T载体与目的基因连接

T载体与目的基因连接
T载体与目的基因连接

一. 重组质粒的构建 T质粒载体

重组的DNA分子是在DNA连接酶的作用下,有Mg2 、ATP存在的连接缓冲系统中,将分别经酶切的载体分子与外源DNA分子进行连接。

DNA连接酶有两种:T4噬菌体DNA连接酶和大肠杆菌DNA连接酶。两种DNA连接酶都有将两个带有相同粘性末端的DNA分子连在一起的功能,而且T4噬菌体DNA连接酶还有一种大肠杆菌DNA连接酶没有的特性,即能使两个平末端的双链DNA分子连接起来。但这种连接的效率比粘性末端的连接率低,一般可通过提高T4噬菌体DNA 连接酶浓度或增加DNA浓度来提高平末端的连接效率。 T4噬菌体DNA 连接酶催化DNA 连接反应分为3 步:首先,T4 DNA 连接酶与辅因子ATP形成酶-ATP复合物;然后,酶-ATP复合物再结合到具有5’磷酸基和3’羟基切口的DNA上,使DNA腺苷化;最后产生一个新的磷酸二酯键,把切口封起来。连接反应通常将两个不同大小的片断相连。

很多DNA聚合酶在进行PCR扩增时会在PCR产物双链DNA每条链的3’端加上一个突出的碱基A。pUCm-T载体是一种已经线性化的载体,载体每条链的3’端带有一个突出的T。这样,pUCm-T载体的两端就可以和PCR产物的两端进行正确的AT配对,在连接酶的催化下,就可以把PCR产物连接到pUCm-T载体中,形成含有目的片断的重组载体。

连接反应的温度在37℃时有利于连接酶的活性。但是在这个温度下粘末端的氢键结合是不稳定的。因此采取折中的温度,即12-16℃,连接12-16h(过夜),这样既可最大限度地发挥连接酶的活性,又兼顾到短暂配对结构的稳定。

二. 感受态制备原理

细菌在0°C CaCl

低渗溶液中胀成球形,丢失部分膜蛋白,成为容易

2

吸收外源DNA的感受态。

三. β-半乳糖甘酶显色反应选择法

LacZ基因是大肠杆菌乳糖操纵子中的一个基因,可以编码β—半乳糖核苷酶。β—半乳糖核苷酶是由4个亚基组成的四聚体,可催化乳糖的水解.用X-Gal为底物进行染色时,呈蓝色。

现在一些特定的质粒(比如pUC/pBS等),常带有β—半乳糖核苷酶的调控序列和β—半乳糖核苷酶N端146个氨基酸(α肽段)的编码序列,在这个编码序列里还插入一个多克隆位点(MCS),它并不影响lacZ的表达。另外,常用的大肠杆菌带有β—半乳糖核苷酶C端部分序列(β肽段),的编码序列。在各自独立的情况下,这些质粒与大肠杆菌各自编码的β—半乳糖核苷酶片段都没有酶的活性。只有当携带α

配制每升培养基,应该在950 ml去离子水中加入:胰化蛋白胨 10g 酵母提取物

5g NaCl 10g 摇动容器直至溶质溶解.用5mol/LNaOH调pH至.用去离子水定容至1L.在15psi高压下蒸汽灭菌20min.( 100mlLB培养基加入琼脂粉为固体培养基)LCaCl2:取氯化钙固体定容至10ml

Amp(100mg/ml):溶解氨苄青霉素钠盐于足量的水中,最后定容至1ml,用μm滤膜过滤除菌.

(一).目的基因片段与载体连接

器材

旋涡混合器,微量移液取样器,移液器吸头,微量离心管,双面离心管架,台式离心机,干式恒温气浴。

试剂

T 载体,T4 DNA 连接酶,连接酶缓冲液,无菌dd Water 。

操作步骤

PCR产物与T载体直接连接:

(1)事先将干式恒温仪(或冰盒里的水)温度设定在14~16°C。

(2)取4个灭菌的200ul微量离心管,加入:(需要调整) 4ml 目的基因;1ml T载体; T4 DNA连接酶(TAKARA, 350U/ul);1ml 连接酶缓冲液10 x buffer ;ml dd Water ,总量10ml 体系。

(3)述混合液轻轻震荡后再短暂离心,然后置于14°C干式恒温仪(或14°C 水中)中保温过夜(12-16h)。

(4)连接后的产物可以立即用来转化感受态细胞或置4°C冰箱备用。(二). 大肠杆菌感受态细胞的制备细菌转化

仪器:旋涡混合器,微量移液取样器,移液器吸头,50ml 微量离心管,微量离心管,台式冷冻离心机,制冰机,恒温摇床,分光光度计,超净工作台,恒温培养箱,摇菌试管,三角烧瓶,接种环,恒温摇床,培养皿(已铺好固体LB-Amp),酒精灯,玻璃涂棒,恒温培养箱,滤膜和过滤器试剂: E. coli菌种,LB培养基, mol/L CaCl2溶液,无菌dd Water ,LB培养基(不加抗菌素),LB培养基(加抗菌素),无菌dd water,IPTG,X-gal。

步骤(1)在超净工作台中,将1ml大肠杆菌菌液加入100ml LB液态培养基(不含抗菌素),37℃摇床培养过夜。

(2)取上述菌液转接到含有50mL LB培养基的三角烧瓶中,37℃下250r/min 摇床培养2~3h,测定OD590为~左右(<~,细胞数<108/mL,此为关键参数!)。(注意:此步摇菌的时候,要有一管不加菌的LB培养液同时摇菌)

(3)将1ml菌液加入到4支预冷无菌的聚丙烯离心管中,于冰上放置10min,然后于4℃,5000rpm离心5min。

(4)将离心管倒置以倒尽上清液,加入1ml 冰冷的 mol/L CaCl2溶液,立即在涡旋混合器上混匀,插入冰中放置30min。

(5) 4℃,5000rpm离心5min,弃上清液后,用100μL 冰冷的 mol/L CaCl2溶液垂悬,插入冰中放置2h,可以直接用作转化实验,或立即放入-4摄氏度冰柜中保藏。

(6)事先将恒温水浴的温度调到42℃。

(7)从-70℃超低温冰柜中取出一管(100μL)感受态菌,立即用手指加温融化后插入冰上,冰浴5~10min。

(8)加入5μL连接好的质粒混合液(DNA含量不超过100ng),轻轻震荡后放置冰上20min。

(9)轻轻摇匀后插入42℃水浴中90s进行热休克,然后迅速放回冰中,静置

3min。

(10)在超净工作台中向上述各管中分别加入300μL LB培养基(不含抗菌素)轻轻混匀,然后固定到摇床的弹簧架上37℃震荡1h。

(11)在超净工作台中取上述转化混合液200μL,分别滴到含合适抗菌素(Amp 100ug/L)的固体LB平板培养皿中,再在平板上滴加40μL 20mg/ml X-gal,7μL 200mg/ml IPTG,用酒精灯烧过的玻璃涂布棒涂布均匀(注意:一个不含抗生素作为对照组,玻璃涂布棒上的酒精熄灭后稍等片刻,待其冷却后再涂,菌液涂皿操作时,应避免反复来回涂布,因为感受态细菌的细胞壁有了变化,过多的机械挤压涂布会使细胞破裂,影响转化率。)。

