(完整版)高等代数(北大版)第9章习题参考答案

(完整版)高等代数(北大版)第9章习题参考答案
(完整版)高等代数(北大版)第9章习题参考答案

第九章 欧氏空间

1.设()

ij a =A 是一个n 阶正定矩阵,而

),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β,

在n R 中定义内积βαβα'A =),(,

1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量

)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,

的度量矩阵;

3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见

βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑=

'A =j

i j i ij

y x a

,),(αααα,

由于A 是正定矩阵,因此

∑j

i j i ij y x a

,是正定而次型,从而0),(≥αα,且仅当0=α时有

0),(=αα。

2)设单位向量

)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,

的度量矩阵为

)(ij b B =,则

)0,1,,0(),()(ΛΛi j i ij b ==εε???????

??nn n n n n a a a

a a a a a a Λ

M O M

M ΛΛ2

1222

22112

11)(010j ?

???

???

? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

4) 由定义,知

∑=j

i j

i ij y x a ,),(βα

α==

β==

故柯西—布湿柯夫斯基不等式为

2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。 解 1)由定义,得

012)1(32112),(=?+-+?+?=βα,

所以

2,π

βα>=

<。

2)因为

1813521231),(=?+?+?+?=βα, 1833222211),(=?+?+?+?=βα, 3633221133),(=?+?+?+?=βα,

2236

1818,cos =

>=

<βα,

所以

4,π

βα>=<。 3)同理可得

3),(=βα, 17),(=αα, 3),(=ββ, 773,cos >=

<βα,

所以

773cos ,1

->=<βα。

,,ij i j

ij

i j

i j

i j

a x y

a

y y ≤

3. β

αβα-=

),(d 通常为βα,的距离,证明;

),(),(),(γββαβαd d d +≤。 证 由距离的定义及三角不等式可得

)()(),(γββαγαβα-+-=-=d

γββα-+-≤

),(),(γββαd d +=。

4在R 4中求一单位向量与()()()3,1,1,2,1,1,1,1,1,1,1,1---正交。 解 设()4321,,,x x x x =α与三个已知向量分别正交,得方程组

???

??=+++=+--=+-+0

32004321

43214321x x x x x x x x x x x x , 因为方程组的系数矩阵A 的秩为3,所以可令 x 3,0,414213-===?=x x x ,即()3,1,0,4-=α。

再将其单位化,则 ()3,1,0,426

1

1-=

=αηa , 即为所求。 5.设n α

ααΛΛ,,21是欧氏空间

V 的一组基,证明:

1) 如果V ∈γ使()(),,,2,10,n i i ΛΛ==αγ,那么0=γ。

2) 如果V ∈21,γγ使对任一V ∈α有()()αγαγ,,21=,那么21γγ=。 证 1)因为n α

ααΛΛ,,21为欧氏空间

V 的一组基,且对V ∈γ,有

()()n i ,,2,10,ΛΛ=αγ ,

所以可设n n k k k αααγΛΛ++=2211, 且有

()()

()()()

n n n n k k k k k k αγαγαγαααγγγ,,,,,22112211+++=+++=ΛΛΛΛ

即证0=γ。

2)由题设,对任一V ∈α总有()

()

αγαγ,211=,特别对基i α也有

()()i i αγαγ

,211

=,或者()()n i i ,,2,10,21ΛΛ==-αγγ,

再由1)可得021=-γγ,即证21γγ=。

6设3,2,1εεε是三维欧氏空间中一组标准正交基,证明:

()()()

321332123211223

1

2231

2231

εεεαεεεαεεεα--=+-=-+=

也是一组标准正交基。 证 因为

()()3213212122,2291,εεεεεεαα+--+=

()()()[]3322112,,22,291

εεεεεε-+-+=

[]0)2()2(49

1

=-+-+=,

同理可得

()()0,,3231==αααα, 另一方面 ()()3213211122,2291

,εεεεεεαα-+-+=

()()()[]332211,,4,491

εεεεεε--++= 1)144(9

1

=++=, 同理可得

()()1,,3322==αααα,

即证321,,ααα也是三维欧氏空间中的一组标准正交基。

7.设54321,,,,εεεεε也是五维欧氏V 空间中的一组标准正交基, ()3221,,αααL V =,其中 511εεα+= ,

4212εεεα+-= , 32132εεεα++=,

求1V 的一组标准正交基。

解 首先证明321,,ααα线性无关.事实上,由

???????

