高中物理电磁波电磁场知识点整理

高中物理电磁波电磁场知识点整理

高中物理电磁波电磁场知识点汇总整理

物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。下面是店铺整理的高中物理电磁波电磁场知识点汇总整理,欢迎大家分享。

1、麦克斯韦的电磁场理论

(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。

(2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。

(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。

2、电磁波

(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。

(2)电磁波是横波

(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×108m/s。

下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。

1、电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈

平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。

(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2、磁通量

(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。

3、楞次定律

(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解

①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。

④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:

①阻碍原磁通量的变化;

②阻碍物体间的相对运动;

③阻碍原电流的变化(自感)。

4、法拉第电磁感应定律

电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt

当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。

(1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

(2)公式的变形

①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt。

②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt。

5、自感现象

(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象。

(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化。

6、日光灯工作原理

(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间。

(2)镇流器的'作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用。

7、电磁感应中的电路问题

在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回

路中形成电流。因此,电磁感应问题往往与电路问题联系在一起。解决与电路相联系的电磁感应问题的基本方法是:

(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

(2)画等效电路。

(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。

8、电磁感应现象中的力学问题

(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:

①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。

②求回路中电流强度。

③分析研究导体受力情况(包含安培力,用左手定则确定其方向)。

④列动力学方程或平衡方程求解。

(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。

9、电磁感应中能量转化问题

导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:

(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

(2)画出等效电路,求出回路中电阻消耗电功率表达式。

(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。

10、电磁感应中图像问题

电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。

另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。

下载全文

高中物理电磁波电磁场知识点整理

高中物理电磁波电磁场知识点整理 高中物理电磁波电磁场知识点汇总整理 物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。下面是店铺整理的高中物理电磁波电磁场知识点汇总整理,欢迎大家分享。 1、麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。 (2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。 (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。 2、电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。 (2)电磁波是横波 (3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×108m/s。 下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1、电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈

平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2、磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3、楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动;

(完整版)高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:2 2 1r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电=?,A q E ?=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量: 2 02 2022212121V L md qU V L m qE at y = == 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y = = θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变

(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2 12 1R R U U =,U R R R U 2 11 1 += 功率分配 2 12 1R R P P =,P R R R P 2 11 1+= 4、并联电路总电阻: 3 2 1 1111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 122 1 I R I R =,I 1= I R R R 2 12 + 并联电路功率分配 1 22 1R R P P =,P R R R P 2 12 1+= 5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR (2)闭合电路欧姆定律:I = r R E + Ir U E += E r 路端电压:U = E -I r= IR 输出功率: = IE -I r = (R = r 输出功率最大) R 电源热功率: 电源效率: =E U = R R+r 6、电功和电功率: 电功:W=IUt 焦耳定律(电热)Q= 电功率 P=IU 纯电阻电路:W=IUt= P=IU 非纯电阻电路:W=IUt > P=IU > S l R ρ=

电磁场电磁波复习重点

电磁场电磁波复习重点(共13页) -本页仅作为预览文档封面,使用时请删除本页-

电磁场电磁波复习重点 第一章矢量分析 1、矢量的基本运算 标量:一个只用大小描述的物理量。 矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。 2、叉乘点乘的物理意义会计算 3、通量源旋量源的特点 通量源:正负无 旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。 4、通量、环流的定义及其与场的关系 通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积定义为矢量F穿过面元矢量dS的通量。 如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外; 环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。 如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。电流是磁场的旋涡源。 5、高斯定理、stokes定理静电静场 高斯定理: 从散度的定义出发,可以得到矢量场在空 间任意闭合曲面的通量等于该闭合曲面所

包含体积中矢量场的散度的体积分,即 散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。 Stokes定理: 从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度 在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。 6、亥姆霍兹定理 若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为 亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。 第二章电磁场的基本规律 1、库伦定律(大小、方向) 说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比; 2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引; 3)满足牛顿第三定律。 2、安培定律(电流环、大小、方向) 说明:恒定磁场是有旋场,是非保守场、电流是磁场的旋涡源。 3、媒质