(12)在涂好的培养皿上做上标记,先放置在37℃恒温培养箱中30min直到表面的液体都渗透到培养基里后,再倒置过来放入37℃恒温培养箱过夜。

(13)在被细菌污染的桌面上喷洒70%乙醇,擦干桌面。

(14)观察平板上长出的菌落克隆,以菌落之间能互相分开为好。注意白色菌斑。

(三). 转化克隆的筛选和鉴定

器材旋涡混合器,小镊子,微量移液取样器,移液器吸头,微量离心管,双面离心管架,干式恒温气浴(或恒温水浴锅),制冰机,恒温摇床,超净工作台,酒精灯,无菌牙签,摇菌管。

试剂LB培养基(加抗菌素),PCR用试剂,引物,质粒提取用试剂,酶切需要的限制性内且酶及其缓冲液,65%甘油(65%甘油,L MgSO4,L Tris Cl )。

操作步骤方法一:快速PCR筛选法

(1)在转化的平板培养基上随机选取4个边缘清晰的白色菌落,并用记号笔在其所在的培养皿底部玻璃背面画圈做标记编号。

(2)在 PCR 微量离心管中配制25μl反应体系。

dd water 16μl

10×PCR buffer(不含MgCl2)μl

25mM MgCl2 μl

L dNTP 2μl(每种dNTP终浓度)

10μmol/L Primer1 1μl(—25pmoles)

10μmol/L primer2 1μl(—25pmoles)

模板质粒用小tip头轻轻粘一下选中的白色菌落,再伸入PCR混合液中洗一洗Taq酶μl()

总体积 25μl

(2)根据厂商的操作手册设置PCR仪的循环程序(本实验室已经设置为WZ):①94℃5min ②94℃1min ③60℃1min ④72℃1min50s⑤goto②29 times ⑥72℃10min (2) PCR结束后,取10μl产物进行琼脂糖凝胶电泳(与原始插入片断同时比对)。观察胶上是否有预计的主要产物带。

(3)按照编号找到培养皿中的原菌斑。根据需要进行放大培养提取其质粒

(4)提取到的质粒与原先的空载体(或已知分子量的质粒)再对比电泳,以进一步确认。

方法二:提质粒再PCR或酶切鉴定

(1)在超净工作台中取3支无菌摇菌管,各加入3mL LB(含50mg/mL氨苄青霉素),用记号笔写好编号。

(2)在超净工作台中将70%乙醇浸泡的小镊子头用酒精灯烤过,镊取一支无菌牙签。用牙签的尖部接触转化的平板培养基上的一个白色菌落,然后将牙签放入盛有3mL LB(含50mg/mL氨苄青霉素)的摇菌管中。用此法随机取3个白色菌落,分别装入3个摇菌管中。

(3)37℃摇菌过夜后,用碱裂解法分别提取质粒。摇菌管中的剩余菌液保留在4℃冰箱中。

(4)提取到的3管质粒样品可用PCR法扩增,或用酶切电泳法来鉴定其上是否含有外源插入片断(方法见有关实验)。

(5)将经过鉴定判断为正确的质粒保存。按照编号找到冰箱中原菌液。根据需要进行放大培养提取其质粒或进行诱导表达,或取500mL菌液与500mL 65%甘油混合后-80℃保存。

(6)在被细菌污染的桌面上喷洒70%乙醇,擦干桌面

基因表达载体构建教学设计

“基因表达载体的构建”教学设计

专题1 1.2基因工程的基本操作程序之基因表达载体的构建 一、目的基因和运载体的连接 二、利用标记基因筛选含目的基因的受体细胞 三、目的基因和启动子的相对位置关系 附件1: 附件2:

【教学反思】 基因表达载体的构建是基因工程的关键步骤,空间想象难度大,科学理论和技术实践密切联系,思维跨度也大。福州屏东中学学生程度一般,正因如此,处理不好会提高学习难度,令学生视高科技为畏途,导致教学流于形式。本节课用微课和模型成功地化解了难点。 一方面基于学生课前微课的“先学”,学生对表达载体的构建有个整体的认识,然后以此为支架在课堂上填充和拓展内容,当学生在课堂上遇到相关问题时,能尽快到达“最近发展区”,获得进一步的发展,使学生逐渐对细节有更丰富更具体的理解,这种先整体后局部的处理符合学生的认知规律。基于微课的先学后教模式实质上是利用微课为学生创设一个情境,使学生带着思考和疑惑走进课堂,节省课堂的热身时间,从而使高效率大容量的课堂教学目标得以实现。 另一方面高二学生具有抽象思维,但是仍然需要感性知识,形象知识作为支持,所以教师精心设计纸质模型,基于教材原有的学习完“DNA重组的基本工具”后的纸圈模拟活动,再设计了双酶切的活动,化微观为直观,一系列问题的发生都源自学生自己亲手构建的模型,从模型中发现问题,进而逐步由浅入深。学生像科学家一样思考问题、解决问题,获得成功的体验。由于是带着问题的探究模拟活动,使学生的课堂参与是形式之上思维的积极参与。学生获得的体验是:基因工程这么高深的原理原来我也能想得到。学生的纸质模型立体、科学、易操作,但不好展示,而教师利用不同颜色的磁贴,随着课程的逐步推进,简洁明了地逐步在黑板上呈现,让整个环节衔接自然,师生互动流畅。直观的教学手段——模型构建,减轻了学生掌握这些知识的阻力,激发了学习积极性,使学生在轻松愉快的氛围中突破了重难点,强化了学生交流合作意识。 总之,作为教师,应该想学生之所难,积极探索有效途径,一堂成功的课不是展示教师的才智、形象、语言,更要通过学生的成功来反映。

T载体与目的基因连接

一. 重组质粒的构建 T质粒载体 重组的DNA分子是在DNA连接酶的作用下,有Mg2 、ATP存在的连接缓冲系统中,将分别经酶切的载体分子与外源DNA分子进行连接。 DNA连接酶有两种:T4噬菌体DNA连接酶和大肠杆菌DNA连接酶。两种DNA连接酶都有将两个带有相同粘性末端的DNA分子连在一起的功能,而且T4噬菌体DNA连接酶还有一种大肠杆菌DNA连接酶没有的特性,即能使两个平末端的双链DNA分子连接起来。但这种连接的效率比粘性末端的连接率低,一般可通过提高T4噬菌体DNA 连接酶浓度或增加DNA浓度来提高平末端的连接效率。 T4噬菌体DNA 连接酶催化DNA 连接反应分为3 步:首先,T4 DNA 连接酶与辅因子ATP形成酶-ATP复合物;然后,酶-ATP复合物再结合到具有5’磷酸基和3’羟基切口的DNA上,使DNA腺苷化;最后产生一个新的磷酸二酯键,把切口封起来。连接反应通常将两个不同大小的片断相连。 很多DNA聚合酶在进行PCR扩增时会在PCR产物双链DNA每条链的3’端加上一个突出的碱基A。pUCm-T载体是一种已经线性化的载体,载体每条链的3’端带有一个突出的T。这样,pUCm-T载体的两端就可以和PCR产物的两端进行正确的AT配对,在连接酶的催化下,就可以把PCR产物连接到pUCm-T载体中,形成含有目的片断的重组载体。 连接反应的温度在37℃时有利于连接酶的活性。但是在这个温度下粘末端的氢键结合是不稳定的。因此采取折中的温度,即12-16℃,连接12-16h(过夜),这样既可最大限度地发挥连接酶的活性,又兼顾到短暂配对结构的稳定。 二. 感受态制备原理 细菌在0°C CaCl 低渗溶液中胀成球形,丢失部分膜蛋白,成为容易 2 吸收外源DNA的感受态。 三. β-半乳糖甘酶显色反应选择法 LacZ基因是大肠杆菌乳糖操纵子中的一个基因,可以编码β—半乳糖核苷酶。β—半乳糖核苷酶是由4个亚基组成的四聚体,可催化乳糖的水解.用X-Gal为底物进行染色时,呈蓝色。 现在一些特定的质粒(比如pUC/pBS等),常带有β—半乳糖核苷酶的调控序列和β—半乳糖核苷酶N端146个氨基酸(α肽段)的编码序列,在这个编码序列里还插入一个多克隆位点(MCS),它并不影响lacZ的表达。另外,常用的大肠杆菌带有β—半乳糖核苷酶C端部分序列(β肽段),的编码序列。在各自独立的情况下,这些质粒与大肠杆菌各自编码的β—半乳糖核苷酶片段都没有酶的活性。只有当携带α

