NI基纳米复合电镀镀层的性能研究

NI基纳米复合电镀镀层的性能研究
NI基纳米复合电镀镀层的性能研究

辽宁科技大学本科生专业选修课

现代表面分析检测方法

结课论文

论文名称:NI基纳米复合电镀镀层的性能研究学生:郑奇

院系名称:材料与冶金学院

授课教师:金辉

专业班级:材料化学14-1

学号:

联系电话:

NI基纳米复合电镀镀层的性能研究

摘要:采用复合电镀技术通过向电镀溶液中加入平均粒度为90 nm的Al2O3粉,

在Ni基材上制备了Ni-纳米Al2O3复合镀层,应用扫描电镜(SEM)、X射线衍射(EDAX)及透射电镜(TEM)等手段对复合镀层的表面形貌和结构进行了表征,并通过试验考察了镀层的磨损性能。结果表明,纳米Al2O3颗粒均匀分布在Ni纳米晶中;纳米Al2O3颗粒的加入不仅细化了基体Ni的晶粒尺寸,而且还具有弥散强化作用,从而提高了Ni- Al2O3纳米复合镀层的硬度和耐磨性能[1]。

关键词:纳米Al

O3;复合电镀;结构;形貌;耐磨性能

2

复合电镀技术具有设备简单、易操作、价格经济等优点,已广泛应用于航空、汽车、电子等行业。复合电镀中常用的第二相固体颗粒有碳化物、氧化物和氮化物如SiC、ZrO2、Ti02、Si3N4等。大量试验结果表明,金属基复合镀层的性能不仅与颗粒性质还与颗粒的含量、尺寸及分布有关。Al2O3颗粒具有特殊的机械和化学特性,如高化学稳定性,高硬度和高温耐磨性等,可作为金属基复合物的增强第二相应用在微器件表面,从而提高器件的耐磨性能。普通微米粒由于颗粒粗大,所得镀层表面粗糙,颗粒与基体金属材料界面结合较弱,镀层质量差。随着纳米粉制备技术的不断发展,性能更优异的纳米复合镀层出现。本工作采用复合电镀技术,通过向普通电镀液中加入平均粒度约为90 nm的Al2O3粒子,在Ni 基材上制备了Ni-纳米Al2O3复合镀层并对其摩擦磨损性能进行了研究[1]。一.试验

选用尺寸为15 mm×10 mm ×2 mm的电解Ni片为基材,同一成分的Ni

片为电镀时的阳极。试样用水砂纸磨至800号后经酒精、超声波清洗。镀液为弱酸性镀液,pH值为,镀液配方为:LNiS04·7H20,L NH4Cl,g/L H3B04,L

C12H25OSO3Na。纳米Al2O3粉直接加入镀液,为保证纳米粉颗粒的悬浮,在复合电镀过程中施以磁力搅拌。镀液温度为35℃,电流密度3A/dm2,施镀时间2h,镀层厚约为50μm。显微硬度测量在MHV2000维氏数字显微硬度计上进行,载荷为,加载时间为10S,取10个点的平均值为最终的硬度值。摩擦磨损试验在

CJS111A型摩擦磨损实验机上进行,Si3N4磨球的尺寸为?2mm、转速200 r/min、载荷150 N、摩擦半径为mm,时间1 h,总路程约为m,选用感量为10-5g的天平进行分析。采用(Rigaku)D/max一2500pc型x射线衍射仪(EDAX)磨损量和Camscan MX2600扫描电子显微镜(SEM)对磨损前后的复合镀层进行综合分析。与此同时选用相同电镀条件下获得的单Ni镀层作对比试验。

二.结果与讨论

1.复合镀层的结构

单Ni镀层和Ni-纳米Al2O3复合镀层的表面SEM形貌见图1。从图l可知,单Ni镀层具有典型的金字塔结构,但随着纳米Al2O3颗粒的加入,基体Ni的晶粒尺寸明显细化,同时向半球形转变。在电沉积Ni镀层的过程中,Ni沿一定的方向择优长大,但是随着Al2O3粒子复合,Al2O3粒子作为Ni沉积时的第二相导异质形核质点,细化了基体Ni晶粒。EDAX分析表明,Ni-纳米Al2O3复合镀层中Al2O3含量为7%-9%,而图1b中自亮颗粒即为富Al的Al2O3颗粒。由此可见Al2O3纳米颗粒在复合镀层中存在局部团聚现象,这与纳米具有很强的团聚特性有关。

