光合作用分析仪计算公式

光合作用分析仪计算公式
光合作用分析仪计算公式

光合作用分析仪计算公式

净光合速率、蒸腾速率等公式事实上来源于von Caemmerer 和 Farquhar1模型.注意:方程式中参数代表仪器默认值,需根据实际测量值修改。

蒸腾速率

在开路系统中,水蒸气总量是平衡的(如下图所示):

sE=u o w o-u i w i(1-1)

s 叶面积(m-2)

E 蒸腾速率(mol m-2 s-1)

u o出室空气流量(mol s-1)

u i入室空气流量(mol s-1)

w o出室空气中水的摩尔比(mol H2O mol air-1)

w i入室空气中水的摩尔比(molH2O mol air-1)

由于

uo = ui + s E (1-2)

可得

s E = (ui + s E) wo - uiwi (1-3)

重新组合得

u i (w o –w i)

E= (1-4)

s (1 - w o )

公式(1-4)中的参数与LI-6400测量值的关系如下:

u i = F / 106

w i = W r /103

w o = W s /103 (1-5)

s = S /104

F :空气流量(μmol s -1)

Wr :参比水摩尔比(mmol H 2O mol air -1)

Ws :样品水摩尔比(mmol H 2O mol air -1)

S :叶面积(cm -2)

故公式(1-4)可写为:

F ( Ws - Wr)

E = (1-6)

100S (1000 – Ws )

水蒸气总导度

叶片总导度(包括气孔导度和边界层导度) g tw (mol H 2O m -2s -1)为:

g tw =s

l s l w w w w E -+-

)21000( (1-7) W l 是指叶内水分的摩尔浓度(mmol H 2O mol -1空气),由叶面温度T l (℃)和大气压强P (kPa)求得: e ( T l )

W l = ×1000 (1-8)

P

函数e (T)是在T 温度时的饱和水蒸气压,计算见公式(14-21)。

LI-6400光合作用分析仪中使用的饱和水蒸气压函数e()来自Buck (1981)3:

17.502T

240.97+ T e ( T ) = 0.61365e (14-21)

这里讨论的T 是温度(℃). LPL 程序执行的函数e() 被命名为SatVap ,(见表15-3)

水蒸汽的气孔导度

水蒸汽的气孔导度g sw由总导度减去边界层导度而得:

(1-9)

k f是个参数,是基于系数K叶片两侧气孔导度(手册中命名气孔比率)换算得出。

(1-10)

g bw是单侧叶面水蒸气的边界层导度。这样边界层导度的准确性就在于叶片是一面或两面具有气孔。

净光合速率

在开放系统中存在下列等式:

sa = u i c i– u o c o(1-11)

其中a是同化率(mol CO2 m-2 s-1),c i和c o是进出二氧化碳的摩尔比,利用公式(1-2),可写为:

sa = u ici – (u i + s E)c o(1-12)

重新组合为:

(1-13)

对于LI-6400测量值,使用公式(1-5)和下列参数:

c i = Cr / 106

c o = Cs / 106(1-14)

a = A /106

其中Cr和Cs是参比室和样品室的CO2浓度(μmolCO2 mol air-1),A是叶的CO2净同化速率(μmol co2 m-2s-1),置换结果为:

(1-15)

胞间二氧化碳浓度

胞间二氧化碳浓度Ci (μmolCO2 mol air-1),由下式给出:

(1-16)

这里g tc是CO2总导度,由下式给出:

(1-17)

1.6是空气中CO2和H2O的扩散比率,1.37是边界层中CO2和H2O的扩散比率。

其它参数

LI-6400有许多其他相关条件(传感器标定方程,露点温度,相对湿度等等),见14章。

符号摘要

a = 净同化率mol CO2m-2s-1

A = 净同化率μmol CO2m-2s-1

c i = 入室CO2浓度mol CO2mol air-1

c o = 出室CO2浓度mol CO2mol air-1

Cs =样品室IRGA中CO2的摩尔比μmol CO2mol-1air

Cr = 参比室IRGA中CO2的摩尔比μmol CO2mol-1air

Ci =胞间CO2浓度μmol CO2mol-1air

E = 蒸腾速率molH2O m-2s-1

F =入室气体的摩尔流量μmol s-1

g bw=界面水汽导度mol H2Om-2s-1

g sw= 气孔水汽导度mol H2Om-2s-1

g tc=CO2 总导度mol CO2m-2s-1

g tw= 水汽总导度mol H2Om-2s-1

k f =(K2+1) / (K+1)2

K =气孔比率:从叶一面到另一面的气孔导度速率估计值

s=叶面积m2

S=叶面积cm2

u i=入室气体流量mol air s-1

u o=出室气体流量mol air s-1

w i=入室水汽摩尔比mol H2O mol air-1

w o= 出室水汽摩尔比mol H2O mol air-1

Ws=样品IRGA中水汽摩尔比mmol H2O mol air –1

Wr= 参比IRGA中水汽摩尔比mmol H2O mol air –1

Wl = 叶内水汽的摩尔比mmol H2O mol air –1

电脑多元素分析仪操作规程

一. 开机: 在电脑多元素分析仪四个通道比色杯加入水,打开其电源开关,开启电脑,点击“电脑多元素分析仪”软件程序(界面窗口最下方有一条在变化的小方格,指示当前程序正在正常运行)。 二. 定标: 1. 分别点击四个通道屏右侧“满度”,使其透过率(T )为“ T 100.00”,吸光度(A )“A 0.00”,浓度含量(C )“C 0.000”(允许有少许偏差); 2. 点击屏下“零点”,校零成功“零点”变成“校零完成”,只有校零完成才能进行以下操作; 3. “校零完成”后,点击所测元素通道右侧“定标”,进入标样状态,按电脑多元素分析仪该通道的放液按钮,放掉溶液,用少许标样比色液冲洗该通道比色杯,加入标样比色液,待无气泡上逸时(显示A 值比较稳定),点击“A 值输入”,“元素”右框中输入元素符号“%”,在框中输入标样C 值含量值,点击“C 值输入”,点击“定标”(曲线号可不输入仪器会自动加1),点击“保存”; 三.测试: 1.点击定标状态屏右中侧“曲线…>”进入曲线处理界面,选取当前曲线最 左侧小白框,点击该小白框,使用权该条曲线变黑,再点击“调用”,即进入测试状态; 2.用该通道放液按钮,放掉标样比色液,用水冲洗干净后,加入水,点击相应通道右侧“满度”,使其显示“T 100.00”,“A 0.000”,“C 0.000”; 3.把该通道杯中溶液放掉,用所测试样比色液少许冲洗比色杯,加入试样比色液,待无气泡上逸时,直接读其含量值; 4.放掉该通道试样比色液,可用第二试样比色液少许将比色杯冲洗干净,加入第二个试样比色液,无气泡上逸时,直读其含量值,直到所测试样测试完毕,放掉试样比色液,用水将比色杯冲洗干净,加入水。 四.关机: 点击“退出(X )“,关闭电脑,最后关闭电脑多元素分析仪电源。 五.注意事项参照仪器使用说明书。