载体与目的基因的连接与转化以及重组DNA的提取与酶切鉴定

实验一载体与目的基因的连接与转化以及 重组DNA的提取与酶切鉴定 一、实验目的 1.CaCl2法制备感受态细胞 2.目的基因与载体连接(c-myc+pSV2;粘端连接) 3.重组质粒转化大肠杆菌并筛选转化体(HB101;Amp r) 4.质粒DNA的小量快速制备 5.质粒DNA的限制性内切酶酶切 6.DNA的琼脂糖凝胶电泳 二、实验原理 通过粘端连接法将具有相同粘性末端的DNA分子连接在一起,通过碱基配对氢键形成一个相对稳定的结构,利用连接酶发挥间断修复的功能,从而获得重组的DNA分子。 受体细胞经处理后(电击或CaCl2等处理),细胞膜通透性发生变化,从而使外源的载体分子通过感受态细胞,并使受体细胞获得新的稳定遗传的性状,该过程称为转化。由于本实验种pSV带有抗氨苄青霉素的基因,因而转化后的细胞在含氨苄青霉素的平板上培养可以筛选出转化成功的受体细胞。 分离质粒DNA的步骤包括:培养细菌使质粒扩增、收集和裂解细菌以及分离和纯化质粒DNA。SDS可以使细胞壁裂解,碱变性抽提质粒DNA的原理是利用染色体DNA与质粒DNA的变性复性的差异达到分离目的,当pH>12.6时,染色体DNA氢键断裂,双螺旋结构解开而变性,质粒DNA由于超螺旋共价闭合环状结构,两条互补链不会完全分离。当采用pH 4.8的NaAc高盐缓冲液调节pH至中性时,质粒DNA恢复原有的构型,而染色体DNA则不能复性而缠绕形成网状结构。通过离心可将染色体DNA及大分子RNA、蛋白质等去除。 三、实验器材和试剂 1.器材 恒温摇床、电热恒温培养箱、电热恒温水浴、台式离心机、低温离心机、涡旋振荡器、移液枪及枪头、1.5 ml离心管、制冰机、三角推棒、酒精灯、细菌培

基因的克隆、表达载体构建与功能验证

基因的克隆、表达载体构建及功能验证(一般性方法) 一、基因克隆 ★事前三问 a.克隆这个基因干什么?它有什么功能? b.这个基因在哪种材料中扩增? c.材料需要怎么处理? ◎实验前准备工作 a.设计引物,准备材料, b.购置试剂:Taq酶、反转录试剂盒、凝胶回收试剂盒、质粒提取试剂盒、连接试 剂盒 c.实验试剂及用具:枪头、离心管、培养皿、滤纸灭菌;Amp+ 、Kan+等抗生素准 备 ※基本流程 提取和纯化RNA—cDNA第一条链合成—PCR—凝胶电泳—胶回收—连接—转化—涂平板—挑单菌落—摇菌—提质粒—测序 1.总RNA的提取、纯化及cDNA第一链合成 1.1叶片、根总RNA的提取 Trizol是一种高效的总RNA抽提试剂,内含异硫氰酸胍等物质,能迅速裂解植物细胞,抑制细胞释放出的核酸酶,所提取的RNA完整性好且纯度高,以利于下一步的实验。 1)实验前准备 预先配制0.1%的DEPC水(ddH2O中含0.1%DEPC,V/V,37 ℃过夜处理12 h),高温灭菌后,用DEPC水配制75%乙醇,研钵、量筒、试剂瓶等需200℃灭菌至少4 h,所用枪头和枪盒均去RNA酶处理(直接购买)。 2)Trizol 法(小麦)叶片或根的总RNA实验步骤如下: (1)提前在1.5 ml离心管中加入1 mlTrizol,然后将200 mg样品液氮中研磨成白色粉末,

移入管内,用力摇15 s,在15-30℃温育5 min,使核酸蛋白复合物完全分离。 (2)4℃,12000g离心10min,取上清,离心得到的沉淀中包括细胞外膜、多糖、高分子量DNA,上清中含有RNA。 (3)吸取上清液加0.2 ml氯仿,盖好盖,用力摇15 s,15~30 ℃温育2~3 min。(4)在≤12000g,4℃离心10 min,样品分为三层:底层为黄色有机相,上层为无色水相和一个中间层,RNA主要在水相中,水相体积约为所用TRIzol试剂的60%。 (5)将上层水相转移到新的1.5 ml离心管中,加2倍体积的无水乙醇沉淀RNA,室温静止30 min。 (6)在≤12000g,4℃离心10 min,离心前看不出RNA沉淀,离心后在管侧和管底出现胶状沉淀。 (7)用≥1 ml的75%乙醇洗RNA,涡旋振荡样品,在≤7500g,4℃离心5 min,弃上清。(8)室温放置干燥或真空抽干RNA沉淀,大约晾5-10分钟,加无RNase的水100μl用枪头吸几次,55~60℃温育10 min使RNA溶解。 (9)配制以下体系: 10×DNase buffer 5 μl DNase I (RNase-free)(40 μg/μl) 1 μl RNasin Inhibitor(40 μg/μl) 1 μl Total RNA 70 μg 加去RNase水至总体积为50 μl (10)37 ℃水浴1h,加DEPC处理的水至总体积为100 μl,加入等体积氯仿抽提一次。(11)取上清,加入10 μl的3 mol/L NaAC溶液,200 μl的无水乙醇,-80 ℃沉淀30 min。 (12)2~8 ℃,12000g离心10 min,弃清液,干燥后取50μl无RNase的水溶解RNA。3)RNA的质量及纯度检测 (1)电泳检测取2ul RNA 与1 ul 10×Loading buffer上样缓冲液混合均匀在1% 的琼脂糖凝胶上电泳,在紫外灯下观察RNA 条带并记录实验结果。 (2)分光光度计RNA纯度检测 取1ul RNA液,以DEPC水为空白对照,测定A260/ A280 比值,估测RNA质 量。 4)cDNA第一条链的合成 按照以下体系将提取的总RNA反转录成第一链cDNA: 1)在Eppendorf管中配制下列混合液:

分子克隆技术第三章

2017/2/21 第三章载体 第一节基因克隆技术概述 一、基因克隆技术 基因克隆技术包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组的DNA,然后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。 二、目的基因的取得 1、直接 2、反转录酶 3、化学合成 4、基因文库 5、PCR ?首先利物理方法(如剪切力、超声波等)或酶化学方法(如限制性 内切核酸酶)将生物细胞染色体DNA切割成为基因水平的许多片段,继而将这些片段与适当的载体结合。将重组DNA转入受体菌扩增,获得无性繁殖的基因文库,再结合筛选方法,从众多的转化子菌株中选出含有某一基因的菌株,从中将重组的DNA分离、回收。这种方法也就是应用基因工程技术术分离目的基因,其特点是绕过直接分离基因的难关,在基因组DNA文库中筛选出目的基因。可以说这是利用“溜散弹射击”原理去“命中”某个基因。由于目的基因在整个基因组太小,在像当程度上还得靠“碰运气”,所以人们称这个方法为“鸟 枪法”或“散弹枪”实验法。 三、重组体的构建 1、载体 要把一个有用的基因通过基因工程手段送进生物细胞中,需要运载工具,携带外源基因进入受体细胞的这种工具叫载体(Vector)。 (1)质粒(plasmid) (2)噬菌体λ的衍生物 (3)科斯质粒(cosmid) (4)单链DNA噬菌体 M13(5)病毒?面包酵母吲哚甘油磷酸脱氢酶基因的制取,先 用Eco RI把面包酵母DNA切成许多片段,使这些片段与λ载体连成重组DNA,可把这些重组DNA导入“吲哚甘油磷酸脱氢酶型组氨酸缺陷型”大肠杆菌,在基本培养基中培养。只有引入了该基因的细菌才能生长。进一步分离这种菌株,可以得到目的基因。 2、载体的性质 1)它必须具有能够在某些宿主细胞中独立地自我复制和表达的能力。 2)载体DNA的分子量应该较小。 3)载体上最好应具有两个以上的容易检测的遗传标记(如抗药性基因等),以赋予宿主细胞以不同的表型。 4)载体应该具有多个限制性内切酶的单一切点;载体上的单一酶切位点最好是位于检测表型的遗传标记基因之内,这样目的基因是否已连接载体就可以通过这一表型的改变与否而得知,利于筛选重组体。 3、酶系的选用

目的基因T载体克隆实验步骤

PCR产物的T载体克隆 实验原理 一.重组质粒的构建: 重组的DNA分子是在DNA连接酶的作用下,有Mg2 、ATP存在的连接缓冲系统中,将分别经酶切的载体分子与外源DNA分子进行连接。 DNA连接酶有两种:T4噬菌体DNA连接酶和大肠杆菌DNA连接酶。两种DNA连接酶都有将两个带有相同粘性末端的DNA分子连在一起的功能,而且T4噬菌体DNA连接酶还有一种大肠杆菌DNA 连接酶没有的特性,即能使两个平末端的双链DNA分子连接起来。但这种连接的效率比粘性末端的连接率低,一般可通过提高T4噬菌体DNA连接酶浓度或增加DNA浓度来提高平末端的连接效率。T4噬菌体DNA 连接酶催化DNA 连接反应分为3 步:首先,T4 DNA 连接酶与辅因子ATP形成酶-ATP 复合物;然后,酶-ATP复合物再结合到具有5’磷酸基和3’羟基切口的DNA上,使DNA腺苷化;最后产生一个新的磷酸二酯键,把切口封起来。连接反应通常将两个不同大小的片断相连。 很多DNA聚合酶在进行PCR扩增时会在PCR产物双链DNA每条链的3’端加上一个突出的碱基A。pUCm-T载体是一种已经线性化的载体,载体每条链的3’端带有一个突出的T。这样,pUCm-T载体的两端就可以和PCR产物的两端进行正确的AT配对,在连接酶的催化下,就可以把PCR产物连接到pUCm-T载体中,形成含有目的片断的重组载体。 连接反应的温度在37℃时有利于连接酶的活性。但是在这个温度下粘末端的氢键结合是不稳定的。因此采取折中的温度,即12-16℃,连接12-16h(过夜),这样既可最大限度地发挥连接酶的活性,又兼顾到短暂配对结构的稳定。 二.感受态制备原理 细菌在0 C CaCl2低渗溶液中胀成球形,丢失部分膜蛋白,成为容易吸收外源DNA的状态。 三.β-半乳糖甘酶显色反应选择法(蓝白筛选)原理 LacZ基因是大肠杆菌乳糖操纵子中的一个基因,可以编码β—半乳糖核苷酶。β—半乳糖核苷酶是由4个亚基组成的四聚体,可催化乳糖的水解.用X-Gal为底物进行染色时,呈蓝色。 现在一些特定的质粒(比如pUC/pBS等),常带有β—半乳糖核苷酶的调控序列和β—半乳糖核苷酶N端146个氨基酸(α肽段)的编码序列,在这个编码序列里还插入一个多克隆位点(MCS),它并不影响lacZ的表达。另外,常用的大肠杆菌带有β—半乳糖核苷酶C端部分序列(β肽段),的编码序列。在各自独立的情况下,这些质粒与大肠杆菌各自编码的β—半乳糖核苷酶片段都没有酶的活性。只有当携带α肽编码信息的克隆载体成功进入宿主细胞,在培养基诱导物IPTG的诱导下,载体质粒能够合成β—半乳糖核苷酶N端(α肽段),这样就与宿主细胞合成的β—半乳糖核苷酶C端部分序列(β肽段)互补,形成完整的β—半乳糖核苷酶活性蛋白。 而当外源基因插入到此种载体质粒lacZ的多克隆位点后,会造成lacZ基因不能表达,从而不能合成β—半乳糖核苷酶;而对于空载体,lacZ基因正常表达,通过α互补合成β—半乳糖核苷酶,分解培养基里的色素底物X-gal,最终形成蓝色的化合物,出现蓝色菌斑。

试验一、DNA连接和转化

试验一、DNA连接和转化 质粒的转化是指将质粒或以它为载体构建的重组子导入细菌的过程。将连接产物转化到感受态细胞中,实现重组克隆的增殖,便于后续分子操作。可以采用多种方法筛选和鉴定目的克隆。 一、实验目的 掌握DNA的连接方法和热激法转化大肠杆菌感受态细胞及转化子的鉴定原理和实验方法。 二、实验原理 1)限制性内切酶可识别特定位点并切割DNA 产生粘性末端或平端的外源片段,经DNA 的纯化处理后用于连接反应;选择克隆载体多克隆位点上相应的限制性内切酶切割,并用碱性磷酸酶处理防止载体自连;在连接酶的作用下将外源片段连接到载体上,实现外源片段的克隆。 2)TA克隆:克隆载体用限制性内切酶酶切后,再在两侧的3端添加“T”。大部分耐热性DNA聚合酶进行PCR反应时都有在PCR产物的3末端添加“A”的特性。二者在DNA连接酶的作用下利用粘性末端进行连接。 3)热激法:大肠杆菌在0 ℃CaCl2低渗溶液中,细菌细胞膨胀成球形,转化混合物中的DNA 形成抗DNase 的羟基-钙磷酸复合物粘附于细胞表面,