图1 镀层表面SEM形貌

单Ni镀层及复合涂镀层的TEM形貌见图2。从图2a可见,单Ni镀层中

Ni的平均晶粒尺寸小于100nm。从图2b可知,白色的圆形颗粒为纳米Al2O3

镍基复合材料 57-1

镍基复合材料是以镍及镍合金为基体制造的。由于镍的高温性能优良,因此这种复合材料主要是用于制造高温下工作的零部件。 镍基复合材料主要用于液体火箭发动机中的全流循环发动机。这种发动机的涡轮部件要求材料在一定温度下具有高强度、抗蠕变、抗疲劳、耐腐蚀、与氧相容。在目前正在研制的系统中这些部件选用镍基高温合金。虽然用SiC 颗粒或纤维增强的复合材料可以达到高强度、高刚度和抗蠕变。但在全流循环发动机的富氧驱动气体环境下,这些材料不能兼顾与氧的相容性。发动机起动瞬变过程的热冲击环境,排除了涡轮叶片采用加涂层的材料系的可能。 因此,用整体材料制作的涡轮叶片,必须经受住富氧燃烧产物所形成的环境。因为涡轮部件和涡轮盘在大约9min 运行中一般不用冷却,所以在短时运行中,整体材料温度达到730℃是正常的。对某些设计,希望密度低于6.5g/cm3 的材料的强度要大于1040MPa。应力、温度和化学环境都十分苛刻,要延长维修平均间隔时间(MTBR)使这些材料性能目标更难达到。其它非旋转部件也必须经受住极端运行环境的考验。喷注器面板、喷注壳体和预燃烧器在高温下都必须抗氧化、耐腐蚀、抗氢脆。喷嘴调节和控制流入主燃烧室的推进剂流量。预燃烧室是个小型燃烧室。在这个燃烧室里,产生涡轮驱动气体。在目前一些系统(其中一些被有效冷却)中,这些部件使用钴合金。未来发动机的这些部件,预计有极端的热环境(气体温度接近918℃)和高达62MPa 的压力。Si3N4 整体材料正在用作喷嘴壳体,但陶瓷壳体与金属推力室的匹配困难还没有解决。由于喷嘴壳体的形状是轴对称的,所以早就有人建议这种壳体采用连续纤维增强的复合材料,但部件的匹配条件向连续纤维增强的复合材料提出挑战。 以下为两种比较典型的镍基复合材料及其主要性能: (一)、镍基变形高温合金 以镍为主要基体成分的变形高温合金。镍基变形高温合金以汉语拼音字母“GH”加序号表示,如GH36、GH49、GH141等。它可采用常规的锻、轧和挤压等冷、热变形手段加工成材。按强化方式可分为固溶强化镍基变形高温合金,弱时效强化镍基变形高温合金和强时效强化镍基变形高温合

镍基复合材料

镍 基 复 合 材 料 的 应 用 10级金属(1)班 1007024101

镍基复合材料的应用 镍基复合材料是以镍及镍合金为基体制造的。由于镍的高温性能优良,因此这种复合材料主要是用于制造高温下工作的零部件。 镍基复合材料主要用于液体火箭发动机中的全流循环发动机。这种发动机的涡轮部件要求材料在一定温度下具有高强度、抗蠕变、抗疲劳、耐腐蚀、与氧相容。在目前正在研制的系统中这些部件选用镍基高温合金。虽然用SiC 颗粒或纤维增强的复合材料可以达到高强度、高刚度和抗蠕变。但在全流循环发动机的富氧驱动气体环境下,这些材料不能兼顾与氧的相容性。发动机起动瞬变过程的热冲击环境,排除了涡轮叶片采用加涂层的材料系的可能。 因此,用整体材料制作的涡轮叶片,必须经受住富氧燃烧产物所形成的环境。因为涡轮部件和涡轮盘在大约9min 运行中一般不用冷却,所以在短时运行中,整体材料温度达到730℃是正常的。对某些设计,希望密度低于6.5g/cm3 的材料的强度要大于1040MPa。应力、温度和化学环境都十分苛刻,要延长维修平均间隔时间(MTBR)使这些材料性能目标更难达到。其它非旋转部件也必须经受住极端运行环境的考验。喷注器面板、喷注壳体和预燃烧器在高温下都必须抗氧化、耐腐蚀、抗氢脆。喷嘴调节和控制流入主燃烧室的推进剂流量。预燃烧室是个小型燃烧室。在这个燃烧室里,产生涡轮驱动气体。在目前一些系统(其中一些被有效冷却)中,这些部件使用钴合金。未来发动机的这些部件,预计有极端的热环境(气体温度接近918℃)和高达62MPa 的压力。Si3N4 整体材料正在用作喷嘴壳体,但陶瓷壳体与金属推力室的匹配困难还没有解决。由于喷嘴壳体的形状是轴对称的,所以早就有人建议这种壳体采用连续纤维增强的复合材料,但部件的匹配条件向连续纤维增强的复合材料提出挑战。 以下为两种比较典型的镍基复合材料及其主要性能: (一)、镍基变形高温合金 以镍为主要基体成分的变形高温合金。镍基变形高温合金以汉语拼音字母“GH”加序号表示,如GH36、GH49、GH141等。它可采用常规的锻、轧和挤压等冷、热变形手段加工成材。按强化方式可分为固溶强化镍基变形高温合金,弱时效强化镍基变形高温合金和强时效强化镍基变形高温合金3类。