光合作用分析仪计算公式

光合作用分析仪计算公式 净光合速率、蒸腾速率等公式事实上来源于von Caemmerer 和 Farquhar1模型.注意:方程式中参数代表仪器默认值,需根据实际测量值修改。 蒸腾速率 在开路系统中,水蒸气总量是平衡的(如下图所示): sE=u o w o-u i w i(1-1) s 叶面积(m-2) E 蒸腾速率(mol m-2 s-1) u o出室空气流量(mol s-1) u i入室空气流量(mol s-1) w o出室空气中水的摩尔比(mol H2O mol air-1) w i入室空气中水的摩尔比(molH2O mol air-1) 由于 uo = ui + s E (1-2) 可得 s E = (ui + s E) wo - uiwi (1-3) 重新组合得 u i (w o –w i) E= (1-4) s (1 - w o ) 公式(1-4)中的参数与LI-6400测量值的关系如下: u i = F / 106 w i = W r /103 w o = W s /103 (1-5)

s = S /104 F :空气流量(μmol s -1) Wr :参比水摩尔比(mmol H 2O mol air -1) Ws :样品水摩尔比(mmol H 2O mol air -1) S :叶面积(cm -2) 故公式(1-4)可写为: F ( Ws - Wr) E = (1-6) 100S (1000 – Ws ) 水蒸气总导度 叶片总导度(包括气孔导度和边界层导度) g tw (mol H 2O m -2s -1)为: g tw =s l s l w w w w E -+- )21000( (1-7) W l 是指叶内水分的摩尔浓度(mmol H 2O mol -1空气),由叶面温度T l (℃)和大气压强P (kPa)求得: e ( T l ) W l = ×1000 (1-8) P 函数e (T)是在T 温度时的饱和水蒸气压,计算见公式(14-21)。 LI-6400光合作用分析仪中使用的饱和水蒸气压函数e()来自Buck (1981)3: 17.502T 240.97+ T e ( T ) = 0.61365e (14-21) 这里讨论的T 是温度(℃). LPL 程序执行的函数e() 被命名为SatVap ,(见表15-3)

影响光合作用的因素

影响光合作用的因素: 光合作用是在植物有机体的内部和外部的综合条件的适当配合下进行的。因此内外条件的改变也就一定会影响到光合作用的进程或光合作用强度的改变。影响光合作用强度的因素主要有光照强度、CO2浓度、温度和矿质营养。 ①光照强度:植物的光合作用强度在一定范围内是随着光照强度的增加,同化CO2的速度也相应增加,但当光照强度达到一定时,光合作用的强度不再随着光照强度的增加而增强。植物在进行光合作用的同时也在进行呼吸作用,当植物在某一光照强度条件下,进行光合作用所吸收的CO2与该温度条件下植物进行呼吸作用所释放的CO2量达到平衡时,这一光照强度就称为光补偿点,这时光合作用强度主要是受光反应产物的限制。当光照强度增加到一定强度后,植物的光合作用强度不再增加或增加很少时,这一光照强度就称为植物光合作用的光饱和点,此时的光合作用强度是受暗反应系统中酶的活性和CO2浓度的限制如图。 光补偿点在不同的植物是不一样的,主要与该植物的呼吸作用强度有关,与温度也有关系。一般阳生植物的光补偿点比阴生植物高。光饱和点也是阳生植物高于阴生植物。所以在栽培农作物时,阳生植物必须种植在阳光充足的条件下才能提高光合作用效率,增加产量;而阴生植物应当种植在阴湿的条件下,才有利于生长发育,光照强度大,蒸腾作用旺盛,植物体内因失水而不利于其生长发育,如人参、三七、胡椒等的栽培,就必须栽培于阴湿的条件下,才能获得较高的产量。 植物在进行光合作用的同时也在进行着呼吸作用,总光合作用是指植物在光照下制造的有机物的总量(吸收的CO2总量)。净光合作用是指在光照下制造的有机物总量(或吸收的CO2总量)中扣除掉在这一段时间中植物进行呼吸作用所消耗的有机物(或释放的CO2)后,净增的有机物的量。 ②温度:植物所有的生活过程都受温度的影响,因为在一定的温度范围内,提高温度可以提高酶的活性,加快反应速度。光合作用也不例外,在一定的温度范围内,在正常的光照强度下,提高温度会促进光合作用的进行。但提高温度也会促进呼吸作用。如图所示。所以植物净光合作用的最适温度不一定就是植物体内酶的最适温度。 ③CO2浓度:CO2是植物进行光合作用的原料,只有当环境中的CO2达到一定浓度时,植物才能进行光合作用。植物能够进行光合作用的最低CO2浓度称为CO2补偿点,即在此CO2浓度条件下,植物通过光合作用吸收的CO2与植物呼吸作用释放的CO2相等。环境中的CO2低于这一浓度,植物的光合作用就会低于呼吸作用,消耗大于积累,长期如此植物就会死亡。一般来说,在一定的范围内,植物光合作用的强度随CO2浓度的增加而增加,但达到一定浓度后,光合作用强度就不再增加或增加很少,这时的CO2浓度称为CO2的饱和点。如CO2浓度继续升高,光合作用不但不会增加,反而要下降,甚至引起植物CO2中毒而影响植物正常的生长发育。如图所示。 ④必需矿质元素的供应:绿色植物进行光合作用时,需要多种必需的矿质元素。如氮是催化光合作用过程各种酶以及NADP+和ATP的重要组成成分,磷也是NADP+和ATP的重要组成成分。科学家发现,用磷脂酶将离休叶绿体膜结构上的磷脂水解掉后,在原料和条件都具备的情况下,这些叶绿体的光合作用过程明显受到阻碍,可见磷在维持叶绿体膜的结构和功能上起着重要的作用。又如绿色植物通过光合作用合成糖类,以及将糖类运输到块根、块茎和种子等器官中,都需要钾。再如镁是叶绿体的重要组成成分,没有镁就不能合成叶绿素。等等。 5、有氧呼吸和无氧呼吸的比较 有氧呼吸和无氧呼吸的公共途径是呼吸作用第一阶段(糖酵解),是在细胞质基质中进行。在没有氧气的条件下,糖酵解过程的产物丙酮酸被[H]还原成酒精和CO2或乳酸等,在不同的生物体由于酶的不同,其还原的产物也不同。在有氧气的条件下,丙酮酸进入线粒体继续被氧化分解。如图。由于无氧呼吸哪有机物是不彻底的,释放的能量很少,转移到A TP中的能量就更少,还有大量的能量贮藏在不彻底的氧化产物中,如酒精乳酸等。有氧呼吸在有氧气存在的条件下能把糖类等有机物彻底氧化分解成CO2和H2O,把有机物中的能量全部释放出来,约有44%的能量转移到ATP中。所以有氧呼吸为生命活动提供的能量比无氧呼吸多得多,在进化过程中绝大部分生物选择了有氧呼吸方式,但为了适应不利的环境条件还保留了无氧呼吸方式。 6、影响呼吸作用的因素: ①温度:温度能影响呼吸作用,主要是影响呼吸酶的活性。一般而言,在一定的温度范围内,呼吸强

