高等数学第九章多元函数极值典型问题

高等数学第九章多元函数极值典型问题
高等数学第九章多元函数极值典型问题

1 设函数2

2(,)22f x y x

ax xy y =+++在(1,1)-处取得极值,试求常

数a ,并确定极值的类型.

2 求函数2

2

z x

xy y =-+在区域1x y +≤上的最大值和最小

值.

3(04研) 设(,)z z x y =是由2

226102180x

xy y yz z -+--+=确定的函

数,求(,)z z x y =的极值点和极值.

4 求函数23

u xy z =在条件x y z a ++=(其中,,,a x y z R +

∈)下的条

件极值.

1 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型.

分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题.

解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1)

(1,1)

(1,1)(1,1)

40220f

x a y x f xy y ----??=++=??????=+=???,

因此有410a ++=,即5a =-. 因为

22

(1,1)

4f A x

-?==?,2(1,1)

(1,1)

22f

B y x y

--?=

==-??, 22

(1,1)(1,1)

22f

C x y

--?===?,

2242(2)40AC B ?=-=?--=>,40A =>,

所以,函数(,)f x y 在(1,1)-处取得极小值.

2 求函数22z x xy y =-+在区域1x y +≤上的最大值和最小值.

分析 这是多元函数求最值的问题.只需要求出函数在区域内可能的极值点及在区域边界上的最大值和最小值点,比较其函数值即可.

解 由

20z

x y x

?=-=?,20z y x y ?=-=?解得0x =,0y =,且(0,0)0z =. 在边界1,0,0x y x y +=≥≥上,

22()313(1)133z x y xy x x x x =+-=--=-+,

它在[0,1]上最大值和最小值分别为1和

1

4

; 同理,在边界1,0,0x y x y +=-≤≤上有相同的结果. 在边界1,0,0x y x y -=-≤≥上,

22()1(1)1z x y xy x x x x =-+=++=++,

在[0,1]上最大值和最小值为1和3

4

同理,在边界1,0,0x y x y -=≥≤上有相同的结果.

综上所述,函数22z x xy y =-+在区域1x y +≤上的最大值和最小值分别为 max 13max 0,,,1144z ??==????, min 13min 0,,,1044z ??

==????

注 求多元连续函数在有界闭区域上的最大值和最小值时,求出可能的极值点后,并不需要判别它是否为极值点.另外,求函数在边界上的最大值和最小值时,一般是将问题化为一元函数的最值问题或用其他方法,比如用条件极值的方法或不等式的技巧.

3(04研) 设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.

分析 本题考查由方程确定的隐函数的极值问题,应先求出驻点.再求出二阶偏导数,利用充分条件判定是否为极值点.

解 因为2226102180x xy y yz z -+--+=,所以方程两边分别对x 与y 求偏导,得

26220(1)

6202220

(2)

z z

x y y

z x x

z z

x y z y z y y

??---=????-+---=?? 令 303100

z x y

x y z z x y z y

y z ?-?==??+???-+-?==??+?,解之得303100x y x y z -=??-+-=? 即

3x y

z y =??=?

. 将3x y =,z y =代入2226102180x xy y yz z -+--+=可得933x y z =??

=??=? 或

933x y z =-??

=-??=-?

, 即点(9,3)与点(9,3)--是可能的极值点,下面判定是否为极值点.

在(1)式两边对x 求偏导,得

2

222222220z z z y z x x x ?????

---= ??????

在(1)式两边对y 求偏导,得

22622220z z z z z

y z x x y y x x y

?????-----=???????,

在(2)式两边对y 求偏导,得

2

222220222220z z z z z

y z y y y y y ???????-----= ????????

所以

2222

2

(9,3,3)(9,3,3)(9,3,3)115

,,623

z

z z

A B C x

x y

y

???====-==????. 故21036AC B -=>,又1

06

A =>,从而点(9,3)是(,)z x y 的极小值点,且极小值为 (9,3)3z =.

类似地由

2222

2

(9,3,3)(9,3,3)(9,3,3)115

,,.623

z z z

A B C x

x y

y

---------???==-=

===-????.

故21036AC B -=

>,又1

06

A =-<,所以点(9,3)--是(,)z x y 的极大值点,且极大值为(9,3)3z --=-.