重熔处理过程对镍基合金复合涂层的组织变化影响

科技信息SCIENCE&TECHNOLOGYINFORMATION2013年第5期作者简介:刘铎(1980—),男,汉族,工程师,主要从事特种设备型式试验、检测及复合材料制造、电阻焊和堆焊的研究。 0前言磨损是导致工程材料失效的最主要因素之一,如何通过改善材料 的耐磨损性能来降低材料的损耗,一直是材料科学工作者非常关注的 问题。镍基自熔性合金(NiCrBSi )具有较好的力学性能和耐蚀性,是一 种常用的耐滑动磨损材料,其形成的NiCr 、Cr 2B 、Cr 5B 3、CrB 及一些碳 化物有助于提高结合强度和硬度。用其制备的NiCrBSi/WC 复合涂层, 对于汽车气缸摩擦副的耐磨损性提高有很大作用[1-2]。近年来,很多研 究集中在添加元素对镍基合金的性能变化作用,例如Mo 的加入可以 改善涂层的抗咬死性,减少熔覆层的开裂敏感性[3];Ce 或La 2O 3可以促 进硬质相和棒状第二相均匀分布,减少气孔和夹杂[4];Al 2O 3提高复合 材料涂层的整体抗冲蚀性[5];六方BN 具有和石墨一样的润滑机制,具 有更好的热稳定性,对涂层自润滑性的提高有显著影响[6];CrC 促进硬 质相形成,延长涂层在磨损过程中的使用寿命[7]。相应的涂层制备方法 有很多种,常见的有激光熔覆、火焰喷涂、等离子喷涂、高频感应熔覆、 喷焊等等。其中等离子喷涂方法使用较为普遍,其具有参数调整方便 灵活,沉积效率高的优点,在耐磨耐蚀涂层制备方面应用广泛。 本文主要探讨利用超音速等离子喷涂技术制备NiCrBSi/20%WC 复合涂层,并对喷涂后的涂层进行火焰重熔处理,通过对复合涂层火 焰重熔处理前后的显微组织进行检测分析,了解其微观结构变化对复 合涂层机械性能的影响。1试验方法所选用基体材料为碳素结构钢Q235A ,试样尺寸为80×40×5 mm ,表面经喷砂处理后粗糙度达到R a =3.2μm ,并用丙酮清洗。喷涂材 料选用镍基碳化钨粉末(含20%WC ),粒子尺寸在50-150μm ,形貌见 图1,其中不规则块状物质即为碳化钨。 图1NiCrBSi/20%WC 合金粉末形貌 沉积涂层使用美国普莱克斯生产的3710型超音速等离子喷涂设 备,等离子枪为SG-100型。喷涂前利用等离子焰流对基体进行预热 处理,喷涂工艺参数如下所列:电压42V ;电流550A ;氩气45psi ;氢气 15psi ;喷涂距离110mm 。涂层的厚度约0.4mm 。喷涂后涂层经氧-乙炔 火焰重熔后,制备金相试样,用5%的硝酸酒精对界面和涂层部分进行 腐蚀,使用扫描电镜观察涂层的微观结构,能量色散谱(EDS )分析涂 层的成分,X 射线衍射仪的Cu 靶K α线进行相结构研究。用显微硬度 仪分析横截面的显微硬度,测试点选取10个,取平均值,载荷砝码为 100g 。利用滑动摩擦磨损试验机进行磨损试验15分钟,并用扫描电镜 观察磨损区域的表面形貌。2 试验结果与分析2.1涂层的相结构与微观形貌等离子喷涂后的NiCrBSi 涂层,具有典型的热喷涂涂层结构特征,主要是由扁平化的粒子组成,其间夹杂熔化不完全的颗粒,存在部分孔隙。在加入20%WC 后,可以观察到分布于涂层中的WC 颗粒,见图2。这部分WC 颗粒主要来源于喷涂过程中,由于焰流速度过快而未熔化的WC 粉末。通过电镜照片可以观察到,其分布并不均匀,但这种高硬度的材料是提高涂层耐磨性的主要成分。 图2喷涂后NiCrBSi/20%WC 复合涂层形貌 为涂层进行能谱分析,在涂层中有个别区域出现细长针状物质,通过能谱分析可以发现,其主要成分依旧是Ni ,质量百分比占了50%,但Si 、Fe 和Cr 含量相对其他区域有所增加,(Fe ,Cr )7C 3形状大部分为针状,与此结构相似。Cr 和C 的产物很多,但涂层中出现的主要是(Fe ,Cr )7C 3,这与三者之间的反应有关[8]。Fe-C 与Cr-C 产物中都可以溶解Cr 或者Fe ,但在高于1200℃时,Cr-C 反应产物稳定存在,Fe-C 主要是以液态产物存在。由于涂层中的主要元素是Ni ,Ni 与Fe 可以形成γ-Fe ,但由于粉末本身Fe 含量较少,故形成的γ-Fe 并不多。虽然涂层中含有B 元素,但由于能谱对于C 元素只能定性分析而不能定量表示,B 元素比C 元素原子量更低,因此能谱无法检测其存在。但B 和Si 元素可以溶解于γ-Fe 和(Fe ,Cr )7C 3中。氧-乙炔火焰重熔后的涂层,结构产生变化。加入WC 后的涂层,在重熔过程中,主要被γ-Ni 固溶体所包覆。虽然还有块状组织,但经过加热,主要形成W 2C 相,分布于涂层各部分,这在摩擦磨损中起到重要作用。火焰重熔处理对于整个涂层来说,使各种合金元素相互扩散,形成Cr 7C 3,CrB ,Cr 2B 等弥散分布于γ-Ni (主要是Ni-Cr )的硬质相。一般来说,Cr 7C 3维氏硬度可以达到1450HV ,而CrB 可达到1300HV 。经过重熔处理,由于加热充分和元素的扩散效应明显,涂层与基体能够形成冶金结合,较之等离子喷涂形成的主要是机械结合的涂层,其结合强度大幅提高。2.2硬度测试加入20%WC 的等离子喷涂涂层硬度可以由600HV 经过重熔提高到将近1000HV 。这与重熔后硬质相弥散分布,缺陷减少有很大关系。2.3摩擦磨损试验图3a )为等离子喷涂NiCrBSi/20%WC 涂层磨损后的形貌,图3 b )则为经重熔后复合涂层的磨损形貌。通过比较可以发现,NiCrBSi/ 20%WC 涂层的试样磨损表面有明显的犁沟和少量剥落的坑,这是由 重熔处理过程对镍基合金复合涂层的组织变化影响 刘铎王玉刘颖孙大超 (沈阳特种设备检测研究院,辽宁沈阳110035) 【摘要】采用超音速大气等离子喷涂方法,在Q235A 钢基体上制备了含有20%WC 的NiCrBSi 复合涂层,并对涂层进行氧-乙炔火焰重熔处理。利用扫描电子显微镜对重熔前后的涂层进行微观结构分析,并采用X 射线衍射方法研究其相组成。发现重熔处理后涂层中缺陷减少,WC 、CrB 和Cr 7C 3等硬质相被γ-Ni 固溶体所包覆,对提高涂层的显微硬度和耐摩擦磨损性能有显著作用。 【关键词】WC ;NiCrBSi ;重熔处理;复合涂 层 ○科教前沿○72