元素分析仪(EA)操作规程

元素分析仪(EA)操作规程 德国Elementar公司vario MAX cube型元素分析仪,配有90位自动进样器,最大进样量可达5g,从而提高分析精度,降低检出限。通过更换部分管路和反应管,仪器可于C/N模式和C/N/S模式之间切换。目前主要用于植物、土壤、沉积物等样品中的C、N、S元素分析。 操作步骤: 1、开机 1)检查反应管外观、载气剩余量,做好记录。 2)开启计算机,进入vario max cube软件,查看当前模式,确定是否需要切换模式。 3)options—maintenance—intervals,检查各反应管使用情况,判断是否需要重填反应管,若重新填装,将计数清零。 4)options—settings—parameters,将前三项反应管温度均设为“0”,其余参数不动,退出软件。 5)开启主机电源,带仪器自检完毕后,重新开启软件。 6)将He气分压调至0.15MPa,O2暂不开。等待仪器进入standby状态,若联机不成功需重启软件。 7)options—diagnostics-leak check, 点击“start”开始检漏。 8)检漏通过后,将He气分压调至0.38MPa,O2分压调至0.25MPa 9)options—settings—parameters,根据当前模式,设置反应管温度。 C/N模式:Comb. tube: 900℃ Post Comb. tube: 900℃ Reduct Comb. tube: 830℃C/N/S模式:Comb. tube: 1140℃ Post Comb. tube: 800℃ Reduct Comb. tube: 850℃ 2、样品测试 1)等待反应管升温结束,TCD检测器本底稳定,状态栏无闪烁项时,可准备测样。 2)建立新样品表并命名(不要用中文),先编辑一个blank[O2],两个blank,两个sulfadiazine样品激活仪器,三个sulfadiazine标样用于计算校正因子,下面可编辑样品。可用“复制粘贴”、“enter”等功能添加新样品行。 3)称取标样和样品,可直接将样品质量传输至样品表。 4)样品称量结束后(约30-50个),再次称量三个sulfadiazine标样,确认仪器状态,状态正常可继续添加样品。 5)保存样品表并运行。 6)样品运行结束后,仪器自动进入休眠模式,切断载气,反应管自动降温。 3、数据计算与保存 1)math—factor,计算日常校正因子,如果三个标样结果不平行,选取其中两个接近的数值进行计算,factor通常在0.9-1.1之间,如果偏差过大,需要重新做标准曲线。

“光合作用与呼吸作用”相关计算题解法探究(01)

“光合作用与呼吸作用”相关计算题解法探究 植物的新陈代谢历年来都是高考的“主角”,而以光合作用和呼吸作用知识为背景的试题历来是高考生物命题的重点和热点。在近几年的高考生物试题中,尤其是上海、广东、江苏等地的试题中,有关光合作用和呼吸作用的综合计算题经常出现。这类试题涉及植物的光合作用和呼吸作用两大生理过程,同时还与化学知识相结合,是综合性较强的热点试题。不少考生在解答此类试题时常常感到困惑,甚至不知如何分析。本文将通过知识整理和典例精析的形式,帮助考生掌握这类计算题的解题方法和技巧。 一.明确净光合速率,真正光合速率的表示方法及相互关系。 1.表示方法: 净光合速率通常以o2释放量,或co2二氧化碳或有机物积累量来表示;真正光合速率(也称 为总光合速率或实际光合速率)通常用o2产生量,co2固定量或有机物的产生量来表示。 2.相互关系 在黑暗条件下植物不进行光合作用,只进行呼吸作用,因此此时测得o2吸收量(即空气中o2的减少量)或co2释放量(即空气中的co2增加量)直接反应呼吸速率。 在光照条件下,植物同时进行光合作用和呼吸作用,此时测得的空气中的o2增加量(或co2的减少量)比植物实际光合作用所产生的o2量(或消耗的co2量)要少,因为植物在光合作 用的同时也在通过呼吸作用消耗o2,放出co2。因此此时测得的数值并不能反映植物的实际光合速率,而反映出表观光合速率或称净光合速率。图像如下:(5-1) 光合作用总反应式:6CO2 +12H2O——→ C6H12O6 + 6H2O+6O2 解题的时候把我以下5点: (1)反应前后的摩尔比是进行有关计算的基础。 (2)光合作用释放6个o2全部来自光反应阶段原料H20的分解。 (3)光反应阶段需要12个H20,光解产物24个【H】,在暗反应中用于还原6个co2,并产生