经42℃短时间热冲击处理,促进细胞吸收DNA 复合物,在丰富培养基上生长数小时后,球状细胞复原并分裂增殖。在被转化的细胞中,重组子基因得到表达,在选择性培养基平板上可挑选所需的转化子。 三、仪器和材料 超净工作台、恒温培养箱、移液枪、冷冻循环水浴锅、恒温摇床。 pMD18-T Vector、DNA片段、Solution I、感受态细胞DH5α、Amp+ LB液体培养基、Amp-LB液体培养基、Amp-LB固体培养基、X-gal (20mg/ml)、IPTG(200mg/ml)。 四、实验步骤 1、连接反应步骤: 1)在离心管中配制下列混合溶液,全量为5μl。(冰上操作) pMD18-T Vector 1μl DNA 1μl H2O 3μl 2)加入5μl的solution I。(冰上操作) 3)16℃反应30min。 2、转化反应步骤: 1) 将连接产物10μl加入到已制备好的感受态细胞中,冰上孵育30min。 2) 42℃水浴中热休克90s,立即冰上冷却2min。 3)加入200μl不含氨苄(amp)的LB液体培养基,37℃,150rpm,振荡培养40min。 4) 加40μl的X-Gal (20mg/ml)和8μl IPTG(200mg/ml)。 5) 约200μl转化产物涂布于培养平板上。放置于37℃培养箱,待溶液被琼 脂吸干,倒置平板,37℃,培养16h。 6)第二天上午观察蓝白斑筛选结果。 五、作业 1、实验结果。(平板图片) 2、在热激以后进行活化培养,这时的培养基中为什么不加入氨苄青霉素?

表达载体的构建方法及步骤

表达载体的构建方法及步骤 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒DNA 是一种新的非病毒转基因载体。一个合格质粒的组成要素: (1)复制起始位点Ori 即控制复制起始的位点。原核生物DNA 分子中只有一个复制起始点。而 真核生物DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ (3)多克隆位点MCS 克隆携带外源基因片段 (4)P/E 启动子/增强子 (5)Terms 终止信号 (6)加poly(A)信号可以起到稳定mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。【2】.载体的类型: (1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。(2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。

(3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。【3】载体MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。(5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切割,获得线性载体分子,以便于与目的基因片段进行连接。 如何阅读质粒图谱 第一步:首先看Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活

分生实验报告 目的基因与载体连接、 感受态制备及转化

目的基因与载体连接、感受态制备及转化 【实验原理】 1;酶促生物化学反应过程 在一定的条件下,由DNA连接酶催化目的基因与载体相邻的5’端磷酸与3’端羟基之间形成磷酸二酯键的过程。相同或不同的限制性内切酶产生相同的粘性末端,在降至退火温度时,能重新互补结合,在DNA连接酶的催化下,目的基因与载体相连接。 2;DNA连接酶的分类: T4 DNA连接酶:催化dsDNA粘末端连接及平端连接 大肠杆菌DNA连接酶:不能催化平末端连接,其底物只能是带缺口的双链DNA分子和具同源互补粘末端的不同DNA分子 3;T4 DNA连接酶:来源T4噬菌体感染的大肠杆菌 最佳pH值7.2~7.8,常用的反应液为pH7.6 的Tris-HCl缓冲液 需ATP,Mg2+参加反应 二硫苏糖醇等巯基化合物可促进连接酶的连接 作用;高浓度的Na+、K+等抑制酶的活性。 4;受体分类:受体细胞也称为宿主,是重组子扩增及表达的场所,分为原核细胞和真核细胞两类。 5;应用:原核细胞:重组子复制扩增,外源基因表达系统 真核细胞:主要用于外源基因的表达 6;转化:特指以质粒DNA活以它作为载体构建的重组子导入细菌的过程。 转染:指噬菌体、病毒或以它们作为载体构建的重组子导入细胞的过程。 7;感受态细胞:受体细胞经过一些特殊方法处理后,细胞膜的通透性发生变化,成为最适摄取和容纳外源DNA的生理状态。 常用方法:0.1mol/L CaCl2 特点:a.重组酶缺陷,限制修饰系统缺陷 b.不存在载体的筛选标记 c.接受DNA的位点暴露 d.细胞膜通透性增加 8;不同层次,不同水平上进行筛选,以区别转化子与非转化子、重组子与非重组子,以及鉴定所需的特异性重组子。 直接筛选:针对载体携带的标记和插入DNA片段 1.抗性筛选(抗生素平板,ampR , tetR , neoR) 2.标志补救(α-互补,蓝白斑筛选) 3.PCR 4.限制性内切酶消化 4.DNA测序 间接筛选:针对插入片段的蛋白产物,免疫学筛选 9;蓝白斑筛选是根据载体的遗传特征筛选重组子,如α-互补、抗生素基因等。现在使用的许多载体都带有一个大肠杆菌DNA的短区段,其中有β-半乳糖苷酶基因(lacZ)的调控序列和前146个氨基酸的编码信息。在这个编码区中插入了一个多克隆位点(MCS),它并不破坏读框,但可使少数几个氨基酸插入到β-半乳糖苷酶的氨基端而不影响功能,这种载体适用于可编码β-半乳糖苷酶C端部分序列的宿主细胞。因此,宿主和质粒编码的片段虽都