纳米复合镀层的研究进展

第26卷第2期 唐山师范学院学报 2004年3月 Vol. 26 No.2 Journal of Tangshan Teachers College Mar. 2004 ────────── 收稿日期:2003-07-01 作者简介:曹茂盛(1961-),男,江苏南通人,北京理工大学材料学院教授,博士后,博士生导师,主要从事纳米材料、吸 波材料及复方材料的研究。 纳米复合镀层的研究进展 曹茂盛 (北京理工大学 材料学院,北京 100083) 摘 要:介绍了纳米复合镀层的制备、分类及耐磨减磨、耐腐蚀、耐高温、自润滑、催化、导磁等方面的性能,综述了近年来有关纳米颗粒在复合镀层制备过程中的沉积机理和影响因素。 关键词:纳米颗粒;复合镀层 中图分类号:N34 文献标识码:A 文章编号:1009-9115(2004)02-0006-04 1 引言 复合镀技术是近年来发展起来的一项新技术,它是将一种或数种不溶性固体颗粒加入到镀液中,经过搅拌使之均匀地悬浮于镀液中,使固体颗粒与金属离子共沉积而形成复合镀层的一种沉积技术。该技术的研究已有20多年的历史,利用复合镀技术可以制备出一系列性能广泛变化的复合镀层,在强化材料表面等方面具有显著的效果。目前国内外研究及应用广泛的复合镀层采用的第二相粒子多是微米级的,其性能不能满足科技发展的要求。 纳米材料科学的发展,给复合镀技术带来了新的契机,纳米材料的表面效应、小尺寸效应、巨磁电阻效应、宏观隧道效应等使其呈现出常规材料不具备的特殊的光学、电学、力学、催化等方面的特性,使纳米材料具有比普通材料高的多的硬度、耐磨性、自润滑耐性和耐腐蚀性。纳米复合镀层就是在镀液中加入纳米固体颗粒,通过和金属共沉积获得镀层,从而使镀层复合了纳米材料的特异功能。纳米颗粒在复合镀层中的应用将有力地促进复合镀层的发展。 2 沉积机理及制备方法简述 纳米颗粒与金属离子共沉积机理包括电化学机理、吸附机理和力学机理等,这些理论强调沉积发生的热力学条件,Wagner 和Trand 等人提出的混合电位理论侧重于沉积发生的动力学条件。由于沉积过程本身是一系列反应链相互作用的结果,反应过程中许多中间态离子寿命短且难以检测,所以至今沉积机理尚无完善的理论解释。而且整个沉积过程是一个动态过程,最终镀层中纳米颗粒含量与各 个反应环节均有关联。综合上述的机理,共沉积过程可分为3个阶段:(1)悬浮于镀液中的纳米颗粒,由镀液深处移向试样表面,需要依靠搅拌形成的动力场或电场力来实现;(2)纳米颗粒粘附于试样表面,其动力学因素复杂,与颗粒、电极基质金属、镀液、添加剂和电镀操作条件等因素有关;(3)纳米颗粒被试样表面析出的基质金属牢固嵌入,形成复合镀层。 纳米复合镀层的制备工艺主要有复合电镀法、复合化学镀法及复合电刷镀等方法。复合电镀是指在电解质溶液中加入一种或几种不溶性纳米固体颗粒,在金属离子被还原的同时,将不溶性的纳米固体颗粒均匀地夹杂到金属镀层中,复合镀层是一类以基质金属为均匀连续相和以不溶性纳米粒子为分散相的金属基复合材料。复合化学镀是指利用化学镀技术来制备复合镀层。化学镀对粒子具有较强复合能力,用悬浮微粒镀液可获得微粒含量相当高的复合镀层。复合电刷镀是指为获得弥散镀层,在金属镀液中加入不溶性固体微粒,使这些固体微粒与金属镀液中的金属离子共沉积,并均匀弥散在金属镀层中的镀层而采用刷镀技术的一种工艺方法。 3 纳米结构表面化学复合镀的研究现状 3.1 纳米结构复合镀层的研究 纳米微粒在理论上可以大幅度提高镀层中化合物的含量,并给镀层带来优良的功能特性,目前开发的有镍基、铜基、银基等镀层,其中大量研究和应用的是镍基化学复合镀。常见的镀层主要分为两类:一类是加入硬质颗粒形成的高硬度、耐磨损镀层;另一类是加入减摩颗粒,形成自润滑镀层。