光合作用与呼吸作用计算

光合作用与呼吸作用相关计算 一、知识基础 二、相关练习 1.对不同地区农作物的光合作用速率、作物产量及太阳辐射量作比较,如下表所示: 下列说法中不正确的是()A A.对太阳能利用率最低的是英国甜菜 B.以色列玉米呼吸作用的消耗率最大 C.高的太阳辐射量,能使作物有高的光合作用量,但不一定有高的作物产量 D.作物产量高的地区,往往不是太阳辐射高的热带,而是在昼夜温差大的温带 2.将状况相同的某种绿叶分成四等组,在不同温度下分别暗处理1h,再光照1h(光强相同),测其重量变化,得到如下表的数据。可以得出的结论是()B

A.该植物光合作用的最适温度约是27℃ B.该植物呼吸作用的最适温度约是29℃ C.27~29℃下的净光合速率相等 D.30℃下的真正光合作用速率为2mg/h 3.右图为某绿色植物在25℃时光照强度与氧气释放速度之间 的关系,下列叙述不正确的是()C A.在500lux下,此植物能进行光合作用 B.在1000lux下,此植物每小时氧气的释放量为0ml C.在1500lux下,光合作用产生氧气的速度为5ml/h D.在4000lux下,此植物氧气的释放量为15ml 4.一学生做了这样一个实验:将小球藻放在一只 玻璃容器内,使之处于气密封状态。实验在保持适 宜温度的暗室中进行,并从第5分钟起给予光照。 实验中仪器记录了该容器内氧气量的变化,结果如 右图。请据图分析回答: (1)在0~5分钟之间氧气量减少的原因是 。 (2)给予光照后氧气量马上增加的原因是。 (3)在5~20分钟之间,氧气量增加的速率逐渐减小,这是因为。 溶液后,氧气产生量呈直线上升,这是因为 (4)加入少量的NaHCO 3 。 (5)加入NaHCO 溶液后,平均每分钟释放摩尔的氧气。 3 (1)呼吸作用消耗了容器中的氧气 (2)光合作用产生的氧气量大于呼吸作用消耗的氧气量 浓度逐渐减少,光合作用速率逐渐下降 (3)光合作用使密闭容器内的CO 2

光合作用

低温胁迫对红掌(粉冠军)光合特性与叶绿 素荧光的影响 摘要:温度是植物生长和发育的必要条件之一,低温是影响许多植物的产量和地理分布的一个主要环境因素。光合系统对低温胁迫非常敏感,实验采用低温胁迫的方法,利用光合仪测定技术和叶绿素荧光技术,研究在低温胁迫下红掌的光合生理变化。本实验以红掌(粉冠军)为试材,培养条件:光周期12/12h,温度25/18℃,光强62000lx培养。分别转入低温弱光( 3/3℃,光周期12/12h,光强62000lx)和偏低温弱光( 10/10℃,光周期12/12h,光强62000lx)下分别胁迫22h, 然后用光合仪和叶绿素荧光仪对其叶片进行测定,研究其光合速率及叶绿素荧光特性的变化【1】。结果表明,与对照组CK 相比,4℃的低温胁迫使红掌(粉冠军)叶片的净光合速率(Pn)降低,最大光化学效率(Fv/Fm)、PSⅡ实际光化学效率(ΦPSⅡ)、光合电子传递速率(ETR)也均同时下降。研究发现,低温胁迫会直接损伤光合机构,使PSⅡ反应中心失活,引起其光能原初捕捉能力和光能同化率减弱,增加了通过热辐射消耗的光能比例,最终导致粉冠军光合作用能力减弱。 Abstract:the GongZhang (powder champions) as test materials, culture conditions: light cycle 12/12, 25/18 ℃temperature h, light intensity lx 6200/0 training. Temperature and weak light into respectively (3/3 ℃, light cycle 12/12 h, light intensity lx) and partial 62000 temperature and weak light (10/10 ℃, light cycle 12/12 h, light intensity lx 62000), then 22 h respectively stress in photosynthetic instrument and apparatus to its leaf chlorophyll fluorescence were determined, and study the photosynthetic rate and the change of chlorophyll fluorescence properties. The results show that, compared with the control group, 3 ℃CK the low temperature stress make GongZhang (powder champions) the leaves of the net photosynthetic rate (the Pn) reduce, the biggest photochemical efficiency (Fv/Fm), PS Ⅱactual photochemical efficiency (Φ PS Ⅱ), photosynthetic electronic transfer rate (ETR) also are also down. Research found that low temperature stress will direct damage photosynthetic institutions, make PS Ⅱresponse center, cause the deactivation light original catch ability and light energy assimilation rate is abate, increase the proportion of light energy consumption by heat radiation, eventually leading to powder champions photosynthesis decreased ability. 关键词:粉冠军红掌低温胁迫光合作用 植物的生长发育主要是依靠其进行光合作用,光合作用是地球上最重要的生命现象,是唯一能把太阳能转化为稳定的化学能贮存在有机物中的过程,是农作物产量形成的决定性因素,因此,提高光合作用对于提高农作物产量具有重要意义。在影响光合作用的各种因素中,温度历来受到很大重视.。随着全球变化的加剧,温度的影响越来越突出.。因此,研究温度对植物的影响在理论和生产实践上均有重要意义。光合作用对温度非常敏感,轻度的温度变

光谱分析操作规程

1 适用范围 本规程适用于GVM-1014S光谱分析仪光谱分析、 2 测量原理 将加工好的块状样品作为一个电极,与反电极之间激发激光,通过分光元件将激发光分解成光谱。发射光的光谱特征谱线表示所给样式的含量的特性,对选用的内标线和分析线的强度进行光电测量,根据所用标准样品制作的工作曲线,求出样品中分析元素的含量。 3 操作程序 3.1 开关机程序 3.1.1 开机 顺序打开稳压电源开关、光谱仪主开关、温度调节开关、激发光源开关(随做随开)、CRT、打印机、计算机、真空泵电源及手动阀门。 3.1.2 关机 先关计算机,再关CRT,以下顺序与开机顺序相反。 3.2 准备工作(光谱仪稳定四小时后方可进行描迹、标准化、含量分析)。 3.2.1 抽真空(每天需要进行的工作) 开机后计算机自动进入数据处理系统,按“ENTER”键后,即进入工作状态。 3.2.1.1 按“shift+F1”键,显示主菜单画面,用“↑”,“↓”键,将光标移至“maintenance” 3.2.1.2 用“↑”、“↓”键将光标移至“Instrument Status”(仪器状态)项,按“ENTER”键,则显示出其画面。 3.2.1.3 打开真空泵开关五分钟后,打开手动阀门,待“V ACUUM”黄色指针移至左侧绿色区域中央时关闭手动阀门。一分钟后关掉真空泵电源开关,同时确认“AC 100V”、“TEMP”在绿色区域。 3.2.2 描迹(需要时) 3.2.2.1 按“F10”键回到“维护”画面,用“↑”、“↓”键将光标移至“manual scanning”(描迹)项,按“ENTER”键,则显示其他画面。 3.2.2.2 打开氩气总阀,打开激发光源开关,按“F8”键打开负高压开关。 3.2.2.3 放好描迹的试样,按“F1”键开始激发,用手握紧鼓轮逆时针转动20小格,再顺时针转动,每间隔5个小格按“F6”键,CRT上显示出标记。当描出Fe线有峰值的轮廓时,按“F2”键,停止激发。