叶绿体表达载体--如何构建载体

如何构建载体 1 启动子的选用和改造 外源基因表达量不足往往是得不到理想的转基因植物的重要原因。由于启动子在决定基因表达方面起关键作用,因此,选择合适的植物启动子和改进其活性是增强外源基因表达首先要考虑的问题。 目前在植物表达载体中广泛应用的启动子是组成型启动子,例如,绝大多数双子叶转基因植物均使用CaMV35S启动子,单子叶转基因植物主要使用来自玉米的Ubiquitin启动子和来自水稻的Actinl启动子。在这些组成型表达启动子的控制下,外源基因在转基因植物的所有部位和所有的发育阶段都会表达。然而,外源基因在受体植物内持续、高效的表达不但造成浪费,往往还会引起植物的形态发生改变,影响植物的生长发育。为了使外源基因在植物体内有效发挥作用,同时又可减少对植物的不利影响,目前人们对特异表达启动子的研究和应用越来越重视。已发现的特异性启动子主要包括器官特异性启动子和诱导特异性启动子。例如,种子特异性启动子、果实特异性启动子、叶肉细胞特异性启动子、根特异性启动子、损伤诱导特异性启动子、化学诱导特异性启动子、光诱导特异性启动子、热激诱导特异性启动子等。这些特异性启动子的克隆和应用为在植物中特异性地表达外源基因奠定了基础。例如,瑞士CIBA-GEIGY公司使用PR-IA启动子控制转基因烟草中Bt毒蛋白基因的表达,由于该启动子可受水杨酸及其衍生物诱导,通过喷酒廉价、无公害的化学物质,诱导抗虫基因在虫害重发生季节表达,显然是一个十分有效的途径。 在植物转基因研究中,使用天然的启动子往往不能取得令人满意的结果,尤其是在进行特异表达和诱导表达时,表达水平大多不够理想。对现有启动子进行改造,构建复合式启动子将是十分重要的途径。例如,Ni等人将章鱼碱合成酶基因启动子的转录激活区与甘露碱合成酶基因启动子构成了复合启动子,GUS表达结果表示:改造后的启动子活性比35S启动子明显提高。吴瑞等人将操作诱导型的PI-II基因启动子与水稻Actinl基因内含子1进行组合,新型启动子的表达活性提高了近10倍(专利)。在植物基因工程研究中,这些人工组建的启动子发挥了重要作用。 2 增强翻译效率 为了增强外源基因的翻译效率,构建载体时一般要对基因进行修饰,主要考虑三方面内容: 2.1添加5`-3`-非翻译序列 许多实验已经发现,真核基因的5`-3`-非翻译序列(UTR)对基因的正常表达是非常必要的,该区段的缺失常会导致mRNA的稳定性和翻译水平显著下降。例如,在烟草花叶病毒(TMV)的126kDa 蛋白基因翻译起始位点上游,有一个由68bp核苷酸组成的Ω元件,这一元件为核糖体提供了新的结合位点,能使Gus基因的翻译活性提高数十倍。目前已有许多载体中外源基因的5`-端添加了Ω翻译增强序列。Ingelbrecht等曾对多种基因的 3`-端序列进行过研究,发现章鱼碱合成酶基因的3`-端序列能使NPTII基因的瞬间表达提高20倍以上。另外,不同基因的3`-端序列增进基因表达的效率有所不同,例如,rbcS3`-端序列对基因表达的促进作用比查尔酮合酶基因的3`-端序列高60倍。 2.2 优化起始密码周边序列 虽然起始密码子在生物界是通用的,然而,从不同生物来源的基因各有其特殊的起始密码周边序列。例如,植物起始密码子周边序列的典型特征是AACCAUGC,动物起始密码子周边序列为CACCAUG,原核生物的则与二者差别较大。Kozak详细研究过起始密码子ATG周边碱基定点突变后对转录和翻译所造成的影响,并总结出在真核生物中,起始密码子周边序列为ACCATGG时转录和翻译效率最高,特别是-3位的A对翻译效率非常重要。该序列被后人称为Kozak序列,并被应用于表达载体的构建中。例如,有一个细菌的几丁质酶基因,原来的起始密码周边序列为UUUAUGG,当被修饰为ACCAUGG,其在烟草中的表达水平提高了8倍。因此,利用非植物来源的基因构建表达载体时,应根据植物起始密码子周边序列的特征加以修饰改造。 2.3对基因编码区加以改造

目的基因的直接转化法和间接转化法

植物基因工程中目的基因的转化方法 张亚欢 20102170231 目的基因的直接转化法和间接转化法 摘要: 植物基因工程中目的基因的转化方法有间接转化法和直接转化法,主要阐述各种转化方法的原理、特点,以期为植物转基因方法的选择提供帮助. 关键词:植物基因工程; 转化方法; 间接转化法; 直接转化法 植物基因工程是通过导入外源基因对植物进行遗传转化,使植物获得抗虫、抗病、抗逆境、优质高产以及生产药物等诸多能力,从而使人们最大限度地利用植物资源。在植物基因工程中最为关键的是植物基因工程技术,该技术是以纯化的外源DNA导入植物细胞以期获得转基因植物的方法,其内容包括:目的基因的分离和鉴定;植物表达载体的构建;植物细胞的遗传转化;转化值物细胞的筛选;转基因植物的鉴定;外源基因表达的检测等[1]。自20 世纪90 年代以来,人们对外源基因导入植物细胞进行了大量的研究,先后采用了多种方法对目的基因进行遗传转化,迄今为止,已经建立了10 余种基因转化方法,这些方法可以分为两大类: 即间接转化法和直接转化法. 下面就这两类转化方法从其原理、特点作一简单介绍. 1 间接转化法 间接转化法是以生物体为媒介的植物转基因方法,有农杆菌介导法和病毒介导法. 1.1 农杆菌介导法 农杆菌介导法是以农杆菌为媒介对植物进行遗传转化的方法,该方法广泛地应用于愈伤组织、悬浮细胞、叶圆盘、茎切段、子叶切片、下胚轴切段、大田植株花茎的切段和薄层细胞等离体材料的转化,是目前双子叶植物常用的基因转移方法. 它是通过根癌农杆菌(Agrobacterim tumefaciens)的Ti 质粒(Tumer inducing plasmid) 和发根农杆菌(Agrobacterim rhizogenis )的Ri质粒(Root inducing Plasmid) 上的一段T一DNA区在农杆菌侵染植物形成肿瘤的过程中,T一DNA可以被转移到植物细胞并插入到染色体基因中[2]。由于T一DNA能够进行高频率的转移,而且Ti质粒和Ri质粒上可以插入到50kb 的外源基因,因此Ti 质粒和Ri质粒就成为植物基因转化的理想载体系统. 1.1.1 Ti 质粒载体系统 Ti 质粒是Lenent 等从根癌农杆菌中分离到的一种巨大质粒,可将外源基因置换T一DNA中的非必需序列使得外源基因整合到受体染色体上而获得稳定的表达,并能使植物细胞转化为肿瘤状态,大量合成冠瘿碱。冠瘿碱是根癌农杆菌的唯一碳源,有利于根癌农杆菌的繁殖和Ti质粒的转移,并进一步扩大侵染领域。 随着根癌农杆菌介导法基因转化技术的逐渐成熟与完善,它已成为常规育种的重要辅助手段,但在植物基因工程的实际操作中使用野生型的Ti 质粒直接作为基因克隆的载体仍然还有一些困难:①Ti质粒分子量很大,很难用常规的方法操作,另外在T一DNA 区段上不可能找到单一的DNA限制内切酶位点,不能插入外源DNA片段; ②野生型Ti 质粒对感染的植物具有毒性并能诱发冠瘿病,导入植物组织使其不能再生出健康的正常植株[3],因此野生型的Ti 质粒必须经过

DNA连接反应

DNA连接反应 (一)外源DNA和质粒载体的连接反应 外源DNA片段和线状质粒载体的连接,也就是在双链DNA5'磷酸和相邻的3'羟基之间形成的新的共价链。如质粒载体的两条链都带5'磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口,当杂本导入感受态细胞后可被修复。相邻的5'磷酸和3'羟基间磷酸二酯键的形成可在体外由两种不同的DNA连接酶催化,这两种酶就是大肠杆菌DNA连接酶和T4噬菌体DNA连接酶。实际上在有克隆用途中,T4噬菌体DNA连接酶都是首选的用酶。这是因为在下沉反应条件下,它就能有效地将平端DNA片段连接起来。 DNA一端与另一端的连接可认为是双分子反应,在标准条件下,其反应速度完全由互相匹配的DNA末端的浓度决定。不论末端位于同一DNA分子(分子内连接)还是位于不同分子(分子间连接),都是如此。现考虑一种简单的情况,即连接混合物中只含有一种DNA,也就是用可产生粘端的单个限制酶切割制备的磷酸化载体DNA。在瓜作用的底物。如果反应中DNA浓度低,则配对的两个末端同一DNA分子的机会较大(因为DNA分子的一个末端找到同一分子的另一末端的概率要高于找到不同DNA分子的末端的概率)。这倦,在DNA浓度低时,质粒DNA重新环化将卓有成效。如果连接反应中DNA浓度有所增高,则在分子内连接反应发生以前,某一个DNA分子的末端碰到另一DNA分子末端的可能性也有所增大。因此在DNA浓度高时,连接反的初产物将是质粒二聚体和更大一些的寡聚体。Dugaiczyk等(1975;同时参见Bethesda Res,Lab.出版的Focus第2卷,第2、3期合刊)从理论上探讨了DNA浓度对连接产物性质的影响。简而言之,环化的连接产物与多联体连接产物的比取决于两个参数:j和i。j是DNA分子的一个末端在同一分子的另一末端附近的有效浓度,j的数值是根据如下一种假设作出的:沉吟液中的DNA呈随机卷曲。这样,j与DNA分子的长度成反比(因为DNA越长,某一给定分子的两末端的越不可能相互作用),因此j对给定长度的DNA分子来说是一个常数,与DNA深度无关。j=[3/(3πlb0)]3/2其中l是DNA长度,以cm计,b是随机卷曲的DNA区段的长度。b的值

