工程力学教案 (详细讲稿)

工程力学教案 (详细讲稿)
工程力学教案 (详细讲稿)

理论力学教案1

本次讲稿

第一章绪论

第一节工程力学的研究对象

建筑物中承受荷载而起骨架作用的部分称为结构。结构是由若干构件按一定方式组合而成的。组成结构的各单独部分称为构件。例如:支承渡槽槽身的排架是由立柱和横梁组成的刚架结构,如图1-1a所示;单层厂房结构由屋顶、楼板和吊车梁、柱等构件组成,如图1-1b所示。结构受荷载作用时,如不考虑建筑材料的变形,其几何形状和位置不会发生改变。

图1-1ab

结构按其几何特征分为三种类型:

(1)杆系结构:由杆件组成的结构。杆件的几何特征是其长度远远大于横截面的宽度和高度。

(2)薄壁结构:由薄板或薄壳组成。薄板或薄壳的几何特征是其厚度远远小于另两个方向的尺寸。

(3)实体结构:由块体构成。其几何特征是三个方向的尺寸基本为同一数量级。

工程力学的研究对象主要是杆系结构。

第二节工程力学的研究内容和任务

工程力学的任务是研究结构的几何组成规律,以及在荷载的作用下结构和构件的强度、刚度和稳定性问题。研究平面杆系结构的计算原理和方法,为结构设计合理的形式,其目的是保证结构按设计要求正常工作,并充分发挥材料的性能,使设计的结构既安全可靠又经济合理。

进行结构设计时,要求在受力分析基础上,进行结构的几何组成分析,使各构

件按一定的规律组成结构,以确保在荷载的作用下结构几何形状不发生发变。

结构正常工作必须满足强度、刚度和稳定性的要求。

强度是指抵抗破坏的能力。满足强度要求就是要求结构的构件在正常工作时不发生破坏。

刚度是指抵抗变形的能力。满足刚度要求就是要求结构的构件在正常工作时产生的变形不超过允许范围。

稳定性是指结构或构件保持原有的平衡状态的能力。满足稳定性要求就是要求结构的构件在正常工作时不突然改变原有平衡状态,以免因变形过大而破坏。

按教学要求,工程力学主要研究以下几个部分的内容。

(1)静力学基础。这是工程力学的重要基础理论。包括物体的受力分析、力系的简化与平衡等刚体静力学基础理论。

(2)杆件的承载能力计算。这部分是计算结构承载能力计算的实质。包括基本变形杆件的内力分析和强度、刚度计算,压杆稳定和组合变形杆件的强度、刚度计算。

(3)静定结构的内力计算。这部分是静定结构承载能力计算和超静定结构计算的基础。包括研究结构的组成规律、静定结构的内力分析和位移计算等。

(4)超静定结构的内力分析。是超静定结构的强度和刚度问题的基础。包括力法、位移法、力矩分配法和矩阵位移法等求解超静定结构内力的基本方法。

第三节刚体、变形固体及其基本假设

工程力学中将物体抽象化为两种计算模型:刚体和理想变形固体。

刚体是在外力作用下形状和尺寸都不改变的物体。实际上,任何物体受力的作用后都发生一定的变形,但在一些力学问题中,物体变形这一因素与所研究的问题无关或对其影响甚微,这时可将物体视为刚体,从而使研究的问题得到简化。

理想变形固体是对实际变形固体的材料理想化,作出以下假设:

(1)连续性假设。认为物体的材料结构是密实的,物体内材料是无空隙的连续分布。

(2)均匀性假设。认为材料的力学性质是均匀的,从物体上任取或大或小一部分,材料的力学性质均相同。

(3)向同性假设。认为材料的力学性质是各向同性的,材料沿不同方向具有相同的力学性质,而各方向力学性质不同的材料称为各向异性材料。本教材中仅研究各向同性材料。

按照上述假设理想化的一般变形固体称为理想变形固体。刚体和变形固体都是工程力学中必不可少的理想化的力学模型。

变形固体受荷载作用时将产生变形。当荷载撤去后,可完全消失的变形称为弹性变形;不能恢复的变形称为塑性变形或残余变形。在多数工程问题中,要求构件只

发生弹性变形。工程中,大多数构件在荷载的作用下产生的变形量若与其原始尺寸相比很微小,称为小变形。小变形构件的计算,可采取变形前的原始尺寸并可略去某些高阶无穷小量,可大大简化计算。

综上所述,工程力学把所研究的结构和构件看作是连续、均匀、各向同性的理想变形固体,在弹性范围内和小变形情况下研究其承载能力。

第四节荷载的分类

结构工作时所承受的主动外力称为荷载。荷载可分为不同的类型。

(1)按作用性质可分为静荷载和动荷载。由零逐渐缓慢增加加到结构上的荷载称为静荷载,静荷载作用下不产生明显的加速度。大小方向随时间而改变的荷载称为动荷载。地震力、冲击力、惯性力等都为动荷载。