光合作用专题复习(精)

“光合作用”专题复习 一、要点梳理 (一叶绿体中的色素 1.分布:叶绿体基粒的囊状结构。 2.功能:吸收光能,传递光能,转化光能(只有较少数处于特殊状态的叶绿素a分子。 3.特性:不溶于水,能溶于酒精、丙酮和石油醚等。 4.分类及层析后位置 (1实验中几种化学物质的作用:丙酮作为提取液,可溶解叶绿体中的色素;层析液用于分离色素;二氧化硅破坏细胞结构,使研磨充分;碳酸钙可防止研磨过程中色素被破坏。 (2实验的关键之处:研磨要迅速、充分,叶绿素不稳定,易被破坏,充分研磨是为了提取较多的色素;滤液收集后,要及时用棉塞将试管口塞紧,以防止滤液挥发;滤液细线不仅要细、直,而且要含有较多的色素,因此要在滤液干后,重复画2~3次;滤纸上的滤液细线不能触到层析液,否则会使滤液中的色素溶解于层析液中,滤纸条上得不到色素带。 (3色素提取液颜色淡的原因分析:研磨不充分,色素未能充分提取出来;未加CaC03,叶绿素分子被破坏;剪取叶片太少或加入丙酮太多,色素提取液浓度过低。

(二光合作用的过程 根据反应过程是否需要光能,将光合作用分为光反应和暗反应两个阶段。对于这两个阶段,可以采用“列表”比较的方法,加强对知识的理解与掌握。 1.区别 物质:光反应阶段产生的[H],在暗反应阶段用于还原C3。 能量:光反应阶段生成的ATP,在暗反应阶段中将其储存的化学能释放出来,帮助C3形成糖类,ATP中的化学能则转化为储存在糖类中的化学能。 (三影响光合作用的因素及在生产上的应用

影响 当光照强度、CO2浓度突然发生改变时,短时间内会直接影响C3、C5、[H]、ATP及(CH2O生成量,进而影响叶肉细胞中这些物质的含量。具体可参照下表: 34 C3植物和C4植物是按照固定CO2的途径为依据来划分的。C3植物只有C3途径,而C4植物有C3和C4两条途径。C3植物的维管束鞘细胞内无叶绿体,C4植

PE- AA400原子吸收光谱仪操作规程

PE- AA400原子吸收光谱仪操作规程 AAnalyst 400 Atomic Absorption Spectrophotometer ●仪器型号:AAnalyst 400 ●仪器厂商:美国PerkinElmer公司 ●启用日期:2007.6 ●应用领域:可用于水体、岩石矿物、土壤、植物、食品、石油、化工产品中 金属元素含量的测定,检测限为ppm~ppb级 ●技术参数及特点: ①原子化器为火焰原子化系统,燃气通常为乙炔,助燃气通常为空气,可测 定三十多个金属元素; ②测定波长范围190~900nm;内置4个灯坐; ③氘灯背景校正。 测试步骤: 1.打开排风系统,打开稳压电源,打开空气压缩机(先拧松底部的放水阀进行 放水),打开乙炔钢瓶总阀门,调整分压阀,使压力在0.1 MPa处。 2.打开仪器前门,打开置于前面板底部的仪器电源开关。 3.打开电脑,开启工作软件WinLab32 for AA,系统自动自检并初始化,待 System Status 卡上(或Diagnostics卡上)AA400 spectrometer 和Flam两大组件都自检通过后(打绿勾),方可进行下一步操作。 4.点击快捷键Wrkspc,打开一个工作界面,此时电脑屏幕上同时出现4个操作 窗口,分别为Flame control(用于点火操作和火焰控制)、Calibration Display(显示标准曲线)、Manual Analysis Control(用于控制空白、标准曲线和样品的测定)、Results(显示测定结果,包括吸光度值和浓度)。 5.新建一个测试方法:File—new—method,选择待测元素,点击ok,在Method

光合作用简介

光合作用简介 光合作用(Photosynthesis)是植物、藻类利用叶绿素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。 光合作用的详细机制 植物利用阳光的能量,将二氧化碳转换成淀粉,以供植物及动物作为食物的来源。叶绿体由于是植物进行光合作用的地方,因此叶绿体可以说是阳光传递生命的媒介。 原理: 植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取。就是所谓的自养生物。对于绿色植物来说,在阳光充足的白天,它们将利用阳光的能量来进行光合作用,以获得生长发育必需的养分。 这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉,同时释放氧气。 CO?+H?O(光照、酶、叶绿体)==(CH?O)+O? (上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子和氢离子。而右边的水分子的氧原子则是来自二氧化碳。为了更清楚地表达这一原料产物起始过

程,人们更习惯在等号左右两边都写上水分子,或者在右边的水分子右上角打上星号。) 光合作用可分为光反应和碳反应(旧称暗反应)两个阶段。 影响光和作用的外界条件 1.光照 光合作用是一个光生物化学反应,所以光合速率随着光照强度的增加而加快。但超过一定范围之后,光合速率的增加变慢,直到不再增加。光合速率可以用CO?的吸收量来表示,CO?的吸收量越大,表示光合速率越快。 2.二氧化碳 CO?是绿色植物光合作用的原料,它的浓度高低影响了光合作用暗反应的进行。在一定范围内提高CO?的浓度能提高光合作用的速率,CO?浓度达到一定值之后光合作用速率不再增加,这是因为光反应的产物有限。 3.温度 温度对光合作用的影响较为复杂。由于光合作用包括光反应和暗反应两个部分,光反应主要涉及光物理和光化学反应过程,尤其是与光有直接关系的步骤,不包括酶促反应,因此光反应部分受温度的影响小,甚至不受温度影响;而暗反应是一系列酶促反应,明显地受温度变化影响和制约。 当温高于光合作用的最适温度时,光合速率明显地表现出随温度年升而下降,这是由于高温引起催化暗反应的有关酶钝化、变性甚至遭到破坏,同时高温还会导致叶绿体结构发生变化和受损;高温加剧植物的呼吸作用,而且使二氧化碳溶解度的下降超过氧溶解度的下降,结果利于光呼吸而不利于光合作用;在高温下,叶子的蒸腾速率增高,叶子失水严重,造成气孔关闭,使二氧化碳供应不足,这些因素的共同作用,必然导致光合速率急剧下降。当温度