纳米复合电镀

纳米复合电镀 1208030123侯天润 引言:随着技术的发展,对材料性能的要求更为严格和挑剔,单一材料难以满足工业生产的某些特殊性能,需要多种材料复合。因此开发各种新型结构与功能材料,是目前材料科学中的一个重要研究方向。近年来,高速发展起来的复合镀层以其独特的物理、化学、生物及机械性能,成为复合材料的一枝新秀,正日益过得广泛的关注和应用。复合电镀技术自20世纪60年代开始应用于工业领域以来,日益受到人们的重视。复合电镀又称为分散电镀、镶嵌电镀,是用电镀的方法使金属(如Ni,Cu,Ag,Co,Cr等)与不溶性固体微粒(如Al2O3、SiC、ZrO2、WC.SiO2、BN、Cr2O3、SiN4、B4C等)共沉积获得复合材料的一种工业过程。不仅电沉积复合镀层在不断发展,而且利用复合化学镀技术也可以制备出一系列性能广泛变化的复合镀层,复合镀层在强化材料表面性能方面具有显著的效果[1]。但由于其加入的固体颗粒多为微米级,其性能不能满足科技的飞速发展的要求,应用范围受到了一定的限制。自纳米材料诞生以来,国内复合镀的研究逐渐增多,随着认识的深入和纳米材料科学的迅猛发展,人们意识到纳米微粒具有很多独特的物理及化学性能,包括表面效应、体积效应、量子尺寸效应、宏观量子隧道效应和一些奇异的光、点、磁性质[2],若化合物颗粒尺寸减小到纳米量级,理论上将可以大幅度提高镀层中的化合物复合量,更重要的是纳米颗粒的引入将有可能给镀层性能带来意想不到的改变,这一性能的改变将有可能更多的体现功能性能特性上。现已支出包括金属、非金属、有机、无机和生物等各种纳米复合材料[3],成为科技发展前沿具有挑战性的研究点。 纳米复合电镀工艺研究: 镀工艺主要包括镀液 PH,搅拌速度,镀液温度、电流密度。电流特性、电镀速度和纳米电镀沉积技术这些参数的不同,会对复合镀层的表面形貌、结构及性质产生很大的影响 [4]。 纳米电镀沉积技术:电镀的基本原理就是在电场作用下,带电离子沉积在被镀物上镀层质量与镀液中的离子浓度和工艺参数密切相关。沉积的原理为吸附,第一步镀液中的颗粒在阴极表面形成吸附层;第二步颗粒在强力搅拌下通过流动层;第三步颗粒通过扩散层到阴极表面;第四步弱吸附;第五步为强吸附。随着工业生产自动化程度的日渐提高、工艺参数的选择及各种添加剂的合理使用,一种所谓纳米晶镀层结构已经得到实际应用,使得镀层的硬度、耐磨性有显著提高,光洁度和致密性得到改善,气孔率大幅度下降,出现“无气孔镀层”概念,这对于用于电接触材料的贵金属镀层有着重要意义[5]。镀液的PH:镀液的PH会造成纳米微粒表面不同的带电情况,进而影响复合镀层的表面形貌甚至结构,最终导致复合镀层性质的显著变化。例如,PH=4.8时得到的镀层的孔隙度要低于其它试样,但晶界容积率达到最大,就使得纳米微粒在Ni矩阵中得到很好的分散,进而提高了复合镀层的机械性质。镀液的搅拌速度:电镀过程中,为了使微粒在镀液中达到充分、均匀的悬浮状态以及便于微粒向阴极表面的输送,必须依靠搅拌的作用,因此搅拌速度即转速的大小对微粒在复合镀层中的含量、镀层的表面结构和性能的影响较大。镀液温度:一般在20℃(常温)-65℃范围内进行调整,温度高,沉积