(完整word版)基因表达载体构建

一、简述原核生物和真核生物基因表达调控的异同点,并说明基因表达调控与基因工程表达载体构建的关系。 1.原核生物和真核生物基因表达调控的共同点: (1)结构基因均有调控序列; (2)表达过程都具有复杂性,表现为多环节。 2.不同点: 原核生物:(1)RNA聚合酶只有一种,其σ因子决定RNA聚合酶识别特异性;(2)操纵子模型的普遍性;(3)阻遏蛋白与阻遏机制的普遍性(负性调节占主导);(4)转录和翻译偶联进行;(5)转录后修饰、加工过程简单;(6)转录起始是基因表达调控的关键环节。 真核基因表达调控特点:(1)RNA聚合酶有三种,分别负责三种RNA转录,每种RNA聚合酶由约10个亚基组成;(2)活性染色质结构发生变化;(3)正性调节占主导;(4)转录和翻译分隔进行;(5)转录后修饰、加工过程较复杂;(6)转录起始是基因表达调控的关键环节。 3.由于基因的表达调控受到多种因子的影响,而构建基因工程表达载体时多是将真和生物的目的基因转入到原核生物载体上表达,所以应注意以下几点: (1)外源基因插入序列必须保持正确的方向和阅读框架。其遗传密码不得缺失、遗漏、或错位及错码。否则会导致编码错误的蛋白质分子,特别是目的基因序列内部应不含两端酶切位点的识别序列。 (2)插入的外源基因必须放在原核的启动子控制之下,也就是使原核的RNA 聚合酶能够识别插入的基因。 (3)外源基因必须能在大肠杆菌中进行有效转录(如无内含子),转录后的mRNA 在菌体必须相当稳定,并且能有效地进行翻译,转译的蛋白分子在菌体内不致于受菌体蛋白酶的降解。 二、目的基因功能和表达分析的意义是什么?目的基因功能与表达分析的主要环节有哪些?各有什么目的?这些环节与基因工程的主要环节有什么异同? 1.意义:克隆的目的基因只有通过表达才能探索和研究基因的功能及基因表达调控的机理,明了其利用价值和途径。 2.主要环节: (1)目的基因的获得和加工:将得到的目的基因通过加工以期能连接到表达载体上并稳定表达; (2)载体的选择与加工:根据不同的实验目的和实验条件选择不同的载体,并

目的基因片段与克隆载体质粒的连接操作步骤

连接反应总体积为10μL,体系组成如下: 回收纯化的PCR扩增目的基因片段 7.0μL 10×Ligation buffer 1.0μL T载体(10ng/μL) 1.0μL T4 DNA ligase 1.0μL 共10.0ul 混均后,4℃连接18-24小时,连接所得克隆载体命名为TA-VP4-STI。 转化操作方法 1)取一管-80℃保存的感受态细胞,置冰上融化; 一次转化感受态细胞的建议用量为50-100ul,应注意所用DNA体积不要超过感受态细胞悬液体积的十分之一。以100ul为例: 2)加入连接物(50ul的感受态细胞能够被1ng超螺旋质粒DNA所饱和),轻轻旋转离心管以混匀内容物,冰浴30min;

3)将离心管置于42℃热击60-90秒,然后迅速置冰浴2-3分钟,该过程不要摇动离心管; 4)向每个离心管中加入500ul液体LB培养基(不含抗生素),混匀后置于37℃摇床振荡培养45分钟(150转/分钟);目的是使质粒上相关的抗性标记基因表达,使菌体复苏。 5)将离心管内容物混匀,吸取100ul已转化的感受态细胞加到含相应抗生素的LB固体琼脂培养基上(含50 ug/ml氨苄青霉素),用无菌的弯头玻棒轻轻将细胞均匀涂开。将平板置于室温直至液体被吸收,倒置平板,37℃培养12-16小时。至红、白斑区分明显为止。 涂布用量可根据具体试验来调整:如转化的DNA总量较多,可取更少量转化产物涂布平板;反之,如转化的DNA总量较少,可取200-300ul 转化产物涂布平板。如果预计的克隆较少,可通过离心 (4000rpm,2min)后析除部分培养液,悬浮菌体后将其涂布于一个平板中。(涂布剩余的菌液可置于4℃保存,如果次日的转化菌落数过少可以将剩下的菌液再涂布新的培养板)