手持式合金分析仪操作规程(中英文)

手持式合金分析仪操作规程 Operating regulation for handy-alloy analysis 一、范围 1. Range 本规程适用于厂内型号为Niton XLT898W手持式合金分析仪的使用操作。 This operating regulation is applied for handy-alloy analysis in HBG named Niton XLT898W. 二、工作原理及适用范围: 2. Working principle and scope of application 采用X射线荧光(XRF)技术进行多元素分析。用于各种高低合金钢、不锈钢、工具钢、铬/钼钢、镍合金、钴合金、镍/钴耐热合金、钛合金、铜合金等,可分析Ti V Cr Mn Fe Co Ni Cu Zn Nb Zr Mo Ag Pd Sn Hf Ta W Re Pb Bi Se Sb 等元素。 Using fluorescent X-ray technology to have multi-element analysis. this devie is applied for kinds of alloyed steel, non-corrosive steel, tool steel, chrome-molybdenum steel, nickel alloy, cobalt alloy, nickel/cobalt heat-resisting alloy, titanium alloy, copper alloy and so on. it can also analysis kinds of elements like Ti V Cr Mn Fe Co Ni Cu Zn Nb Zr Mo Ag Pd Sn Hf Ta W Re Pb Bi Se Sb. 三、工作条件: 3.Working condition 工作温度:-20℃-50℃;样品温度:0℃-50℃。 Working temperature: -20℃-50℃;specimen temperature: 0℃-50℃. 四、被测金属样品的外形尺寸: 4.outline dimension of measured metal specimen 线材:直径1mm以上; 小口径管材:外径2mm以上; 被测材料与探测窗之间的距离小于10mm; 被测材料(表面)的状态:平面、曲面、粗糙表面、不规则表面、粉末状、振动状态等。 被测表面应打磨露出金属光泽,不影响分析结果。 Wire stock: diameter greater than 1mm; Small pipe-tube: external diameter greater than 1mm; Distance between measured material and detecting window less than 10mm; Status of measured material(surface):flat face, curved face, rough face, irregular face, pulverous face, vibrate face and so on, measured material surface should be shined until the material appear metal brightness and not effect on analysis result. 五、操作步骤: 5.Operation procedure: 1.使用前认真阅读本设备操作使用规程或使用说明书,仔细检查仪器表面,如发现有 明显破损或异常现象应立即更换。 2.使用该设备时应正确佩戴设备防护腰带,手握设备时应先把防滑带套入手腕,以防 设备损坏。 3.测量前应保证被测面露出金属光泽。按下电源开关,仪器发出提示音,液晶屏幕显 示数据后,直接在触摸屏上输入1、2、3、4、E进入操作界面(主界面)。

有关光合作用的计算(精)

有关光合作用的计算1 1、导测题汇编P 43,第60题 例:将某一绿色植物置于密闭的玻璃容器中。如果不给以光照,则CO 2含量每小时增加20mg ;如果给予充足的光照,则容器内CO 2的含量每小时减少46mg ,根据测定,在上述光照条件下光合作用每小时能产生葡萄糖45mg 。(如有小数,保留一位) (1)在光照条件下,每小时通过光合作用消耗了____________mg 的二氧化碳,通过呼吸作用产生了____________mg 的二氧化碳,说明光对该植物呼吸作用强度________________。 (2)在有光的条件下,该植物每小时能净积累葡萄糖___________mg 。 (3)在一昼夜中,将该装置先在充足光照条件下放置20h ,再在黑暗条件下放置4h ,该植物体内葡萄糖净积累______________mg ,该装置中CO 2含量的变化是______________mg ,O 2含量的变化是______________mg 。 解: (1)单独考虑光合作用 设光合作用消耗的二氧化碳为x 1mg/h x 1=66mg/h 光合作用产生的氧气为x 2mg/h x 2=48mg/h 酶 13.6mg/h 14.5mg/h 20mg/h 有氧呼吸:C 6H 12O 6 + 6O 2 + 6H 2O 6CO 2 + 12H 2O + 能量 光能 叶绿体 66mg/h 45mg/h 光合作用:6CO 2 + 12H 2O C 6H 12O 6 + 6O 2 + 6H 2O 48mg/h 6 x 1 44 1 45 180 = 1 45 180 6 x 2 32 =

光合作用和呼吸作用中的计算

光合作用和呼吸作用中的计算 (1)有光时,植物同时进行光合作用和呼吸作用,真正光合速率=表观光合速率+呼吸速率,黑暗时,植物只进行呼吸作用,呼吸速率=外界环境中O2减少量或CO2增加量/(单位时间·单位面积)。 (2)酵母菌既能进行有氧呼吸,又能进行无氧呼吸,且两种呼吸都能产生CO2,若放出的CO2的体积与吸收的O2的体积比为1:1,则只进行有氧呼吸;若放出的CO2的体积与吸收的O2的体积比大于1,则有氧呼吸和无氧呼吸共存;若只有CO2的放出而无O2的吸收,则只进行无氧呼吸。 例4.(2006上海)一密闭容器中加入葡萄糖溶液和酵母菌,1小时后测得该容器中O2减少24mL,CO2增加48mL,则在1小时内酒精发酵所消耗的葡萄糖量是有氧呼吸的() A.1/3倍B.1/2倍C.2倍D.3倍 解析:根据有氧呼吸反应式可知: 根据无氧呼吸反应式可知: 氧气减少了24,可知有氧呼吸产生了24ml CO2,又因CO2共增加,可知无氧呼吸产生了24ml CO2。在有氧呼吸和无氧呼吸产生CO2量相同的情况下,根据公式可计算出其消耗葡萄糖的比为1:3。答案:D 例5.某植株在黑暗处每小时释放0.02mol CO2,而光照强度为的光照下(其他条件不变),每小时吸收0.06mol CO2,若在光照强度为的光照下光合速度减半,则每小时吸收CO2的量为() A.0 mol B.0.02 mol C.0.03 mol D.0.04mol 解析:植株在黑暗处释放0.02mol CO2表明呼吸作用释放CO2量为0.02mol,在a光照下每小时吸收CO20.06mol意味着光合作用实际量为0.06+0.02=0.08molCO2,若光照强度为(1/2)a时光合速度减半,即减为0.04mol,此时呼吸释放CO2仍为0.02mol故需从外界吸收0.02mol CO2。答案:B