NI基纳米复合电镀镀层的性能研究

辽宁科技大学本科生专业选修课 现代表面分析检测方法 结课论文 论文名称:NI基纳米复合电镀镀层的性能研究学生:郑奇 院系名称:材料与冶金学院 授课教师:金辉 专业班级:材料化学14-1 学号: 联系电话:

NI基纳米复合电镀镀层的性能研究 摘要:采用复合电镀技术通过向电镀溶液中加入平均粒度为90 nm的Al2O3粉, 在Ni基材上制备了Ni-纳米Al2O3复合镀层,应用扫描电镜(SEM)、X射线衍射(EDAX)及透射电镜(TEM)等手段对复合镀层的表面形貌和结构进行了表征,并通过试验考察了镀层的磨损性能。结果表明,纳米Al2O3颗粒均匀分布在Ni纳米晶中;纳米Al2O3颗粒的加入不仅细化了基体Ni的晶粒尺寸,而且还具有弥散强化作用,从而提高了Ni- Al2O3纳米复合镀层的硬度和耐磨性能[1]。 关键词:纳米Al O3;复合电镀;结构;形貌;耐磨性能 2 复合电镀技术具有设备简单、易操作、价格经济等优点,已广泛应用于航空、汽车、电子等行业。复合电镀中常用的第二相固体颗粒有碳化物、氧化物和氮化物如SiC、ZrO2、Ti02、Si3N4等。大量试验结果表明,金属基复合镀层的性能不仅与颗粒性质还与颗粒的含量、尺寸及分布有关。Al2O3颗粒具有特殊的机械和化学特性,如高化学稳定性,高硬度和高温耐磨性等,可作为金属基复合物的增强第二相应用在微器件表面,从而提高器件的耐磨性能。普通微米粒由于颗粒粗大,所得镀层表面粗糙,颗粒与基体金属材料界面结合较弱,镀层质量差。随着纳米粉制备技术的不断发展,性能更优异的纳米复合镀层出现。本工作采用复合电镀技术,通过向普通电镀液中加入平均粒度约为90 nm的Al2O3粒子,在Ni 基材上制备了Ni-纳米Al2O3复合镀层并对其摩擦磨损性能进行了研究[1]。一.试验 选用尺寸为15 mm×10 mm ×2 mm的电解Ni片为基材,同一成分的Ni 片为电镀时的阳极。试样用水砂纸磨至800号后经酒精、超声波清洗。镀液为弱酸性镀液,pH值为,镀液配方为:LNiS04·7H20,L NH4Cl,g/L H3B04,L C12H25OSO3Na。纳米Al2O3粉直接加入镀液,为保证纳米粉颗粒的悬浮,在复合电镀过程中施以磁力搅拌。镀液温度为35℃,电流密度3A/dm2,施镀时间2h,镀层厚约为50μm。显微硬度测量在MHV2000维氏数字显微硬度计上进行,载荷为,加载时间为10S,取10个点的平均值为最终的硬度值。摩擦磨损试验在