? ?

?-=00

1010100

110

211),,,,(),,(54321321εεεεεααα, 其中 ?????

??

?

?

?-=00101010

011

0211A 的秩为3,所以321,,ααα线性无关。 将正交化,可得

5

111εεαβ+==,

=-

=),(),(112222βββααβ5

42121

21εεεε-+-,

单位化,有

)(2

2

511εεη+=

, )22(10

10

54212εεεεη-+-=

, )(2

153213εεεεη-++=,

则321,,ηηη为1V 的标准正交基。 8. 求齐次线性方程组

??

?=+-+=-+-+0

32532154321x x x x x x x x x 的解空间(作为5

R 的子空间)的一组标准正交基。 解 由

??

?+--=+--=-3215

3

215423x x x x x x x x x 可得基础解系为

)1,5,0,0,1(1--=α,)1,4,0,1,0(2--=α,)1,4,1,0,0(3=α,

它就是所求解空间的一组基。将其正交化,可得

)1,5,0,0,1(11--==αβ, )

2,1,0,9,7(9

1

),(),(1111222---=-

=ββββααβ,

)2,1,15,6,7(15

1

),(),(),(),(222231111333=--

=ββββαββββααβ,

再将321,,βββ单位化,可得 )1,5,0,0,1(3

311--=

η,)2,1,0,9,7(15

312---=

η,)2,1,15,6,7(35

313=

η,

则321,,ηηη就是所求解空间的一组标准正交基。 9.在R[X]4中定义内积为(f,g)=?

-dx x g x f )()(11

求R[X]4的一组标准正交基(由基

1.3

2,,χχχ出发作正交化)。

解 取R[X]4的一组基为,,,,13

42321x x x ====αααα将其正交化,可得111==αβ,

x =-

=1111222)

,()

,(ββββααβ,其中(?=?=-01),1112dx x βα,又因为

?=

==-3

2),(),(21

12213dx x βββα, ?=?=-211),(1

111dx ββ, ?=?=-0),(21

123xdx x βα,

所以3

1

),(),(),(),(2222231111333-=--

=x ββββαββββααβ,

同理可得x x 5

3

),(),(),(),(),(),(333334222241111444-=---

=ββββαββββαββββααβ,

再将4321,,,ββββ单位化,即得2

2

1

11

1=

=

ββη,

x

26

1

22

2=

=

ββη,)13(41023-=x η,)35(41434x x -=η, 则4321,,,ηηηη即为所求的一组标准正交基。 10.设V 是一n 维欧氏空间,0≠α是V 中一固定向量,

1)证明:V },0),(|{1V x a x x ∈==是V 的一个子空间; 2)证明:V 1的维数等于n-1。

证 1)由于0,01V ∈因而V 1非空.下面证明V 1对两种运算封闭.事实上,任取,,121V x x ∈ 则有 (0),(),21==ααx x ,于是又有(0)()(),2121=+++=+αααx x x x ,

所以121x x V +∈。另一方面,也有 (0),(),11==ααx k kx , 即11kx V ∈。故V 1是V 的一个子空间。

2)因为0≠α是线性无关的,可将其扩充为V 的一组正交基2,,n αηηL ,且(0),=αηi

(),3,2n i Λ=,1(2,3,)i V i n η∈=L 。下面只要证明:对任意的ββ,1V ∈可以由n

ηηηΛ,,32线性表出,则1V 的维数就是1-n 。

事实上,对任意的1V ∈β,都有V ∈β,于是有线性关系n n k k k ηηαβ+++=Λ221,且 ),(),(),(),(221αηαηαααβn n k k k +++=Λ, 但有假设知 ),,2,1(0),(),(n i i Λ===αηαβ,

所以0),(1=ααk ,又因为0≠α,故01=k ,从而有n n k k ηηβ++=Λ22, 再由β的任意性,即证。

11.1)证明:欧氏空间中不同基的度量矩阵是合同的。

2)利用上述结果证明:任一欧氏空间都存在标准正交基。

证:1)设n ααα,,,21Λ与n βββ,,,21Λ是欧氏空间V 的两组不同基,它们对应的度量矩阵分别是)(ij a A =和)(ij b B =,另外,设n ααα,,,21Λ到n βββ,,,21Λ的过渡矩阵为

)(ij c C =,即???