初中生物(光合作用和呼吸作用)

光合作用和呼吸作用 一、课标要求 1、掌握绿色植物的光合作用原理、过程、生理作用和意义 2、识记光合作用的原料、产物、条件和场所 3、绿色植物对有机物的利用 4、绿色植物与生物圈中的碳—氧平衡 5、呼吸作用与温度、水分的关系 6、光合作用和呼吸作用的关系 二、知识疏理 (一)教材解读 1.绿叶在光下制造淀粉的实验(是个重点,经常考) ①将天竺葵放到黑暗处一昼夜的目的:让叶片内的有机物运走消耗干净; ②用黑纸片将叶的一部分遮住后再移到阳光下的目的:进行对照; ③叶片在酒精中隔水加热的原因:让叶绿素溶解到酒精中,最后叶片变成黄白色; ④叶片的见光部分遇碘变蓝。说明产生了有机物——淀粉。 结论:光是绿色植物制造有机物不可缺少的条件。 2.光合作用的概念及反应式 绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物(如淀粉),并且释放出氧的过程,就叫光合作用。 光 二氧化碳+水---→有机物+氧气 叶绿体 3.光合作用的原料、条件、产物、场所 ①原料:二氧化碳+水②条件:光能 ③产物:有机物+氧④场所:叶绿体中 4.光合作用的意义 ①制造的有机物为自身提供营养物质,也是动物和人的食物来源。 ②有机物中储存的能量,是地球上一切生命所必需的最终能量来源。 ③产生氧气,吸收二氧化碳,维持生物圈中氧气和二氧化碳的平衡(碳——氧平衡)。 5.光合作用在农业生产上的应用 在农业生产上,要保证作物有效地进行光合作用的各种条件,尤其是光。种植农作物时,

应该合理密植。 6.绿色植物对有机物的利用 ①有机物用来构建植物体 ②有机物为植物的生命活动提供能量。 7、呼吸作用的概念、反应式及场所 呼吸作用——植物体吸收空气中的氧,将体内的有机物转化成二氧化碳和水,同时将储存在有机物中的能量释放出来,供给生命活动的需要的过程。 场所:主要在线粒体内进行。 有机物+氧气---→二氧化碳+水 8、呼吸作用意义 呼吸作用释放出来的能量,一部分是供给植物各种生命活动需要,一部分转变成热量散发出去。 9、绿色植物与生物圈中的碳—氧平衡; 绿色植物在光合作用中制造的氧,超过了自身对氧的需要,其余的氧都以气体的形式排到了大气中;绿色植物还通过光合作用,不断消耗大气中的二氧化碳,这样就维持了生物圈中的二氧化碳和氧气的相对平衡,简称碳—氧平衡。 10、呼吸作用与光合作用的关系 呼吸作用所分解的有机物,是光合作用合成的。进行光合作用所需的能量,是呼吸作用释放出来的。 11、教材中有关光合作用、呼吸作用的实验(教师重点讲解)

光合作用-影响光合作用的因素

1.影响光合作用速率的环境因素(Ⅱ) (1)分析影响光合作用速率的内外因(从底物、条件和产物分析) (2)总结光合作用原理在农业生产方面的应用 分析影响光合作用的因素,我们要从光合作用的反应式出发,从反应物、产物和反应条件三个方面入手。 光合作用强度(光合速率):植物在单位时间内通过光合作用制造糖类的数量。用一定时间内原料消耗或产物生成的数量来定量表示。 对坐标曲线分析采用:识轴→明点→析线 一、单因子变量对光合作用影响的曲线分析 1.光照强度 (1)原理:影响光反应阶段,制约ATP及NADPH的产生,进而制约暗反应 (2)曲线

光补偿点:光合作用强度与呼吸作用强度相等时刻的光照强度。光照强度>光补偿点,植物才能生长。 光饱和点:光合作用强度达到饱和时的最低光照强度。 (3)应用:温室大棚适当提高光照强度可以提高光合作用速率。 判断光补偿点的移动 (1)光合作用增强,呼吸作用不变或减弱 若外因使光合速率大于呼吸速率,左移。 (2)光合作用不变或减弱,呼吸作用增强 若外因使光合速率小于呼吸速率,右移。 判断光饱和点的移动 植物出现光饱和点实质是强光下暗反应跟不上光反应从而限制了光合速率随着光强的增加而提高。影响暗反应的因素如CO2浓度、温度(影响酶的活性)、pH(影响酶的活性)会影响光饱和点。所以我们在分析时要抓住这一本质,如果外界因素使暗反应增强,则光饱和点右移,反之,则左移。

分析表中数据可知,若其他条件不变,当pH由9.0增大到10.0时水葫芦的光补偿点最可能(左移/右移/不移动)。光饱和点最可能(左移/右移/不移动)。 【例2】图甲表示某植物体在30℃恒温时的光合速率(以植物体对O2的吸收或释放量计算)与光照强度的关系。 已知该植物光合作用和呼吸作用的最适温度分别为25℃和30℃,在其他条件不变的情况下,将温度调节到25℃,图甲曲线中Y点将向移动。W点将向移动。