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结 电磁场知识点总结篇一 电磁场知识点总结 电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。 电磁场知识点总结 一、电磁场 麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。 理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场 * 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场 * 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立 的部分,有机的统一为一个整体,并成功预言了电磁波的存在) 二、电磁波 1、概念:电磁场由近及远的传播就形成了电磁波。(赫兹用实验证实了电磁波的存在,并测出电磁波的波速) 2、性质:* 电磁波的传播不需要介质,在真空中也可以传播 * 电磁波是横波 * 电磁波在真空中的传播速度为光速 * 电磁波的波长=波速*周期 3、电磁振荡 LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化 振荡周期:T = 2πsqrt[LC]4、电磁波的发射 * 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间 * 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。调制分两类:调幅与调频 # 调幅:使高频电磁波的振幅随低频信号的改变而改变 # 调频:使高频电磁波的频率随低频信号的改变而改变 (电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”) 5、电磁波的接收 * 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。 * 调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程 * 解调:从接收到的高频振荡电流中分离出所携带的信号的过程,是调制的逆过程,解调又叫做检波 (收音机是如何接收广播的?收音机的天线接收所有电磁波,经调谐选择需要的电磁波(选台),经过解调取出携带的信号,放大后再还原为声音) 5、电磁波的应用

电磁场与电磁波总结

电磁场与电磁波总结 1本章小结 一、矢量代数 A ∙ B =AB c os θ A B ⨯=A B e AB sin θ A ∙( B ⨯ C ) = B ∙(C ⨯A ) = C ∙(A ⨯B ) A ⨯ (B ⨯C ) = B (A ∙C ) – C ∙(A ∙B ) 二、三种正交坐标系 1. 直角坐标系 矢量线元 x y z =++l e e e d x y z 矢量面元 =+ +S e e e x y z d d x d y d z d x d x d y 体积元 d V = dx dy dz 单位矢量的关系 ⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系 矢量线元 =++l e e e z d d d d z ρϕ ρρϕl 矢量面元 =+e e z dS d dz d d ρρϕρρϕ 体积元 dV = ρ d ρ d ϕ d z 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e z z z ρϕϕ ρρ ϕ 3. 球坐标系 矢量线元 d l = e r d r + e θr d θ + e ϕr sin θ d ϕ 矢量面元 d S = e r r 2sin θ d θ d ϕ 体积元 dv = r 2 sin θ d r d θ d ϕ 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e r r r θϕ θ ϕ ϕ θ 三、矢量场的散度和旋度 1. 通量与散度 = ⋅⎰ A S S d Φ 0 l i m ∆→⋅=∇⋅= ∆⎰A S A A S v d div v 2. 环流量与旋度 = ⋅⎰ A l l d Γ m ax n 0 rot =lim ∆→⋅∆⎰A l A e l S d S 3. 计算公式 ∂∂∂∇= ++∂∂∂⋅A y x z A A A x y z 11()∂∂∂ ∇= + +∂∂∂⋅A z A A A z ϕ ρρρρ ρϕ

(完整版)高二物理电场磁场总结(超全)

电磁场总结 知识要点: 1.电荷 电荷守恒定律 点电荷 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。 基本电荷e =?-161019.C 。带电体电荷量等于元电荷的整数倍(Q=ne ) ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 (1)公式 F K Q Q r =122 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表

达式为F K Q Q r =122,其中比例常数K 叫静电力常量,K =?90109.N m C 22·。(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) (2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场 电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度 点电荷的电场 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是q F E =,E 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q :检验电荷的电量(C)) 电场强度E 的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。与放入检验电荷的正、负,及带电量的多少均无关,不能认为E 与F 成正比,也不能认为E 与q 成反比。