??+++=+++=n nn n n n n n c c c c c c α

ααβαααβΛΛΛΛΛΛΛΛΛΛΛΛΛΛ221112121111 ,

),(),(1111n nj j n ni i j i ij c c c c b ααααββ++++==ΛΛ

=

∑=++n

k n nj j k ki

c c c

111),(αααΛ

=

∑∑==n

k n

s s k sj

ki c c

11

),(αα

=

∑∑==n k n

s ks si

ki c c

11

α,

另一方面,令

)(),(''ij ij e DC AC C d A C D ====, 则D 的元素为

∑==n

k ks ki is c d 1

α,

故AC C '

的元素

∑∑∑=======n s n

n ij sj ks ki n s sj is ij n j i b c c c d e 1

1

1

),2,1,()(Λα,

即证B AC C ='

。再由,,,,;,,,2121n n βββαααΛΛ皆为V 的基,所以C 非退化,从而B

与A 合同。

2)在欧氏空间V 中,任取一组基n ααα,,,21Λ,它的度量矩阵为),(ij a A =其中

(,)ij i j ααα=,且度量矩阵A 是正定的,又因为正定矩阵与单位矩阵合同,即AC C E '=。

于是只要

C n n ),,,(),,,(2121αααβββΛΛ=,

则由上面1)可知基n βββ,,,21Λ的度量矩阵为E ,这就是说,n βββ,,,21Λ就是所求的标准正交基。

12.设n ααα,,,21Λ是

n

维欧氏空间

V

中的一组向量,而

111212122212(,)(,)(,)(,)(,)(,)(,)(,)

(,)m m m m m m αααααααααααααααααα??

?

?

?=

?

?

??

L L M M O M L

证明:当且仅当0?≠时m ααα,,21Λ线性无关。

证 设有线性关系

02211=+++m m k k k αααΛ, 将其分别与i α取内积,可得方程组

),,2,1(0),(),(),(2211m i k k k m i m i i ΛΛ==+++αααααα,

由于上述方程组仅有零解的充要条件是系数行列式不等于0,即证。

13.证明:上三角的正交矩阵必为对角矩阵,且对角线上元素为+1或-1。 证 设

????

??

?

?

?=nn n n a a a a q a A M O

Λ

Λ

222112

11为上三角矩阵,则????

??

?

??=-nn n n b b b b b b A M O

ΛΛ222112111也是上三角矩阵。由于A 是正交阵,所以'1A A =-,即

????

??

?

??=???????

??=nn n n nn n n b b b b b b a a a

a a a A M O ΛΛΛ

O M M 222112112122

1211

, 所以)(0j i a ij ≠=,因而

??????

?

?

?=nn a a a A O

22

11

为对角阵。再由,'

E A A =知12=ii a ,即证1=ii a 或-1。

14.1)设A 为一个n 阶矩阵,且0≠A ,证明A 可以分解成

A=QT ,

其中Q 是正交矩阵,T 是一上三角矩阵

????

??

?

??=nn n n t t t t t t T M O

ΛΛ

22211211, 且),2,1(0n i t ii Λ=>,并证明这个分解是唯一的; 2)设A 是n 阶正交矩阵,证明存在一上三角矩阵T ,使 T T A '

=。

证 1)设A 的n 个列向量是,.,21n a a a Λ由于0A ≠,因此n a a a ,,,21Λ是线性无关的。从而它们也是V 的一组基,将其正交单位化,可得一组标准正交基为

?????

?

??

???

+

---=+-==--n n n n n n n n αβηβηαηβηαηαβηαβηααη1

),(),(1),(11111122

122211

1ΛΛ, 其中

??

??

???

---=-==--1

111122211),(),(),(n n n n n n ηηαηααβηηααβαβΛΛ,

??

??

???+++=+==n

nn n n n t t t t t t ηηηαηηαηαΛΛ221122*********,

其中),,2,1(0n i t i ii Λ=>=

β。即

????

??

?

?

?==nn n n n n t t t t t t A M O

ΛΛ

ΛΛ222112112121),,,(),,(ηηηααα, 令???

?

?

?

?=nn n t t t T M O Λ111,则T 是上三角矩阵,且主对角线元素0>ii t 。 另一方面,由于i η是n 维列向量,不妨记为

),2,1(21n i b b b ni i i i ΛM =????

??

? ??=η,

且令

),,,(211111n nn n n b b

b b Q ηηηΛΛM O

M Λ=???