光合作用与呼吸作用的计算

光合作用与呼吸作用的计算 1、将某绿色植物置于密封的玻璃容器中,在一定条件下给以充足的光照,容器内CO2的含量每小时减少了36mg、放在黑暗条件下,容器内CO2含量每小时增加8mg,据实验测定,该植物在上述光照条件下每小时制造葡萄糖30mg。回答: (1)上述条件下,光照时细胞呼吸的强度与黑暗时细胞呼吸的强度_____(相等) (2)在光照时该植物每小时葡萄糖的净生产量是_________mg。(24.55 mg ) (3) 若在一昼夜中给4小时光照、20小时黑暗,此植物体内有机物的含量是 A 增加B减少 C 不变 D 先减后增 2、(8分)将一株植物置于密闭的容器中,用红外测量仪进行测量,测量时间均为1小时,测定 (1)在25 ℃条件下,若这株植物在充分光照条件下1小时积累的有机物都是葡萄糖,则1小 时积累葡萄糖 g。(0.06) (2)在25 ℃条件下,这株植物在充分光照下1小时总共制造葡萄糖 g。(0.09) (3)如果一天有10小时充分光照,其余时间在黑暗下度过,如果光照时的温度为25℃,黑暗 时的温度为15℃,则一昼夜积累葡萄糖 g.( 0.39) (4)从以上计算可知,种在新疆地区的西瓜比种在江浙一带的甜,其原因之一是。(昼夜温差大、积累葡萄糖多) 3、藻类和草履虫在光下生活于同一溶液中。已知草履虫每星期消耗0.1 mol葡萄糖,藻类每星 期消耗0.12 mol葡萄糖。现在该溶液中每星期葡萄糖的净产量为0.03 mol。这一溶液中每星期 A.0.03 mol B.0.60 mol C.1.32 mol D.0.18 mol 4、在光合作用下,要保持叶绿体中五碳化合物数量不变,同时合成1mol葡萄糖,暗反应中将产生多少摩尔三碳化合物 A 2mol B 4mol C 6mol D 12mol 若该植物处于白天均温30℃,晚上均温15℃,有效日照15 h环境下,请预测该植物1 d中积累 的葡萄糖为 A.765 mg B.1485 mg C.315 mg D.540 mg 6、有一瓶子有酵母菌的葡萄糖液,吸进氧气的体积与放出CO2的体积之比是3:5,这是因为 A 有1/2的葡萄糖用于有氧呼吸 B 有2/3的葡萄糖用于有氧呼吸

光合作用计算专题

光合作用计算专题 1.将某一绿色植物置于密闭的玻璃容器中,在一定条件下不给光照,CO2的含量每小时增加8mg;如给予充足的光照后,容器内CO2的含量每小时减少36mg。据实验测定上述光照条件下光合作用每小时能产生葡萄糖30mg。请回答: (1)上述条件下,比较光照时呼吸作用的强度与黑暗时呼吸作用的强度是_______的。 (2)在光照时植物每小时葡萄糖的净生产量是_________mg。 (3)若一昼夜中先光照4h,接着放置在黑暗的条件下20h,该植物体内有机物含量的变化是_________。 解析:光合作用强度大小的指标一般用光合速率表示。光合速率通常以每小时每平方分米叶面积吸收二氧化碳的毫克数表示。由于绿色植物每时每刻(不管有无光照)都在进行呼吸作用,分解有机物,消耗氧气,产生二氧化碳;而光合作用合成有机物,吸收二氧化碳,释放氧气,只在有光条件下才能进行。也就是植物在进行光合作用吸收二氧化碳的同时,还进行呼吸作用释放二氧化碳,而呼吸作用释放的部分或全部二氧化碳未出植物体又被光合作用利用。所以人们把在光照下测定的二氧化碳的吸收量(只是光合作用从外界吸收的量,没有把呼吸作用产生的二氧化碳计算在内)称为表观光合速率或净光合速率。如果我们在测光合作用速率时,同时测其呼吸速率,把它加到表观光合速率上去,则得到真正光合速率。 真正光合速率=表观光合速率+呼吸速率 具体可表达为: 真正光合作用CO2的吸收量=表观光合作用CO2的吸收量+呼吸作用CO2释放量 如果将上述公式推广到氧气和 葡萄糖,则得到下列公式: ﹙1﹚真正光合作用O2释放量=表观光合作用O2释放量+呼吸作用O2吸收量 ﹙2﹚真正光合作用葡萄糖合成量=表观光合作用葡萄糖合成量+呼吸作用葡萄糖分解量 求解 (1)先利用化学方程式计算出光照条件下,光合作用每小时真正产生30mg葡萄糖需要消耗的CO2量。 从上面计算结果可知,植物真正产生30mg的葡萄糖,需要44mg的CO2,而实际上容器内CO2的含量每小时只减少36mg,还有8(44-36)mg的CO2来自光照条件下呼吸作用释放出来的。与题目交待的不给光照时(只能进行呼吸作用)产生的CO2量相等。所以在该条件下,光照时呼吸作用的强度与黑暗时呼吸作用的强度是相等的。 (2)由呼吸作用每小时产生的CO2的量是8mg,计算出消耗的有机物葡萄糖量 题目交待光照时,植物每小时真正(总的)能产生葡萄糖30mg,呼吸作用消耗5.5mg,则净生产量为24.5(30-5.5)mg。 此问题,还可以根据CO2的实际减少量来计算,题目交待在光照条件下容器内的CO2的含量每小时减少36mg,这是与植物的呼吸作用无关的,减少的CO2已作为光合作用的原料合成了葡萄糖,也就是净产生的葡萄糖,具体计算如(1) (3)根据上述(1)(2)的计算结果,可知一昼夜(24h)中,4h制造的葡萄糖总量为4×30=120mg,消耗总量为24×5.5=132mg,两数说明该植物体内有机物含量减少。或者先计算4h产生的葡萄糖量为4×24.5=98mg,再计算20h黑暗(只有呼吸作用)消耗的葡萄糖量为20×5.5=110mg,然后再比较这两个数据,可得出同样结论。 变式:假设某植物光合作用制造的有机物仅有葡萄糖,呼吸作用利用的有机物也只有葡萄糖。将此绿色植物置于密闭的玻璃容器中,在一定条件下给予充足的光照后,容器内CO2的含量每小时减少了180mg,放在黑暗条件下,容器内CO2含量每小时增加40mg。 (1)若测得该绿色植物在上述光照条件下每小时制造葡萄糖225mg,则上述光照条件下每小时通过呼吸作用释放的CO2的量为__mg (2)其他条件不变,将此植物置于光照条件下1h,再置于黑暗条件下4h,此植物体内有机物含量变化情况是___,具体数值___mg。 答案:(1)150 (2)增加13.6

相关文档
最新文档