2023最新-电磁场与电磁波知识点总结通用6篇

电磁场与电磁波知识点总结通用6篇 高中地理知识点总结与篇一高中地理知识点总结人类对宇宙的认识过程天圆地方说、地圆说、地心说、日心说、大爆炸宇宙学说。 宇宙的基本特点由各种形态的物质构成,在不断运动和发展变化。 天体的分类星云、恒星、行星、卫星、彗星、流星体、星际物质。 天体系统的成因天体之间因相互吸引和相互绕转,形成天体系统。 天体系统的级别地月系-太阳系-银河系(河外星系)-总星系。 日地平均距离1.496亿千米。 电磁波的知识点总结篇二电磁波的知识点总结 电磁波: 电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效地传递能量和动量。 电磁波的产生: 电磁波是由时断时续变化的电流产生的。 电磁波谱: 按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、红外线、可见光、紫外线、X射线及γ射线。以无线电的波长最长,宇宙射线的波长最短。 无线电波3000米~0.3毫米。(微波0.1~100厘米) 红外线0.3毫米~0.75微米。(其中:近红外为0.76~3微米,中红外为3~6微米,远红外为6~15微米,超远红外为15~300微米) 可见光0.7微米~0.4微米。 紫外线0.4微米~10纳米 X射线10纳米~0.1纳米 γ射线0.1纳米~1皮米 高能射线小于1皮米 传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几毫米。 微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿透而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对于金属类东西,则会反射微波。 电磁波的发现 1、电磁场理论的核心之一:变化的磁场产生电场 在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1) 均匀变化的磁场产生稳定电场(2) 非均匀变化的磁场产生变化电场 2、电磁场理论的核心之二:变化的电场产生磁场 麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场 理解:(1) 均匀变化的电场产生稳定磁场 (2) 非均匀变化的电场产生变化磁场 3、麦克斯韦电磁场理论的理解: 恒定的电场不产生磁场 恒定的磁场不产生电场 均匀变化的电场在周围空间产生恒定的磁场

高中物理-电磁场和电磁波知识点精讲

高中物理-电磁场和电磁波知识点精讲 考纲要求 1、电磁场,电磁波,电磁波的周期、频率、波长和波速Ⅰ 2、无线电波的发射和接收Ⅰ 3、电视、雷达Ⅰ 知识网络: 单元切块: 按照考纲的要求,本章内容均为Ⅰ级要求,在复习过程中,不再细分为几个单元。本章重点是了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论。 教学目标: 1.了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论. 2.了解电磁场和电磁波概念,记住真空中电磁波的传播速度. 3.了解我国广播电视事业的发展. 教学重点:了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论

教学难点:定性理解麦克斯韦的电磁场理论 教学方法:讲练结合,计算机辅助教学 教学过程: 一、电磁振荡 1.振荡电路:大小和方向都随时间做周期性变儿的电流叫做振荡电流,能够产生振荡电流的电路叫振荡电路,LC 回路是一种简单的振荡电路。 2.LC 回路的电磁振荡过程:可以用图象来形象分析电容器充、放电过程中各物理量的变化规律,如图所示 3.LC 回路的振荡周期和频率 LC T π2= LC f π21 = 注意:(1)LC 回路的T 、f 只与电路本身性质L 、C 有关 (2)电磁振荡的周期很小,频率很高,这是振荡电流与普通交变电流的区别。 分析电磁振荡要掌握以下三个要点(突出能量守恒的观点): ⑴理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总 和不变。 ⑵回路中电流越大时,L 中的磁场能越大(磁通量越大)。 ⑶极板上电荷量越大时,C 中电场能越大(板间场强越大、两板 间电压越高、磁通量变化率越大)。 LC 回路中的电流图象和电荷图象总是互为余函数(见右图)。 【例1】 某时刻LC 回路中电容器中的电场方向和线圈中的磁 场方向如右图所示。则这时电容器正在_____(充电还是放电),电 C L i q t t o o 放电 充电 放电 充

最新高中物理电磁波知识点

最新高中物理电磁波知识点 高中物理电磁波知识点一:电磁波的发现 1、电磁场理论的核心之一:变化的磁场产生电场 在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解: (1) 均匀变化的磁场产生稳定电场 (2) 非均匀变化的磁场产生变化电场 2、电磁场理论的核心之二:变化的电场产生磁场 麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场 ◎理解: (1) 均匀变化的电场产生稳定磁场 (2) 非均匀变化的电场产生变化磁场 3、麦克斯韦电磁场理论的理解:

恒定的电场不产生磁场 恒定的磁场不产生电场 均匀变化的电场在周围空间产生恒定的磁场 均匀变化的磁场在周围空间产生恒定的电场 振荡电场产生同频率的振荡磁场 振荡磁场产生同频率的振荡电场 4、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场 5、电磁波:电磁场由发生区域向远处的传播就是电磁波. 6、电磁波的特点: (1) 电磁波是横波,电场强度E 和磁感应强度B按正弦规律变化,

二者相互垂直,均与波的传播方向垂直 (2)电磁波可以在真空中传播,速度和光速相同. v=λf (3) 电磁波具有波的特性 7、赫兹的电火花:赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象.,他还测量出电磁波和光有相同的速度.这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。 高中物理电磁波知识点二:电磁振荡 1.LC回路振荡电流的产生:先给电容器充电,把能以电场能的形式储存在电容器中。 (1)闭合电路,电容器C通过电感线圈L开始放电。由于线圈中产生的自感电动势的阻碍作用。放电开始瞬时电路中电流为零,磁场能为零,极板上电荷量最大。随后,电路中电流加大,磁场能加大,电场能减少,直到电容器C两端电压为零。放电结束,电流达到最大、磁场能最多。

电磁场知识点总结

电磁场知识点总结 电磁场知识点总结 电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。 电磁场知识点总结 一、电磁场 麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。 理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场 * 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场 * 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立 的部分,有机的统一为一个整体,并成功预言了电磁波的存在) 二、电磁波 1、概念:电磁场由近及远的传播就形成了电磁波。(赫兹用实验证实了电磁波的存在,并测出电磁波的波速) 2、性质:* 电磁波的传播不需要介质,在真空中也可以传播 * 电磁波是横波 * 电磁波在真空中的传播速度为光速 * 电磁波的波长=波速*周期 3、电磁振荡 LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化 振荡周期:T = 2πsqrt[LC]4、电磁波的发射 * 条件:足够高的振荡频率;电磁场必须分散到尽可能大的.空间

* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。调制分两类:调幅与调频 # 调幅:使高频电磁波的振幅随低频信号的改变而改变 # 调频:使高频电磁波的频率随低频信号的改变而改变 (电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”) 5、电磁波的接收 * 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。 * 调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程 * 解调:从接收到的高频振荡电流中分离出所携带的信号的过程,是调制的逆过程,解调又叫做检波 (收音机是如何接收广播的?收音机的天线接收所有电磁波,经调谐选择需要的电磁波(选台),经过解调取出携带的信号,放大后再还原为声音) 5、电磁波的应用 电视、手机、雷达、互联网 6、电磁波普 无线电波:通信 红外线:加热物体(热效应)、红外遥感、夜视仪 可见光:照明、摄影 紫外线:感光、杀菌消毒、荧光防伪 X射线:医用透视、检查、探测 r射线:工业探伤、放疗

高中物理电磁知识点归纳总结

高中物理电磁知识点归纳总结电磁学是物理学中的重要分支,研究电荷与电流间相互作用的原理 及其应用。在高中物理学习中,电磁学是一个关键的知识点,包括电 磁感应、电磁波、电路等内容。本文将对高中物理电磁知识进行归纳 总结,帮助同学们更好地理解和掌握相关概念和原理。 一、电磁感应 1.法拉第电磁感应定律 法拉第电磁感应定律指出,磁通量的变化将在导体中诱导出电动势,并产生电流。数学表示为:ε = -dΦ/dt,即电动势等于磁通量的变化率 的相反数。 2.楞次定律 楞次定律规定,感应电流的方向总是使建立起它的磁场的磁力线构 成的磁通量变小。这个定律可以帮助我们确定感应电流的方向。 3.电磁感应的应用 电磁感应在实际中有广泛的应用,如发电机、变压器、感应加热等。通过利用电磁感应的原理,可以将机械能转化为电能或者将电能转化 为机械能。 二、电磁波 1.电磁波的概念