?

?

??=, 则有QT A =,由于n ηηη,,,21Λ是一组标准正交基,故Q 是正交矩阵。

再证唯一性,设QT T Q A ==11是两种分解,其中1,Q Q 是正交矩阵,1,T T 是主对角线元素

大于零的上三角阵,则1

11

1--=T T Q Q ,由于111

1,--T T Q Q 从而是正交矩阵也是正交矩阵,

且1

1-T

T 为上三角阵,因此, 1

1-T

T 是主对角线元为1或-1的对角阵,但是1T T 与的主对角

线元大于零,所以1

1-T T 的主对角线元只能是1,故E T T =-1

1,即证T T =1。进而有1Q Q =,

从而分解是唯一的。

2)因为A 是正定的,所以A 与E 合同,即存在可逆阵C 使C C A '=,再由1)知QT C =,其中Q 是正交矩阵T 为三角阵,所以T T QT Q T A '''==。 15.设η是欧氏空间中一单位向量,定义ηαηαα),(2-=A ,

证明:1)A 是正交变换,这样的正交变换称为镜面反射;

2) A 是第二类的;

3)如果n 维欧氏空间中正交变换A 以1作为一个特征值,且属于特征值1的特征子空间

1V 的维数为1-n ,那么A 是镜面反射。

证:1)βα,?,有:ηβαηβαβα),(2)(212121k k k k k k A +-+=+

βαηβηηαηβαA k A k k k k k 212121),(2),(2+=--+=, 所以A 是线性变换。

又因为 ]),(2,),(2[),(ηβηβηαηαβα--=A A

),)(,)(,(4),)(,(2),)(,(2),(ηηβηαηβηαηβηαηβα+--=, 注意到1),(=ηη,故),(),(βαβα=A A ,此即A 是正交变换。

2)由于η是单位向量,将它扩充成欧氏空间的一组标准正交基n εεη,,,2Λ,则

??

?==-=-=-=)

,,3,2(),(2),(2n i A A i i i i Λεηεηεεη

ηηηηη, 即 ??????

?

?

?-=111),,,(),,,(22O

ΛΛn n A εεηεεη, 所以A 是第二类的。 3)

A 的特征值有n 个,由已知A 有1-n 个特征值为1,另一个不妨设为0λ,则存在

一组基n εεε,,,21Λ使??????

?

?

?=11),,,(),,,,(02121O

ΛΛλεεεεεεn n A , 因为A 是正交变换,所以),(),(),(112

01111εελεεεε==A A , 但00≠λ,所以10-=λ,于是

)

,,3,2(0),(),,3,2(,111n i n i A A i i ΛΛ====-=εεεεεε

现令11

1

ηεε=

,则η是单位向量,且与n εε,,2Λ正交,则n εεη,,,2Λ为欧氏空间 V

的 一组基。又因为

n

n k k k A A A εεηαη

εεεεεεη+++=-=-=

=

=Λ22111

11

11

)(1

1

)1

(

n n n n k k k A k A k A k A εεηεεηα+++-=+++=ΛΛ221221, 1221),(),(k k k k n n =+++=ηεεηηαΛ,

所以 n n k k k εεηηαηα+++-=-Λ221),(2,即证。 16.证明:反对称实数矩阵的特征值是零或纯虚数。 证:设ξ是属于特征值λ的特征向量,即λξξ=A ,则

ξξξξξξξξξξ)'()'('')'(''A A A A A -=-=-=-=,

于是 λλξξλξξλ-=?-='', 令a bi λ=+,可得0=a ,即证bi =λ。

17.求正交矩阵T 使AT T '成对角形,其中A 为

1)???

?

? ??----02021

2022 2) ?????

??----542452222 3)??

?

?

?

?

?

??0041

001441001400

4) ??????

? ??------------1333313333133331 5) ??

??

?

?

?

??1111111111111111

解1)由

()()()24120212022

+--=???

?

? ??--=-λλλλλλλA E ,

可得A 的特征值为2,4,1321-===λλλ。 对应的特征向量为

()()(),2,2,1,1,2,2,2,1,2321=-=--=ααα 将其正交单位化,可得标准正交基为 ,3

2,

31,3

2

1??

? ??--

=η ,3

1,

3

2,3

22??

?

??-=η ,3

2,3

2

,

313??

? ??=η 故所求正交矩阵为

????? ??---=21222112231T 且????