纳米复合镀技术

!!!!!!!!!!!!!!!!" " " " 知识介绍 纳米复合镀技术 王为郭鹤桐 (天津大学化工学院应用化学系 天津 300072) 王 为 女,40岁,博士,教授,从事纳米材料和功能材料的制备技术及应用研究,E-maiI :wwangg200l@https://www.360docs.net/doc/f916687486.html, 国家自然科学基金资助项目(5007l040)2002-08-22收稿,2002-09-26修回 摘 要纳米粒子具有的量子尺寸效应、表面效应和宏观量子隧道效应等,使其表现出很多独特的 物理及化学性能。采用液相金属电沉积技术,通过将纳米粒子引入金属镀层中形成的纳米复合镀层,显示出优越的机械性能、电催化性能、耐腐蚀性能等,正逐渐成为研究的热点。本文介绍了纳米复合镀层的制造技术及纳米复合镀层的结构以及纳米复合镀层的研究现状。 关键词 纳米微粒 纳米复合镀技术 纳米复合镀层 Development of Nano-composite Plating Technoloyg Wang Wei ,Guo Hetong (Department of AppIied Chemistry ,SchooI of ChemicaI Engineering and TechnoIogy ,Tianjin University ,Tianjin 300072,China ) Abstract When the size of particIes is decreased to nano-scaIe ,the particIes wiII possess many speciaI characteristics as guantum size effect ,surface effect ,macro-guantum tunneI effect.Liguid eIectrodeposition technoIogy can be used to fabricate nano-composite pIating by adding the nano-particIes into the eIectrodeposition soIution.Nano-composite pIating is showing more and more exceIIent performance ,such as mechanicaI performance ,cataIytic performance ,corrosive protective performance and so on.AII of this has bought a wide range investigation on it.In this review ,a smaII part is given to introduce the manufacture technoIogy and the structure of nano-composite pIating ,and the attention wiII be put on its recent deveIopment. Key words Nano-particIes ,Nano-composite pIating ,Manufacture technoIogy 采用电镀或化学镀的方法,在普通镀液中加入纳米微粒,搅拌状态下使纳米粒子与基质金属共沉积而得到的复合镀层,称为纳米复合镀层。纳米复合镀层的制造技术称为纳米复合镀技术。 随着纳米材料学的发展,人们对纳米粒子性质的认识不断深化。纳米粒子具有很多独特的物 理及化学性能[l ,2] ,包括量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应等,如何使其得 到开发及实际应用,正日益成为研究的重点。将纳米微粒引入金属镀层中赋予金属镀层以纳米粒子独特的物理及化学性能的纳米复合镀技术,是纳米材料技术与复合镀技术完美结合的结果,是复合镀技术发展进程中的一次质的飞跃。尽管纳米复合镀技术的研究始于20世纪90年代,但纳米复合镀层所表现出的诸多优异性能已使纳米复合镀技术迅速成为电镀技术发展的又一热点。在表

制备镍基涂层

镍基涂层是以镍为基体,复合其他金属、非金属或硬质相颗粒的合金体系。镍基涂层由于其优异的耐腐蚀性能可应用在超大规模集成设备、微机电系统、模内镶件、磁头、内燃机汽缸、钟表机芯和石油容器涂层等方面。在实际应用中,需要根据主要性能要求和材料属性优化选择制备方式。 一、电子束焊接法 电子束焊接法将高能电子束作为加工热源,用高能量密度的电子束轰击焊件接头处的金属,使其快速熔融,然后迅速冷却。这种方法可以形成高密度的表面合金膜,改善一些材料的表面敏感特性。低能量的强流电子束在可靠性,高效率,低成本,低X射线辐射等方面优于脉冲激光器和高功率离子束源。美国NASA采用强流脉冲电子束对热障涂层多层系统中的NiCoCrAlY涂层进行改性,使其结构致密,保护基体抗氧化,对热障涂层的稳定性起着关键作用。 二、激光表面合金化 激光表面合金化利用高能密度的激光束快速加热熔化,使基材表层和添加的合金元素熔化混合,从而形成以原基材为基的新表面合金层。激光表面合金化广泛适用于材料的表面改性,提高金属合金的腐蚀性能和耐磨性。激光加工可以在合金的表面掺入硬质颗粒,使这些颗粒在熔融基底溶解,改变其冶金结构和性质。实验表明,经过激光处理的涂层表面光滑平整、无裂纹,硬度高,且耐腐蚀性能获得大幅提升。 三、物理气相沉积。 物理气相沉积技术是在真空条件下,将材料源气化成气态原子、分