(2)按作用时间的长短可分为恒荷载和活荷载。永久作用在结构上大小、方向不变的荷载称为恒荷载。结构、固定设备的自重等都为恒荷载。暂时作用在结构上的荷载称为活荷载。风、雪荷载等都是活荷载。

(3)按作用范围可分为集中荷载和分布荷载。若荷载的作用范围与结构的尺寸相比很小时,可认为荷载集中作用于一点,称为集中荷载。分布作用在体积、面积和线段上的荷载称为分布荷载。结构的自重、风、雪等荷载都是分布荷载。当以刚体为研究对象时,作用在结构上的分布荷载可用其合力(集中荷载)代替;但以变形体为研究对象时,作用在结构上的分布荷载不能用其合力代替。

`

本次讲稿

第二章刚体静力学基础

第一节静力学基本概念

静力学是研究物体的平衡问题的科学。主要讨论作用在物体上的力系的简化和平衡两大问题。所谓平衡,在工程上是指物体相对于地球保持静止或匀速直线运动状态,它是物体机械运动的一种特殊形式。

一、刚体的概念

工程实际中的许多物体,在力的作用下,它们的变形一般很微小,对平衡问题影响也很小,为了简化分析,我们把物体视为刚体。所谓刚体,是指在任何外力的作用下,物体的大小和形状始终保持不变的物体。静力学的研究对象仅限于刚体,所以又称之为刚体静力学。

二、力的概念

力的概念是人们在长期的生产劳动和生活实践中逐步形成的,通过归纳、概括和科学的抽象而建立的。力是物体之间相互的机械作用,这种作用使物体的机械运动状态发生改变,或使物体产生变形。力使物体的运动状态发生改变的效应称为外效应,而使物体发生变形的效应称为内效应。刚体只考虑外效应;变形固体还要研究内效应。经验表明力对物体作用的效应完全决定于以下力的三要素:

(1)力的大小是物体相互作用的强弱程度。在国际单位制中,力的单位用牛顿(N)或千牛顿(kN),1kN=103N。

(2)力的方向包含力的方位和指向两方面的涵义。如重力的方向是“竖直向下”。“竖直”是力作用线的方位,“向下”是力的指向。

(3)力的作用位置是指物体上承受力的部位。一般来说是一块面积或体积,称为分布力;而有些分布力分布的面积很小,可以近似看作一个点时,这样的力称为集中力。

如果改变了力的三要素中的任一要素,也就改变了力对物体的作用效应。

既然力是有大小和方向的量,所以力是矢量。可以用一带箭头的线段来表示,如图2-1所示,线段AB长度按一定的比例尺表示力F的大小,线段的方位和箭头的指向表示力的方向。线段的起点A或终点B表示力的作用点。线段AB的延长线(图中虚线)表示力的作用线。

图2-1

本教材中,用黑体字母表示矢量,用对应字母表示矢量的大小。

一般来说,作用在刚体上的力不止一个,我们把作用于物体上的一群力称为力系。如果作用于物体上的某一力系可以用另一力系来代替,而不改变原有的状态,这两个力系互称等效力系。如果一个力与一个力系等效,则称此力为该力系的合力,这个过程称力的合成;而力系中的各个力称此合力的分力,将合力代换成分力的过程为力的分解。在研究力学问题时,为方便地显示各种力系对物体作用的总体效应,用一个简单的等效力系(或一个力)代替一个复杂力系的过程称为力系的简化。力系的简化是刚体静学的基本问题之一。

第二节静力学公理

所谓公理就是无需证明就为大家在长期生活和生产实践中所公认的真理。静力学公理是静力学全部理论的基础。

公理一二力平衡公理

作用于同一刚体上的两个力成平衡的必要与充分条件是:力的大小相等,方向相反,作用在同一直线上。可以表示为:F=-F/或F+F/=0

此公理给出了作用于刚体上的最简力系平衡时所必须满足的条件,是推证其它力系平衡条件的基础。在两个力作用下处于平衡的物体称为二力体,若物体是构件或杆件,也称二力构件或二力杆件简称二力杆。