? ??-=241'

AT T 。

2)由

()()1015424522222

--=????

? ??----=-λλλλλλA E ,

可得 A 的特征值为10,1321===λλλ。

103=λ的特征向量为

(),1,2,

11--=α

121λλ==的特征向量为

(),0,1,22-=α (),1,1,23=α

正交化,可得

()()??

?

??=-=--=1,54,

52,0,1,2,2,2,1321βββ,

再单位化,有:()()()5,4,25

31,0,1,251,2,2,131

321=-=--=

ηηη, 于是所求正交矩阵为

??

???

???

? ?

?-

-

-=5350325345

132

5325

231T 且

?????

??=1110'AT T 。 3)由()()()()3355041014410140+-+-=????

??

?

??--------=-λλλλλλλλλA E , 可得 A 的特征值为3,3,5,54321-==-==λλλλ, 相应的特征向量为

()()1,1,1,1,1,1,1,121--==αα,

()()1,1,1,1,1,1,

1,143--=--=αα,

将其正交单位化,可得标准正交基为

()()1,1,1,121,1,1,1,121

21--==

ηη, ()()1,1,1,1,1,1,1,12

1

43--=--=ηη,

故所求正交矩阵为

???

???? ??------=1,1,1,11,1,1,11,1,1,11,1,1,121T 且?????

?? ??--=3355'

AT T 。 4)由()()8413333

133********

3

-+=?????

?

? ??+-+--+-+=-λλλλλλλA E , 可得A 的特征值为4,84321-====λλλλ。 相应的特征向量为

()()0,0,1,1,1,1,1,121=--=αα,

()()1,0,0,1,0,1,0,143=-=αα,

正交化后得

()()0,0,1,1,11,

1,121=--=ββ,

??

?

??-

=??? ??-

=1,31,

31

,31

,0,1,21,2143ββ, 再单位化,可得 ??

?

??=??? ??--

=0,0,21

,21

,21,21,

21,2121ηη, ???

?

??-=???? ?

?-=323,

3

21,321

,3

21,,0,62

,

6

1,

6143ηη, 故所求正交矩阵为

??

??????

??

?

??---

-=3230

2

13216202132161212

1321

6

12121

T 且 ??????

?

??---=44

48'AT T 。 5)由()411111

1111111111

13

-=??????

? ??----------------=-λλλλλλλA E , 可得A 的特征值为0,44321====λλλλ。 相应的特征向量为

()()0,0,1,1,1,1,1,121-==αα,

()()1,0,0,1,0,1,0,143-=-=αα,

将其正交化,可得 ()()0,0,1,1,1,1,1,121=--=ββ,

??

?

??-

=??? ??-

=1,31,

31

,

31

,0,1,21,2143ββ, 再单位化后,有

???

?

?

?=??? ??

-

-

=0,0,

21,21,21,

21,21`,2121ηη,

???

?

??-=???? ?

?-

=323,

3

21,321

,3

21,0,62

,

6

1,

6

143ηη, 故所求正交矩阵为

??

??????

??

?

??---

-=3230

2

13216202132161212

1321

6

12121T 且??????

? ??=00

8'AT T 。 18用正交线性替换化下列二次型为标准形:

1)32212

322214432x x x x x x x --++; 2)3231212

3222184422x x x x x x x x ++---;

3)432122x x x x +;

4)4342324131212

4232221264462x x x x x x x x x x x x x x x x -+--+-+++。

解 1)设原二次型对应的矩阵为A ,则

????

? ??----=320222021A ,

且A 的特征多项式为

)5)(1)(2(-+-=-λλλλA E ,

特征值为

5,1,2321=-==λλλ,

相应的特征向量为

()()1,2,2,2,1,221=--=αα, ()2,2,13-=α,

单位化后,有 ()()()2,2,13

1,1,2,231,2,1,231

321-==--=

ηηη,

令X=TY ,其中

????

?

??--=21222112231T ,

2

3222152'y y y AX X +-=。

2)原二次型对应的矩阵为

???

?

?

??---=242422221A ,

且A 的特征多项式为 2)2)(7(-+=-λλλA E ,

特征值为

2,7321==-=λλλ。 相应的特征向量为 ()()()1,0,2,0,1,2,2,2,1321=-=-=ααα,

正交化,可得 ()()??

? ??=-=-=1,54,

52

,0,1,2,2,2,1321βββ, 再单位化,有

???