电磁波是一种由电场和磁场交替产生的波动现象,它在真空中以光速传播。电磁波具有波长、频率和振幅等特征。 2.电磁波谱 电磁波谱是按波长或频率对电磁波进行分类和排列的图谱。包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。 3.电磁波的特性 电磁波具有传播性、反射性和折射性等特性。它们可以在空气、真空、介质中传播,并会根据不同介质的折射率发生折射现象。 三、电路 1.电阻和电导 电阻是导体中阻碍电流通过的因素,单位是欧姆(Ω)。而电导是导体中电流通过的能力,单位是西门子(S)。 2.欧姆定律 欧姆定律描述了电流、电压和电阻之间的关系。数学表示为:I = V/R,即电流等于电压除以电阻。 3.串联和并联电路 在电路中,电阻可以串联或并联连接。串联电路中电流相同而电压不同,而并联电路中电压相同而电流不同。 4.电功率

电磁场与电磁波-知识点总结

电磁场与电磁波-知识点总结LT

能E 磁在转化过程中的总和不变。回路中 电流越大时,L 中的磁场能越大。极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。 (4) LC 电路的周期公式及其应用 LC 回路的固有周期和固有频率,与电 容器带电量、极板间电压及电路中电流都无关,只取决于线圈的自感系数L 及电容器的电容C 。 2、电磁场 麦克斯韦电磁理论:变化的磁场能够在周围空间产生电场(这个电场叫感应电场或涡旋场,与由电荷激发的电场不同,它的电场线是闭合的,它在空间的存在与空间有无导体无关),变化的电场能在周围空间产生磁场。 a 、均匀变化的磁场产生稳定的电场,均匀变化的电场产生稳定的磁场; b 、不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场。 c 、振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁场。 d 、变化的电场和变化的磁场总是相互联系着、形成一个不可分离的统一体,称为电磁场。电场和磁场只是这个统一的电磁场的两种具体表现。 3、电磁波: (1)变化的电场和变化的磁场不断地互相转 LC f LC T π频率的决定式:π周期的决定式:212==

化,并且由近及远地传播出去。这种变化的电磁场在空间以一定的速度传播的过程叫做电磁波。(2)电磁波是横波。E与B的方向彼此垂直,而且都跟波的传播方向垂直,因此电磁波是横波。电磁波的传播不需要靠别的物质作介质,在真空中也能传播。在真空中的波速为c=3.0×108m/s。振荡电路发射电磁波的过程,同时也是向外辐射能量的过程. (3)电磁波三个特征量的关系:v=λf 4、电视和雷达 (1)电视发射、接收的基本原理 a、发射:把摄取的图像信号和录制的伴音信号转换为电信号,天线把带有这些信号的电磁波发射出去. b、接收:天线接收到电磁波后产生感应电流,经过调谐、解调等处理,将得到的图像信号和伴音信号送到显像管和扬声器. c、发射电磁波的条件:要有足够高的振荡频率、振荡电路的电场和磁场必须分散到尽可能大的空间、必须不断地补充能量。 (2)雷达 a、雷达是利用定向发射和接收不连续的无线电波,根据时间间隔测量距离的. b、雷达发射的无线电波是微波,波长短、直线性好、反射性能强. 三、典型例题 例1、某时刻LC回路中电容器中 的电场方向和线圈中的磁场方向 如右图18-1所示。则这时电容器