综上所述,点(9,3)是(,)z x y 的极小值点,且极小值为(9,3)3z =;点(9,3)--是(,)z x y 的极大值点,且极大值为(9,3)3z --=-.

4 求函数23u xy z =在条件x y z a ++=(其中,,,a x y z R +∈)下的条件极值. 分析 条件极值问题可考虑将其转化为无条件极值,或用拉格朗日乘法来求. 解法1 将x a y z =--代入函数23u xy z =,得23()u a y z y z =--, 于是由

322(232)0(334)0u

yz a y z y

u y z a y z z

??=--=????

??=--=??? 解得32

a y a z ?

=????=??,则

243

2

,32,322(3)8a a a a u a A z a y z y ?? ?????

?

??

?==--=-?, 242

,32,32(698)12a a a a u a B yz a y z y z ?? ?????

?

??

?=

=--=-??,

242

2,32,326(2)9a a a a u a C y z a y z z ?? ?????

?

??

?==--=-?,

2

44482

0,08912144

a a a a AC B A ??????-=----=

>< ??? ???????.

所以,当,,32326a a a a a

y z x a ===--=时,函数取得极大值,且极大值为

2

3

6,,632632432a a a a a a a u ??????

== ? ? ???????

解法2 令23(,,)()(,,,)F x y z xy z x y z a x y z a R λ+=+++-∈,于是由

233220

2030

x

y z F y z F xyz F xy z x y z a

λλλ?'=+=??'?

=+=?

'?=+=?++=?? 解得632a x a y a z ?

=??

?

=??

?=??

,即(,,)632a a a 为可能的极值点,将x a y z =--代入函数23u xy z =,得

23()u a y z y z =--, 则(,)32a a

为可能的极值点,余下解法同解法1,求出,,A B C .知

,6a x =,3a y =2

a

z =时,函数取得极大值6432a u =. 如有侵权请联系告知删除,感谢你们的配合!

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

高等数学第九章多元函数极值典型问题

1 设函数2 2(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常 数a ,并确定极值的类型. 2 求函数2 2 z x xy y =-+在区域1x y +≤上的最大值和最小 值. 3(04研) 设(,)z z x y =是由2 226102180x xy y yz z -+--+=确定的函 数,求(,)z z x y =的极值点和极值. 4 求函数23 u xy z =在条件x y z a ++=(其中,,,a x y z R + ∈)下的条 件极值.

1 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型. 分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题. 解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1) (1,1) (1,1)(1,1) 40220f x a y x f xy y ----??=++=??????=+=???, 因此有410a ++=,即5a =-. 因为 22 (1,1) 4f A x -?==?,2(1,1) (1,1) 22f B y x y --?= ==-??, 22 (1,1)(1,1) 22f C x y --?===?, 2242(2)40AC B ?=-=?--=>,40A =>, 所以,函数(,)f x y 在(1,1)-处取得极小值. 2 求函数22z x xy y =-+在区域1x y +≤上的最大值和最小值. 分析 这是多元函数求最值的问题.只需要求出函数在区域内可能的极值点及在区域边界上的最大值和最小值点,比较其函数值即可. 解 由 20z x y x ?=-=?,20z y x y ?=-=?解得0x =,0y =,且(0,0)0z =. 在边界1,0,0x y x y +=≥≥上, 22()313(1)133z x y xy x x x x =+-=--=-+, 它在[0,1]上最大值和最小值分别为1和 1 4 ; 同理,在边界1,0,0x y x y +=-≤≤上有相同的结果. 在边界1,0,0x y x y -=-≤≥上, 22()1(1)1z x y xy x x x x =-+=++=++,