?

??=???? ?

?-=???

??-=535,534,532,0,51

,52,32,32,

31

321ηηη, 令X=TY ,其中

????????

?

?

?--

=5350325345

132

5325

231

T , 则

2

32221'227y y y AX X ++-=。

3)原二次型对应的矩阵为

??

??

?

?

?

?

?=010*********

0010A , 且A 的特征多项式为

22)1()1(-+=-λλλA E ,

特征值为

1,14321-====λλλλ。 相应的特征向量为

()()1,1,0,0,0,0,1,121==αα,

()()1,1,0,0,0,0,1,143-=-=αα,

标准正交基为

()()1,1,0,02

1,0,0,1,1212=

=

ηη,

()()1,1,0,0,0,0,1,

12

143-=-=

ηη,

令X=TY ,其中

??

?

?

?

?

? ?

?--=

10101010010101

01

21T ,

2

4232221'y y y y AX X --+=。

4)原二次型对应的矩阵为

??????

?

??--------=11321

12332112311A , 且A 的特征多项式为

)7)(3)(1)(1(++-+=-λλλλλA E ,

特征值为

3,1,7,14321-=-===λλλλ。

相应的特征向量为

()()1,1,1,1,1,1,1,121--==αα, ()()1,1,1,1,1,1,1,143--=--=αα,

标准正交基为

()()1,1,1,12

1,1,1,1,121

21--==

ηη, ()()1,1,1,12

1,1,1,1,

12

143--=

--=

ηη,

令X=XY ,其中

??????

? ??------=11111

1111111111121T , 故

2

4232221'37y y y y AX X --+=。

19.设A 是n 级实对称矩阵,证明:A 正定的充分必要条件是A 的特征多项式的根全大于零。 证明 二次型AX X '经过正交变换X=TY ,可使

2

222211'n

n y y y AX X λλλ+++=Λ, 其中n λλλ,,,21Λ为A 的特征根。由于A 为正定的充分必要条件是上式右端的二次型为正定,而后者为正定的充分必要条件是0(1,2,,)i i n λ>=L ,即证。

20.设A 是n 级实矩阵,证明:存在正交矩阵T 使AT T '

为三角矩阵的充分必要条件是A 的特征多项式的根是实的。

证明 为确定起见,这里三角矩阵不妨设为上三角矩阵。 先证必要性,设

????

??

?

??-=nn n n

c c c c c c AT T λM O

ΛΛ22211211'

, 其中T ,A 均为实矩阵,从而ij c 都是实数。又因为相似矩阵有相同的特征多项式,所以

)())((2211222112

111nn nn n n c c c c c c c c c AT T E A E ---=????

??

?

?

?------=-=--λλλλλλλλΛM O

Λ

Λ从而A 的n 个特征根nn c c c ,,,1211Λ均为实数。

再证充分性,设s λλλ,,,21Λ为A 的所有不同的实特征根,则A 与某一若尔当形矩阵J 相似,即存在可逆实矩阵0P ,使

J AP P =-010,

其中

????

?

?

?=S J J J O 1

, 而

),,2,1(111

s i J i i

i

i

i ΛO

O

=?????

??

?

?

?=λλλλ, 由于i λ都是实数,所以J 为上三角实矩阵。

另一方面,矩阵0P 可以分解为 000S T P =, 其中0T 是正交矩阵,0S 为上三角矩阵,于是

J S AT T S AP P ==---001

010010,

1

00010--=JS S AT T 。

由于1

00,,-S J S 都是上三角矩阵,因而它们的乘积也为上三角矩阵,即证充分性。

21.设A ,B 都是上三角实对称矩阵,证明;存在正交矩阵T 使B AT T =-1

的充分必要

条件是A ,B 的特征多项式的根全部相同。

证明 必要性是显然的,因为相似矩阵有相同的特征值。

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

高等代数北大版第章习题参考答案

高等代数北大版第章习 题参考答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第六章 线 性空 间 1.设,N M ?证明:,M N M M N N ==。 证任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈,X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;