高二物理电磁波知识点总结

高二物理电磁波知识点总结 人教版新课标《高中物理·选修3》系列教材对有关电磁波的内容作了介绍,下面是店铺给大家带来的高二物理电磁波知识点总结,希望对你有帮助。 高二物理电磁波知识点 一、麦克斯韦的电磁场理论: 1、不仅电荷能产生电场,变化的磁场亦能产生电场; 2、不仅电流能产生磁场,变化的电场亦能产生磁场; 二、对麦氏理论的理解 1、稳恒的电场周围没有磁场; 2、稳恒的磁场周围没有电场 3、均匀变化的电场产生稳恒的磁场; 4、均匀变化的磁场产生稳恒的电场; 5、非均匀变化的电场、磁场可以相互转化; 三、电磁场:变化的电场和变化的磁场相互联系,形成一个不可分割的统一场,这就是电磁场; 四、电磁波:电磁场由近及远的传播,就形成了电磁波; 1、有效向外发射电磁波的条件: (1)要有足够高的频率; (2)电场、磁场必须分散到尽可能大的空间(开放电路) 2、电磁场的性质: (1)电磁波是横波; (2)电磁波的速度v=3.0*108; (3)遵守波的一切性质;波的衍射、干涉、反射、折射; (4)电磁波的传播不需要介质。 高二物理学习方法 (一)预习 学习的第一个环节是预习。有的同学不注重听课前的这一环节,会说我在初中从来就没有这个习惯。这里我们需要注意,高中物理与

初中有所不同,无论是从课程要求的程度,还是课堂的容量上,都需要我们在上课之前对所学内容进行预习。 在每次上课前,抽出一段时间(没有时间的限制,长则20分钟,短则课前的5、6分钟,重要的是过程。)将知识预先浏览一下,一则可以帮助我们熟悉课上所要学习的知识,做好上课的知识准备和心理准备;二则可以使我们明确课堂的重点,找出自己理解上的难点,从而做到有的放矢地去听课,有的同学感到听课十分吃力,原因就在于此。 另外,还有更重要的一点就是预习可以培养锻炼我们的自学能力和思考能力(要知道以后进入大学深造或走上工作岗位,这些可是极其重要的)。应该逐渐养成预习的良好习惯。 (二)上课 (1) 主动听课. 听课可分成三种类型:即主动型、自觉型和强制型。主动型就是能够根据老师讲课的程序主动自觉地思考,在理解基础知识的基础上,对难点和重点进行推理性的思维和接受;自觉型则是能对老师讲课的程序进行思考,能基本接受讲解的内容和基础知识,对难点和重点一般不能进行自觉推理思维,要在老师的指导下才能完成这一过程;而强制型则是指在课堂学习中,思维迟缓,推理滞留,必须在老师的不断指导启发下才能完成学习任务。如果属于强制型,那要试着改变自己,由强制型变为自觉型;如果是自觉型,还要加强主动意识,努力变成主动型。总之,我们应该以主动的态度去听讲,积极地进行思考,努力参与到老师的课堂教学中去。 (2)注意课堂要点. 要听好课,应善于抓住课堂的要点,这主要是指重点和难点两个方面。心理学研究表明,我们听课注意力集中的时间一般在20分钟左右,(要想一节课几十分钟内都保持精力高度集中是不可能的),所以我们应将这有限的集中注意时间用到“刀刃”上。 上课时,我们应有意识地去注意老师讲课的重点内容。有经验的老师,总是将主要精力放在突出重点上,进行到重要的地方,或放慢速度,重点强调;或板书纲目,理清头绪;每条分析,仔细讲解等,我们

高中物理电磁波知识点

高中物理电磁波知识点一:电磁波的发现 1、电磁场理论的核心之一:变化的磁场产生电场 在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解: (1) 均匀变化的磁场产生稳定电场 (2) 非均匀变化的磁场产生变化电场 2、电磁场理论的核心之二:变化的电场产生磁场 麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场 ◎理解: (1) 均匀变化的电场产生稳定磁场 (2) 非均匀变化的电场产生变化磁场 3、麦克斯韦电磁场理论的理解: 恒定的电场不产生磁场 恒定的磁场不产生电场 均匀变化的电场在周围空间产生恒定的磁场 均匀变化的磁场在周围空间产生恒定的电场 振荡电场产生同频率的振荡磁场 振荡磁场产生同频率的振荡电场 4、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场 5、电磁波:电磁场由发生区域向远处的传播就是电磁波. 6、电磁波的特点: (1) 电磁波是横波,电场强度E 和磁感应强度 B按正弦规律变化,二者相互垂直,均与波的传播方向垂直 (2)电磁波可以在真空中传播,速度和光速相同. v=λf