探索求一元函数极值和最值方法

“探索求一元函数极值和最值方法”的学习报告 一、前言 函数的极值、最值不仅在实际问题中占有重要地位,而且也是函数形态的重要特征。因此,通过学习、掌握确定极值点和最值点,并求出极值和最值的方法是十分重要的。 二、学习内容和过程 1.探索可能的极值点 (1)回顾相关定义、定理 a.极值定义:若函数f在点x0的领域U(x0)内对一切x∈U(x0)有f(x0)≥(≤)f(x),则称函数f在点x0确取得极大(小)值。称x0为极大(小)值点。 b.费马定理:设函数f在点x0的某领域内有定义,且在点x0可导。若点x0为f的极值点,则必有f’ (x0)=0。且称这样的点为稳定点。 (2)思考并回答下列问题。进一步分析可能的极值点类型。 a.可导点成为极值点一定是稳定点吗?(是。通过费马定理可证明) b.函数的不可导点也能称为极值点吗?(能。例如y=| x|在x=0处取极小值) c.函数的稳定点一定是极值点吗?(不一定。例如y=x3,x=0为稳定点,但非极值点) d.函数的不可导点一定是极值点吗?(不一定。例如y=1/x,在x=0处不可导,但不是极值点) e.函数在点x0处不可导,它包含了哪几种情况?(①连续不可导②不连续) f.除此之外,还有没有其他类型的点极值点?(没有) 稳定点,例如y=x2,x=0处 (3)由上面的问题得到极值点的范围 连续不可导,例如y=| x|,x=0处 不可导点2x≠0 不连续点,例如y= -1 x=0 2.探索确定极值点的方法 由极值点的范围可知极值点分为连续点和间断点。对于剪短点,只要满足在x0某领域内始终有f(x0)≥f(x)或者f(x0)≤f(x),至于连续部分函数任意,这样间断点x0就为极大或极小值点,即判断间断点是否为极值点,只需要根据极值定义即可。下面主要讨论连续点能否成为极值点的判断。 (1)a.考察函数y=x2,y=x3,y=x1/3易知在x=0处连续,在U0(x)可导,且有 ①y=x2x<0时,f’ (x)<0,函数严格递减 x>0时,f’ (x)>0,函数严格递增 ②y=x3 f’ (x) ≥0函数单调递增 仅在x=0时,f’ (x)=0 ③y=x1/3 f’ (x)>0.函数严格递增且x=0处不可导 由y=x2在x=0处连续以及两边领域内的增减性可知y=x2在x=0处取得极小值,而y=x3以及y=x1/3由f(x)的增减性可知在x=0处不取极值。 b.启发得到定理:设f在点x0连续,在某领域U0(x0)内可导则 Ⅰ若当x∈U+0(x0),f’ (x) ≤0,当x∈U—0(x0),f’ (x) ≥0,则f在点x0处取得极大值Ⅱ若当x∈U+0(x0),f’ (x) ≥0,当x∈U—0(x0),f’ (x) ≤0,则f在点x0处取得极小值

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31,31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A 6.函数 在点 处具有两个偏导数 是函数存在全

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

函数极值与最值研究毕业论文

函数极值与最值研究 摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等, 关键词:函数,极值,最值,极值点,方法技巧. Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

“图解法解二元函数的最值问题”

“图解法解二元函数的最值问题” 教学课例 昌平区第一中学 回春荣

“图解法解二元函数的最值问题”教学课例 一、设计意图: 在新课程背景下的教学中,课堂上我们应是以“问”的方式来启发学生深思,以“变”的方式诱导学生灵活善变,使整堂课有张有弛,真正突出了学生是教学活动的主体的原则。本节内容是在学习了不等式、直线的方程的基础上,利用不等式和直线的方程有关知识展开的,它是对二元函数的深化和再认识、再理解,是直线、圆和不等式的综合运用,同时它又对理解下一章“圆锥曲线”的相关内容有着很好的帮助作用,所以这一部分内容起到了一个巩固旧知识,熟练方法,理解新知识的承上启下的作用。图解法在解决函数求最值的问题上有着广泛的应用,这节课为学生提供了广阔的思维空间,对培养学生自主探索、合作研究、主动发现问题、分析问题,创造性地解决问题的能力有着丰富的素材。教学上通过设置问题情境、多媒体展示,学生动手操作,使学生在“做中学”,学生在实际操作中,既发展了学生的个性潜能,又培养了他们的合作精神。 二、本课教学目标 1、知识与技能:通过识图、画图,学会解决有约束条件的二元函数最值问题的处理方法——图解法。 2、过程与方法:经历约束条件为二元一次不等式组,目标函数为具有截距、斜率、距离等几何意义的二元函数的最值问题的探究过程,提炼出解决这类问题的方法——以图定位,以算定量。 3、情感态度与价值观:通过对有约束条件的二元函数的最值问题的探究,培养学生科学严谨的治学态度,勇于探索、敢于创新的学习精神,同时感受合作交流的快乐。 三、教学过程与教学资源设计 (一)、教学内容:图解法解二元函数的最值问题 (二)、教学设计流程图:

高等数学(复旦大学版)第十章-多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学内容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

多元函数微分学复习(精简版)

高等数学下册复习提纲 第八章 多元函数微分学 本章知识点(按历年考试出现次数从高到低排列): 复合函数求导(☆☆☆☆☆) 条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆) 曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆) 一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆) 1. 多元复合函数高阶导数 例 设),,cos ,(sin y x e y x f z +=其中f 具有二阶连续偏导数,求x y z x z ?????2及. 解 y x e f x f x z +?'+?'=??31cos , y x y x y x y x e e f y f f e x e f y f y x z x y z ++++?''+-?''+'+?''+-?''=???=???])sin ([cos ])sin ([333231312 22析 1)明确函数的结构(树形图) 这里y x e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构 图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一 项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”. 2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x y x e y x f e y x f ++''的简写形式,它们与z 的结构 相同,仍然是y x e y x +,cos ,sin 的函数.所以1f '对y 求导数为 z u v w x x y y

二元函数极值问题

二元函数极值问题

2

3

4

5 0x >时, 1,z x ?=? 0x <时,1z x ?=-?. 因此在0x =时偏导数不存在. 由此可见,函数的极值点必为 f x ??及f y ??同时为零或至少有一个偏导数不存在的点. 3.2极值的充分条件 设函数),(y x f z =在点的某个邻域内连续且有二阶连续偏导数,又 0),(00'=y x f x 且0),(00'=y x fy ,记二阶连续偏导数为 A y x f xx =),(00', B y x f xy =),(00', C y x f yy =),(00', AC B -=?2,则函数),(y x f z =在),(00y x 点处是否取得极值的条件如下: (1) 当0A 时,函数),(y x f z =在点),(00y x 处取得极小值; (3) 当0>?时,函数),(y x f z =在点),(00y x 处不取得极值; (4) 当0=?时,函数),(y x f z =在点),(00y x 处可能取得极值,也可能不取得极值. 4. 求二元函数的极值的步骤 要求函数的极值,首先要求出所有使函数的偏导数等于零或偏导数不存在的点,然后讨论该点周围函数的变化情形,以进一步判断是否有极值,为此我们讨论f ?,若(,)f x y 的一切二阶导数连续,则由泰勒公式并注意到在极值点必须0x y f f ==,就有 222 000000200001(,)(,)((,)22(,)(,)) x xy y f f x x y y f x y f x x y y x f x x y y x y f x x y y y θθθθθθ?=+?+?-=+?+??++?+???++?+??. 由于(,)f x y 的一切二阶偏导数在00(,)x y 连续,记200(,)x A f x y =,00(,)xy B f x y =,200(,)y C f x y =,那就有

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

多元函数微分学练习题完整版

多元函数微分学练习题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1(,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? .

12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 . 17. 曲线2226,2 x y z x y z ?++=?++=?在点(1,2,1)-处切线的方向向量s = . 18. 设2),,(yz e z y x f x =,其中),(y x z z =是由方程z y x e z y x --+=+确定的隐函数,则=)1,1,0(x f . 二、选择题 1. 设0x 是n R ?E 的孤立点,则0x 是E 的 ( ) (A)聚点; (B)内点; (C)外点; (D)边界点. 2. 设0x 是n R ?E 的内点,则0x 是E 的 ( ) (A)孤立点; (B)边界点; (C)聚点; (D)外点. 3. 设22 2, (,)(0,0)(,)0, (,)(0,0)x y x y f x y x y x y ?+≠?=+??=? ,则(0,0)y f =( ) (A) 0 (B) 1 (C) 2 (D) 1-

第八节多元函数的极值及其求法

第八节 多元函数的极值及其求法 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。 难点:求最值实际问题建立模型,充分性判别法的证明。 作业:习题8-8(71P )3,5,8,9,10 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相 类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题. 一.多元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的 偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均 有 ),(),(00y x f y x f <,),(),(00y x y x ≠ 成立. 特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立.

多元函数微分学及应用

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法? (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??=叫做微分形式不变性。 例1 设? ?? ??=x y xy f x z , 3 ,求y z x z ????,。 解:?? ? ?????? ??'+' +=+?=x y d f xy d f x fdx x df x dx x f dz 213 2 3 2 )(33 ?? ? ???-'++' +=22 13 2(3x ydx xdy f ydx xdy f x fdx x

相关文档
最新文档