子或部分电离成离子,在基体表面沉积成具有某种特殊功能的薄膜。物理气相沉积涂层具有低摩擦、高耐磨和耐氧化性能,可以有效提高合金的耐磨损和抗腐蚀特性。例如,采用物理气相沉积在Ni-P涂层上复合CrN,既降低了磨损率,又兼顾涂层的耐蚀性能。 四、化学气相沉积 化学气相沉积是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面。化学气相沉积被应用于Ni基超合金的制备,例如,在Ni基上制备β-NiAl金属粘结涂层。 五、电镀 电镀已经成功利用电镀法生产了众多的纳米结构金属、合金以及金属基复合涂层。常规方法难以制备的低熔点挥发性金属与高熔点金属的合金,可以通过电镀来实现。电镀能使本身不能从水溶液还原的金属,与铁族元素以共沉积方式获得镍基三元合金涂层。 总的来说,对于不同的应用场合应采用不同的制备工艺:电子束焊接法适用于高密度的镍基涂层;激光表面合金化适用于镍基复合硬质第二相颗粒的涂层,提高耐磨性;物理气相沉积适用于功能性薄膜的制备,无污染;化学气相沉积适用于形状复杂结构的涂层制备,覆盖性好,纯度高,控制精准;电镀使用于大面积涂层制备,操作容易,能耗较低。

金属基纳米复合材料

金属基纳米复合材料 摘要:本论文主要介绍了纳米复合材料的设计(包括结构设计和功能设计),讨论了金属基复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对金属基纳米复合材料的发展进行了展望 。 关键词:纳米复合材料简介金属基复合材料特性金属基复合材料制备方法碳纳米管金属基纳米复合材料展望 引言:金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、耐湿性好、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉积和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业,而使其应用越来越广泛,进入到生产生活的各个方面。 纳米复合材料简介 纳米材料是由纳米量级(1—100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数的比值随着粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。由于纳米材料的特异性能,纳米材料有着广泛的应用。 根据纳米复合材料的功能特性和使用时的侧重点,可将其粗略地分为结构纳米复合材料和功能纳米复合材料两大类。前者主要用在产品或工程的结构部件上,着重在材料的结构强度、刚性、韧性、耐热性能等机械、物理、力学性质和耐化学腐蚀与耐恶劣环境能力上的赋予;后者侧重在利用材料的特殊光、电、声、热、磁敏感应、信息贮存与传输、能量贮存与释放等性能及效应来实现某种功能。根据纳米复合材料的复合途径可分为:纳米相—纳米相复合材料,纳米相—常规块体复合材料及复合纳米薄膜。根据复合材料组分的性质可分为无机—无机纳米、有机—有机纳米以及无机—有机纳米复合材料。 金属基纳米复合材料的特性 金属基纳米复合材料的力学性能主要具有如下的特点:高强度和高韧性,高比强度和高比模量,抗蠕变和抗疲劳性好,高温性能好,断裂安全性高等。 1.微观结构 研究人员用超声波气态原子化法和热挤压锻造制备纳米复合材料,研究其微观结构演化、热稳定性和ɑ-Al纳米相生长动力学,发现:原子化粉末的微观结构受基体中溶质过饱和度、隐含微应力、溶质大小、分布状态和沉积纳米相的体 (Ni,Fe)纳米相积分数等因素影响;在热的结晶过程中,ɑ-Al相的沉积和Al 3

金属基纳米复合材料

金属基纳米复合材料 摘要:综述了复合材料的重要作用和金属基纳米复合材料作为复合材料材料中的一种,它的力学和磁学性能,分析了金属基纳米复合材料的微观结构,介绍了国内外相关研究现状及应用的最新进展。主要指出了金属基纳米复合材料的制备方法,在此基础上提出了研究中存在的几个重要问题,展望了金属基纳米复合材料的未来发展趋势。 关键字:复合材料;金属基纳米复合材料;微观结构;性能;应用。 1. 引言 现代高科技的发展更紧密地依赖于新材料的发展,同时也对材料提出了更高、更苛刻的要求,高温、高压、高强度、低密度、耐磨、柔韧性……。当前作为单一的金属、陶瓷、聚合物等材料各自固有的局限性而不能满足现代科学技术发展的需要。复合材料特别是先进复合材料就是为了满足以上高技术发展的需求而开发的高性能的先进材料〔1〕。复合材料是应现代科学技术而发展出来的具有极大生命力的材料。 复合材料是两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。而金属基纳米复合材料是复合材料中的一种。纳米材料是由纳米量级的纳米粒子组成的固体材料。纳米微粒有基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应〔2〕。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数之比随粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑和超塑性等。金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、不吸湿、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业。 2. 复合材料的历史 6000年前人类就已经会用稻草加粘土作为建筑复合材料。近代,水泥复合材料已广泛地应用于高楼大厦和河堤大坝等的建筑,发挥着极为重要的作用。现在,先进复合材料包括有树脂基复合材料、CC复合材料陶瓷和金属基复合材料和纳米复合材料,在各个领域有广泛的应用。现

相关文档
最新文档