(3) 电磁波具有波的特性 7、赫兹的电火花:赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象.,他还测量出电磁波和光有相同的速度.这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。 高中物理电磁波知识点二:电磁振荡 1.LC回路振荡电流的产生:先给电容器充电,把能以电场能的形式储存在电容器中。 (1)闭合电路,电容器C通过电感线圈L开始放电。由于线圈中产生的自感电动势的阻碍作用。放电开始瞬时电路中电流为零,磁场能为零,极板上电荷量最大。随后,电路中电流加大,磁场能加大,电场能减少,直到电容器C两端电压为零。放电结束,电流达到最大、磁场能最多。 (2)由于电感线圈L中自感电动势的阻碍作用电流不会立即消失,保持原来电流方向,对电容器反方向充电,磁场能减少,电场能增多。充电流由大到小,充电结束时,电流为零。接着电容器又开始放电,重复(1)、(2)过程,但电流方向与(1)时的电流方向相反。 2、有效的向外发射电磁波的条件:(1)要有足够高的振荡频率,因为频率越高,发射电磁波的本领越大。(2)振荡电路的电场和磁场必须分散到尽可能大的空间,才有可能有效的将电磁场的能量传播出去。 3.采用什么手段可以有效的向外界发射电磁波? 改造振荡电路——由闭合电路成开放电路 高中物理电磁波知识点三:电磁波的发射和接 受 1、电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,这种现象叫做电谐振。 2、调谐:使接收电路产生电谐振的过程。通过改变电容器电容来改变调谐电路的频率。 3、检波:从接收到的高频振荡中“检”出所携带的信号

高中物理电磁波知识点

高中物理电磁波知识点 1、电磁场理论的核心之一:变化的磁场产生电场 在变化的磁场中所产生的电场的电场线是闭合的涡旋电场◎理解: 1 均匀变化的磁场产生稳定电场 2 非均匀变化的磁场产生变化电场 2、电磁场理论的核心之二:变化的电场产生磁场 麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场 ◎理解: 1 均匀变化的电场产生稳定磁场 2 非均匀变化的电场产生变化磁场 3、麦克斯韦电磁场理论的理解: 恒定的电场不产生磁场 恒定的磁场不产生电场 均匀变化的电场在周围空间产生恒定的磁场 均匀变化的磁场在周围空间产生恒定的电场 振荡电场产生同频率的振荡磁场 振荡磁场产生同频率的振荡电场 4、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场 5、电磁波:电磁场由发生区域向远处的传播就是电磁波. 6、电磁波的特点: 1 电磁波是横波,电场强度E 和磁感应强度 B按正弦规律变化,二者相互垂直,均与波的传播方向垂直 2电磁波可以在真空中传播,速度和光速相同. v=λf 3 电磁波具有波的特性

7、赫兹的电火花:赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象.,他还测量出电磁波和光有相同的速度.这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。 1.LC回路振荡电流的产生:先给电容器充电,把能以电场能的形式储存在电容器中。 1闭合电路,电容器C通过电感线圈L开始放电。由于线圈中产生的自感电动势的阻碍作用。放电开始瞬时电路中电流为零,磁场能为零,极板上电荷量最大。随后,电路中电流加大,磁场能加大,电场能减少,直到电容器C两端电压为零。放电结束,电流达到最大、磁场能最多。 2由于电感线圈L中自感电动势的阻碍作用电流不会立即消失,保持原来电流方向,对电容器反方向充电,磁场能减少,电场能增多。充电流由大到小,充电结束时,电流为零。接着电容器又开始放电,重复1、2过程,但电流方向与1时的电流方向相反。 2、有效的向外发射电磁波的条件:1要有足够高的振荡频率,因为频率越高,发射电磁波的本领越大。2振荡电路的电场和磁场必须分散到尽可能大的空间,才有可能有效的将电磁场的能量传播出去。 3.采用什么手段可以有效的向外界发射电磁波? 改造振荡电路——由闭合电路成开放电路 1、电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,这种现象叫做电谐振。 2、调谐:使接收电路产生电谐振的过程。通过改变电容器电容来改变调谐电路的频率。 3、检波:从接收到的高频振荡中“检”出所携带的信号 1、电视 简单地说:电视信号是电视台先把影像信号转变为可以发射的电信号,发射出去后被接收的电信号通过还原,被还原为光的图象重现荧光屏。电子束把一幅图象按照各点的明暗情况,逐点变为强弱不同的信号电流,通过天线把带有图象信号的电磁波发射出去。 2、雷达工作原理 利用发射与接收之间的时间差,计算出物体的距离。 3、手机 在待机状态下,手机不断的发射电磁波,与周围环境交换信息。手机在建立连接的过程中发射的电磁波特别强。