高等代数(北大版)第10章习题参考答案

第十章双线性函数与辛空间 1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的 一个线性函数,已知 f (ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3 求f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ). 解因为f是V上线性函数,所以有 f (ε1)+ f (ε3)=1 f (ε2)-2 f (ε3)=-1 f (ε1)+f (ε2)=-3 解此方程组可得 f (ε1)=4,f (ε2)=-7,f (ε3)=-3 于是 f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ).=X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =4 X 1 -7 X 2 -3 X 3 2、设V及ε1,ε2,ε3同上题,试找出一个线性函数f ,使 f (ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1 解设f为所求V上的线性函数,则由题设有 f (ε1)+ f (ε3)=0 f (ε2)-2 f (ε3)=0 f (ε1)+f (ε2)=1 解此方程组可得 f (ε1)=-1,f (ε2)=2,f (ε3)=1 于是?a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为 a= X 1ε 1 +X 2 ε 2 +X 3 ε 3 时,就有 f (a)=f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 )

= X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =-X 1+2 X 2 + X 3 3、设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,令α1=ε1-ε3,α2=ε1+ε2-ε3,α3=ε2+ε3 试证:α1,α2,α3是V的一组基,并求它的对偶基。 证:设 (α1,α2,α3)=(ε1,ε2,ε3)A 由已知,得 A= 110 011 111????????-?? 因为A≠0,所以α1,α2,α3是V的一组基。设g1,g2,g3是α1,α2,α3得对偶基,则 (g1,g2,g3)=(f1,f2,f3)(Aˊ)1- =(f1,f2,f3) 011 112 111 -???? - ????--?? 因此 g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f3 4.设V是一个线性空间,f1,f2,…fs是V*中非零向量,试证:?α∈V,使 fi(α)≠0 (i=1,2…,s) 证:对s采用数学归纳法。 当s=1时,f1≠0,所以?α∈V,使fi(α)≠0,即当s=1时命题成立。 假设当s=k时命题成立,即?α∈V,使fi(α)=αi≠0 (i=1,2…,k) 下面证明s=k+1时命题成立。 若f 1 k+(α)≠0,则命题成立,若f 1 k+ (α)=0,则由f 1 k+ ≠0知,一定?β∈V 使f 1 k+ (β)=b,设fi(β)=di(i=1,2…,k),于是总可取数c≠0,使 ai+cdi≠0(i=1,2…,k) 令c γαβ =+,则γ∈V,且

高等代数-北京大学第三版--北京大学精品课程

一个集合,如果在它里面存在一种或若干种代数运算, 这些运算满足一定的运算法则, 则称这样的一个体系为 定义(数域) 设K 是某些复数所组成的集合。如果 K 中至少包含两个不同的复数,且 K 对复数的加、减、乘、 四则运算 是封闭的,即对K 内任 两个数a 、 b ( a 可 以等于b ), 必有 b K , ab K ,且当b 0时,a/b K ,则称 K 为一个数域。 1.1典型的数域举例: 复数域C ;实数域R ;有理数域 Q ; Gauss 数域:Q (i) = { a b i | a, b € Q},其中 i = ?. 1 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素 K ,且 a 0。于是 进而 最后, m, n Z 巴K 。这就证明了 n K 。证毕。 1.1.3 集合的运算, 集合的映射(像与原像、单射、满射、双射)的概念 和B 中的元素合并在一起组成的集合成为 A 与 B 的并集, 记做A B ;从集合A 中去掉属于B 的那些元素之后剩 定义(集合的映射) 设A 、B 为集合。如果存在法则 f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定 若a a'代都有f (a) 第一章代数学的经典课题 § 1若干准备知识 1.1.1代数系统的概念 个代数系统。 1.1.2数域的定义 定义(集合的交、并、差)设S 是集合,A 与B 的公共元素所组成的集合成为 A 与 B 的交集,记作A B ;把A 下的元素组成的集合成为 A 与 B 的差集,记做A B 。 的元素(记做f(a)),则称f 是A 到B 的一个映射,记为 B, f (a). 如果f(a) b B ,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的 B 的 子集称为A 在f 下的像,记做 f (A),即 f (A) f(a)| a A 。 f(a'),则称f 为单射。若 b B,都存在a A ,使得f(a) b ,则称f 为满射。 1.1.4 求和号与求积号 1 ?求和号与乘积号的定义.为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数a 1,a 2, ,a n ,我们使用如下记号: 第一学期第一次课 如果f 既是单射又是满射,则称 f 为双射,或称一一对应。

高等代数北大版第6章习题参考答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证 ),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若)()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈, X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L ) 故 (L )=()(M L )即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

高等代数北大版习题参考答案

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于 A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A = 。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

相关主题
相关文档
最新文档