T载体与目的基因连接

一. 重组质粒的构建T 质粒载体 重组的 DNA 分子是在 DNA 连接酶的作用下,有 Mg2 、 ATP 存在的连接缓冲系统中,将分别经酶切的载体分子与外源DNA分子进行连接。 DNA 连接酶有两种:T4 噬菌体 DNA 连接酶和大肠杆菌 DNA 连接酶。两种 DNA 连接酶都有将两个带有相同粘性末端的 DNA 分子连在一起的功能,而且 T4 噬菌体 DNA 连接酶还有一种大肠杆菌 DNA 连接酶没有的特性,即能使两个平末端的双链 DNA 分子连接起来。但这种连接的效率比粘性末端的连接率低,一般可通过提高 T4 噬菌体 DNA 连接酶浓度或增加 DNA 浓度来提高平末端的连接效率。 T4 噬菌体 DNA 连接酶催化 DNA 连接反应分为 3 步:首先,T4 DNA 连接酶与辅因子 ATP 形成酶-ATP 复合物;然后,酶-ATP 复合物再结合到具有 5'磷酸基和 3'羟基切口的DNA 上,使 DNA 腺苷化;最后产生一个新的磷酸二酯键,把切口封起来。连接反应通常将两个不同大小的片断相连。 很多 DNA 聚合酶在进行 PCR 扩增时会在 PCR 产物双链 DNA 每条链的 3'端加上一个突出的碱基A。pUCm-T 载体是一种已经线性化的载体,载体每条链的3'端带有一个突出的 T。这样,pUCm-T 载体的两端就可以和 PCR 产物的两端进行正确的 AT 配对,在连接酶的催化下,就可以把 PCR 产物连接到 pUCm-T 载体中,形成含有目的片断的重组载体。 连接反应的温度在37℃时有利于连接酶的活性。但是在这个温度下粘末端的氢键结合是不稳定的。因此采取折中的温度,即12-16℃,连接 12-16h(过夜),这样既可最大限度地发挥连接酶的活性,又兼顾到短暂配对结构的稳定。 二. 感受态制备原理 细菌在0°C CaCl2 低渗溶液中胀成球形,丢失部分膜蛋白,成为容易吸收外源 DNA 的感受态。 三. β-半乳糖甘酶显色反应选择法 LacZ 基因是大肠杆菌乳糖操纵子中的一个基因,可以编码β—半乳糖核苷酶。β—半乳糖核苷酶是由 4 个亚基组成的四聚体,可催化乳糖的水解.用X-Gal为底物进行染色时,呈蓝色。 现在一些特定的质粒(比如 pUC/pBS等),常带有β—半乳糖核苷酶的调控序列和β—半乳糖核苷酶N 端 146个氨基酸(α肽段)的编码序列,在这个编码序列里还插入一个多克隆位点(MCS),它并不影响lacZ的表达。另外,常用的大肠杆菌带有β—半乳糖核苷酶C 端部分序列(β肽段),的编码序列。在各自独立的情况下,这些质粒与大肠杆菌各自编码的β—半乳糖核苷酶片段都没有酶的活性。只有当携带α 肽编码信息的克隆载体成功进入宿主细胞,在培养基诱导物IPTG的诱导下,载体质粒能够合成β—半乳糖核苷酶 N 端(α肽段),这样就与宿主细胞合成的β—半乳糖核苷酶C 端部分序列(β肽段)互补,形成完整的β—半乳糖核苷酶活性蛋白。 而当外源基因插入到此种载体质粒 lacZ的多克隆位点后,会造成 lacZ基因不能表达,从而不能合成β—半乳糖核苷酶;而对于空载体,lacZ基因正常表达,通过α 互补合成β—半乳糖核苷酶,分解培养基里的色素底物 X-gal,最终形成蓝色的化合物,出现蓝色菌斑。 实验准备:清洗,5 个 100ml 锥形瓶(外加 1 个小的),6 副培养皿,3 个小试剂瓶,接种环,涂布棒。准备 100ml 超纯水。溶液:LB300ml(液体 50ml+50ml,固体 100ml),

DNA连接反应的步骤及说明

快速DNA连接试剂盒 概述: 克隆中两个重要步骤包括外源DNA与载体的连接和重组DNA的转化。连接反应是通过连接酶完成的,连接反应需要ATP和镁离子催化双链DNA的3’-OH 和5’-P形成磷酸二酯键。DNA末端可以是粘末端,也可以是平末端。粘末端连接反应效率高于平末端连接效率。因此,在连接平末端分子时DNA 浓度要高于粘末端分子连接反应的DNA浓度。PEG可以使T4 DNA连接酶对平末端和粘末端连接效率得到提高[Pheiffer, B.H., Zimmerman, S.B., Nucleic Acids Res., 11, 7853-7871, 1983]。由于PEG可以辅助提高连接效率,该试剂盒对于粘末端和平末端的连接只需十分钟即可完成。试剂盒中提供独特的5×Rapid Ligation Buffe,专为提高DNA连接效率设计。高的PEG浓度可以提高连接反应效率但却会使转化效率降低,因此应该对PEG浓度进行优化。该试剂盒中优化的PEG浓度同时保证了高的连接效率和转化效率。 目录号规格价格 LINK-3030次180元 保存: 试剂盒中所有组分需-20℃保存。请不要用其它试剂替代该试剂盒中的反应缓冲液。 试剂盒包装组成: 该试剂盒中提供的试剂可以完成30×20μl DNA连接反应。 试剂盒组成规格( 30 reactions ) T4 DNA ligase 30μl 5×Rapid Ligation Buffer 200μl (5x RLB) 特点: 室温(20-25℃)连接10-30 min。 存储缓冲液: 10 mM Tris-HCl (pH 7.5) 50 mM KCl 1 mM Dithiothreitol 50% Glycerol 质量控制: 试剂盒中提供的T4 DNA连接酶没有检测到外切核酸酶或内切核酸酶活性。另外每一批连接酶都通过SDS聚丙烯酰胺凝胶检测蛋白污染(低于5%)。 ·核酸外切酶污染检验 T4 DNA连接酶与1mg经超声波处理的3H标记的E.coli DNA (105cpm/mg)在50ml反应体系中,采用随酶提供的Rapid Ligation Buffer,

基因表达载体的构建(2)

基因工程(2)---------基因工程的原理及技术 教学要求: (A级,课标要求:1简述基因工程基本操作程序的四个步骤;2、简述目的基因的获得、运载体的构建、目的基因的导入与检测等常用的方法及其基本原理。) 教材分析与教学构想 (1)理论分析:本课时基因工程的基本操作程序是苏教版选修3第一章基因工程中第1节内容。上节课学习了基因工程的概念含义、基因工程的诞生历程、DNA重组技术的基本工具及其作用、特点等内容,本课时要在上节内容的基础上理解基因工程基本操作程序。本课主要的学习任务是:理解基因工程每一步操作的原理、方法和过程,从整体上把握基因工程的全过程,将上节课学习的零散的知识进行归纳,把已掌握的知识系统化。 (2)学情分析:学生通过上节课的学习对基因工程的概念含义、基因工程的诞生历程、DNA 重组技术的基本工具及其作用、特点等有了深入了解,学习本课内容重要的是对基因工程每一步操作的原理、方法和过程做到了理解,同时将零散的知识进行归纳从整体上把握基因工程的全过程,这对学生的思维和方法都是很好的训练。 (3)教学设计构想: 1、巧妙运用插图及多媒体技术,化“抽象”为“形象”。对于基因工程的全过程,学生接触了解的少,只运用文字来教学会感到很抽象。如在讲授如何构建基因文库时,教师会提供一幅非常形象的插图,结合图文提出相应问题,诱导学生思考,从而把学习的注意力从简单的死记硬背引导到分析、批判、创新等有利于学生终身发展的能力上来。 2、巧妙利用概念图串联知识,化“部分”为“整体”。概念不可能单独存在,每个概念都必须根据与之有关的其他概念间的关系才能确定其准确的含义。通过分步探讨,学生已经对基因工程每一步操作的原理、方法和过程做到了理解,但并未从整体上把握到基因工程的全过程,教师可以指导学生构建概念图,将零散的知识进行归纳,把已掌握的知识显性化、可视化,实现新课程有效教与学的策略。 一、自主学习 基因工程操作步骤:. (1)获取目的基因的方法有. (3)基因表达载体的构建关键步骤是,基因表达载体的组成: 。(3)将目的基因导入受体细胞:基因工程中常用的受体细胞有大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和动植物细胞等。动物常把细胞作为受体细胞。导入植物细胞的方法有等;农杆菌转化法可以将目的基因导入细胞并把其整合到受体细胞的上,导入动物细胞的方法有;如果运载体是质粒,受体细胞是细菌,一般是将细菌用处理,以增大细菌的通透性,使含有目的基因的重组质粒进入受体细胞。目的基因导入受体细胞后,就可以随着受体细胞的繁殖而复制,由于,在很短的时间内就能够获得大量的目的基因。 (4)、检测目的基因是否进入受体细胞可以用方法,用方法检测目的基因是否转录,用免疫()法检测目的基因是否表达。另外也可进行个体水平检测。如 4、基因拼接成功的原因; 转基因表达成功的原因是生物。 基因工程的意义:

相关文档
最新文档