高中物理电磁波知识点总结

高中物理电磁波知识点总结 麦克斯韦电磁场理论知识点的核心思想是:变化的磁场可以激发涡旋电场,变化的电 场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一 的电磁场.麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系.这个电磁场理论体系的核心就是麦克斯韦方程组, 麦克斯韦方程组是由四个微分方程构成,: 1描述了电场的性质.在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感 应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献, 2描述了磁场的性质.磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献. 3描述了变化的磁场激发电场的规律。 4描述了变化的电场激发磁场的规律, 麦克斯韦方程都是用微积分表述的,具体推导的话要用到微积分,高中没学很难理解, 我给你把涉及到的方程写出来,并做个解释,你要是还不明白的话也不用着急,等上了大学 学了微积分就都能看懂了: 1、安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和. 2、法拉第电磁感应定律,即电磁场互相转化,电场强度的弦度等于磁感应强度对时间 的负偏导. 3、磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对 磁感应强度求散度为零. 4、高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量.麦克斯韦:电位移的散度等于电荷密度, 1. 振荡电流和振荡电路 大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简单的振荡电路。 2. 电磁振荡及周期、频率 1电磁振荡的产生 2振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能与磁 场能的相互转化。

高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:221r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电 =ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量:

20 2 2022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y ==θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变 (二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2121R R U U =,U R R R U 2 111+= 功率分配 2121R R P P =,P R R R P 2 111+= 4、并联电路总电阻: 3 211111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 1221I R I R =,I 1=I R R R 2 12+ S l R ρ =

高中物理电磁波知识点总结

高中物理电磁波知识点总结 高中物理麦克斯韦电磁场理论知识点 麦克斯韦电磁场理论知识点的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场.麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系.这个电磁场理论体系的核心就是麦克斯韦方程组, 麦克斯韦方程组是由四个微分方程构成,: (1)描述了电场的性质.在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献, (2)描述了磁场的性质.磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献. (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律, 麦克斯韦方程都是用微积分表述的,具体推导的话要用到微积分,高中没学很难理解,我给你把涉及到的方程写出来,并做个解释,你要是还不明白的话也不用着急,等上了大学学了微积分就都能看懂了: 1、安培环路定理,就是磁场强度沿任意回路的环量等于

环路所包围电流的代数和. 2、法拉第电磁感应定律,即电磁场互相转化,电场强度的弦度等于磁感应强度对时间的负偏导. 3、磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零. 4、高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量.麦克斯韦:电位移的散度等于电荷密度, 高中物理电磁波知识点 1. 振荡电流和振荡电路 大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简单的振荡电路。 2. 电磁振荡及周期、频率 (1)电磁振荡的产生 (2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能与磁场能的相互转化。 (3)振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零,电路中电流和磁场均增大,直到最大值。 给电容器反向充电时,情况相反,电容器正反方向充放电一次,便完成一次振荡的全过程。 (4)振荡周期和频率:电磁振荡完成一次周期性变化所用时间叫电磁振荡的周期,一秒内完成电磁振荡的次数叫电

相关文档
最新文档