为转子角速度。2.2 轴承系统的稳定特性轴承的稳定特性,即压缩机处于静态的一种稳定或者动态的一种稳定,静态稳定即转子的外径与长度的比值大于或者等于5时,转子系统此时无论是工作转动速度快还是慢,压缩机转子动力特性及常见振动原因解析 官文超? (沈阳鼓风机集团股份有限公司研究院,辽宁?沈阳?110869) 摘要:压缩机是工业原料生产重要的生产设备之一,其广泛使用在化工、能源、机械等行业。而压缩机的转子动力特性与振动情况将直接影响设备的整体性能和运行效率。本文对压缩机转子动力特性、振动情况等进行了分析研究。 关键词:压缩机;转子;动力特性;振动 中图分类号:U664 文献标识码:A 文章编号:1671-0711(2019)06(上)-0109-02 系统只须静态稳定。动态稳定是指转子的长度大于半径时,系统转子工作转动速度大于1000时,此时进行动态稳定。当轴承系统处于稳定状态时,就可以避免一系列的设备振动现象。当系统出现非稳定性振动的时候,转子与转轴之间的力学便出现破坏,设备便会出现一些破坏性的振动现象。2.3 转子系统运动平衡特性转子的振动一般对设备是有害的,但是却无法杜绝这一现象,怎样平衡转子系统的运转振动,使其系统达到一个平衡的高性能状态。其实只要将转子的振动设定在一定范围内,达到一定的转动与振动平衡状态,就可消除危害性的振动现 象。所谓的转子振动平衡即是将转子振动频率限制在转速的 1/10,即可达到转子振动平衡状态。而主要的处理手段是将 转子的外径与长度比值降低来达到转子振动平衡状态。 2.4 齿轮传动系统特性 研究表明,齿轮系统的耦合传动振动特性模型与设备的 固定频率、稳定性能与弯曲、扭转振动模型有着很大的区别。 建立相关斜齿传动模型的分析模型,分析得出斜齿传动系统 振动不仅存在扭曲振动、轴向振动、弯曲振动常规的振动, 还存在动态合力产生的扭摆动。齿轮空间存在6个自由度, 整个系统存在12个自由度,轮齿的重合度为整数,整个啮 合过程中呈现出一个周期性的变化,且同时有部分的轮齿出 现变形现象。斜齿系统的啮合开始于轮齿的一端,然后慢慢 扩展到整个齿面,最后从轮齿一端退出啮合的过程,此时的 轮齿整体性刚度有局部变化,但是较直齿刚度阶跃性的变动, 斜齿只是一小部分的微小波动,如图2为斜齿轮与振动稳定 关系图。综上述分析可知,轮齿的刚度影响有轮齿的齿形(齿 高和齿厚等)、轮齿材料、轮齿的重合度、旋转角度、轮齿 啮合误差等因素。 3?转子振动原因及分析 3.1 压缩机转子振动原理 压缩机主要通过转子的高速转动产生离心力使其具备压 缩功能,出现振动的主要机理是转子振动频率与设备自身振 动频率相接近,导致共振现象,继而出现振动现象。如转子 与转轴的契合不严密时,还可能引起其他的振动效应。 3.2 压缩机机组稳定性引起的振动 机组如出现失稳即可出现转子的不平衡振动,引起的主 要原因是压缩机内部的零件契合度不达标,如转子与转轴的 契合度不够造成的机组失稳,以及离心机基座之间的连接紧

(00412703)车辆系统动力学

研究生课程教学大纲 课程编号:00412703 课程名称:车辆系统动力学 英文名称:Vehicle System Dynamics 学时:32 学分:2 适用学科:机械、交通等 课程性质:专业基础课 先修课程:车辆工程 一、课程的性质及教学目标 本课程是车辆工程和载运工具运用工程硕士研究生的专业基础课。通过本课程的学习使学生掌握车辆动力学基本原理,了解车辆动力学发展现状,掌握车辆系统动力学激励原因、建模与试验研究方法、动力学性能评定方法。 二、课程的教学内容及基本要求 本课程的目的主要介绍引起车辆振动原因及铁道车辆安全、平稳性等动力学评定标准,车辆零部件建模方法,轮轨接触理论,蛇行运动稳定性,车辆的曲线通过,列车纵向动力学。 三、课内学时分配

四、推荐教材与主要参考书目 1.王福天车辆系统动力学中国铁道出版社1994 2.张定贤机车车辆轨道系统动力学中国铁道出版社1996 3.任尊松,车辆系统动力学,中国铁道出版社,2007 4.Simon Iwnicki, Handbook of railway vehicle dynamics, Taylor and Francis Group, 2006

5.沈利人译铁道车辆系统动力学西南交通大学出版社1998 6.陈泽深,王成国铁道车辆动力学与控制中国铁道出版社2004 7.现代轨道车辆动力学胡用生中国铁道出版社2009 8.车辆-轨道耦合动力学翟婉明科学出版社2007 9.车辆与结构相互作用夏禾科学出版社2002 五、教学与考核方式 理论教学方式、考试+平时成绩评定成绩 编写人(签字):魏伟编写时间:2012.9.4

车辆系统动力学报告

垂直动力学部分 题目:以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析; 4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析; 8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。 模型参数为:m 1= 25 kg;k 1 = 170000 N/m;m 2 = 330 kg;k 2 = 13000 (N/m);c =1000Ns/m 本文拟定应用Matlab/Simulink软件进行分析计算。 1.建模及运动方程 依据课程题目的要求,以Matlab/simulink为仿真平台,建立具有两自由度的1/4车辆模型,如图1所示。 图1双自由度的车辆1/4简化模型 上图中汽车的悬挂(车身)质量m 2 = 330 kg;非悬挂(车轮) 质量m 1= 25 kg;弹簧刚度k 2 = 13000 N/m;轮胎刚度k 2 = 13000 (N/m); 减震器阻尼系数C=1000Ns/m。

车轮与车身垂直位移坐标分别为1z 、2z ,坐标原点选在各自平衡位置,其运动学方程为: 0)()(z 1221222=-+-+z z K z z c m 0)()()(z 112122111=-+-+-+q z K z z K z z c m 根据运动学方程,通过Matlab/Simulink 建立模型,如图2所示: 图2 Matlab/Simulink 仿真图 2. 模型分析 2.1 车身位移、加速度传递特性分析 2.1.1车轮位移 车轮位移1Z 对q 的频率响应函数为: []2 112 2121232142122211)()() (q z K K w jCK w K m K K m w m m jC w m m K jCw w m K ++++-+-++-= 22100000017000000607150035500825221000000170000005610000q z 23421++--++-=jw w jw w jw w 系统传递函数为:

相关文档
最新文档