公理二加减平衡力系公理

在作用于刚体的任意力系中,加上或减去平衡力系,并不改变原力系对刚体作用效应。推论一力的可传性原理

作用于刚体上的力可以沿其作用线移至刚体内任意一点,而不改变该力对刚体的效应。

图2-2

证明:设力F作用于刚体上的点A,如图2-2所示。在力F作用线上任选一点B,在点B上加一对平衡力F1和F2,使

F1= -F2=F

则F1、F2、F构成的力系与F等效。将平衡力系F、F2减去,则F1与F等效。此时,相当于力F已由点A沿作用线移到了点B。

由此可知,作用于刚体上的力是滑移矢量,因此作用于刚体上力的三要素为大小、方向和作用线。

公理三力的平行四边形法则

作用于物体上同一点的两个力可以合成为作用于该点的一个合力,它的大小和方向由以这两个力的矢量为邻边所构成的平行四边形的对角线来表示。如图2-3a所示,以F R表示力F1和力F2的合力,则可以表示为:F R=F1+F2。即作用于物体上同一点两个力的合力等于这两个力的矢量合。

图2-3

在求共点两个力的合力时,我们常采用力的三角形法则:(如图2-3b)所示。从刚体外任选一点a作矢量ab代表力F1,然后从b的终点作bc代表力F2,最后连起点a与终点c得到矢量ac,则ac就代表合力矢F R。分力矢与合力矢所构成的三角形abc称为力的三角形。这种合成方法称为力三角形法则。

推论二三力平衡汇交定理

刚体受同一平面内互不平行的三个力作用而平衡时,则此三力的作用线必汇交于一点。

图2-4

证明:设在刚体上三点A、B、C分别作用有力F1、F2、F3,其互不平行,且为平衡力系,如图2-4所示,根据力的可传性,将力F1和F2移至汇交点O,根据力的可传性公理,得合力F R1,则力F3与F R1平衡,由公理一知,F3与F R1必共线,所以力F1的作用线必过点O。

公理四作用与反作用公理

两个物体间相互作用力,总是同时存在,它们的大小相等,指向相反,并沿同一直线分别作用在这两个物体上。

物体间的作用力与反作用力总是同时出现,同时消失。可见,自然界中的力总是成对地存在,而且同时分别作用在相互作用的两个物体上。这个公理概括了任何两物体间的相互作用的关系,不论对刚体或变形体,不管物体是静止的还是运动的都适用。应该注意,作用力与反作用力虽然等值、反向、共线,但它们不能平衡,因为二者分别作用在两个物体上,不可与二力平衡公理混淆起来。

公理五刚化原理

变形体在已知力系作用下平衡时,若将此变形体视为刚体(刚化),则其平衡状态不变。

此原理建立了刚体平衡条件与谈形体平衡条件之间的关系,即关于刚体的平衡条件,对于变形体的平衡来说,也必须满足。但是,满足了刚体的平衡条件,变形体不一定平衡。例如一段软绳,在两个大小相等,方向相反的拉力作用下处于平衡,若将软绳变成刚杆,平衡保持不变。把过来,一段刚杆在两个大小相等、方向相反的压力作用下处于平衡,而绳索在此压力下则不能平衡。可见,刚体的平衡条件对于变形体的平衡来说只是必要条件而不是充分条件。

第三节约束与约束反力

工程上所遇到的物体通常分两种:可以在空间作任意运动的物体称为自由体,如飞机、火箭等;受到其它物体的限制,沿着某些方向不能运动的物体称为非自由体。如悬挂的重物,因为受到绳索的限制,使其在某些方向不能运动而成为非自由体,这种阻碍物体运动的限制称为约束。约束通常是通过物体间的直接接触形成的。

既然约束阻碍物体沿某些方向运动,那么当物体沿着约束所阻碍的运动方向运动或有运动趋势时,约束对其必然有力的作用,以限制其运动,这种力称为约束反力。简称反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反,它的作用点就在约束与被约束的物体的接触点,大小可以通过计算求得。

工程上通常把能使物体主动产生运动或运动趋势的力称为主动力。如重力、风力、水压力等。通常主动力是已知的,约束反力是未知的,它不仅与主动力的情况有关,同时也与约束类型有关。下面介绍工程实际中常见的几种约束类型及其约束反力的特性。

一、柔性约束

图2-5 图2-6

绳索、链条、皮带等属于柔索约束。理想化条件:柔索绝对柔软、无重量、无粗细、不可伸长或缩短。由于柔索只能承受拉力,所以柔索的约束反力作用于接触点,方向沿柔索的中心线而背离物体,为拉力。如图2-5和图2-6所示。

二、光滑接触面约束

图2-7 图2-8

当物体接触面上的摩擦力可以忽略时,即可看作光滑接触面,这时两个物体可以脱离开,也可以沿光滑面相对滑动,但沿接触面法线且指向接触面的位移受到限制。所以光滑接触面约束反力作用于接触点,沿接触面的公法线且指向物体,为压力。如图2-7和图2-8所示。

三、光滑铰链约束

图2-9

工程上常用销钉来联接构件或零件,这类约束只限制相对移动不限制转动,且忽略销钉与构件间的磨擦。若两个构件用销钉连接起来,这种约束称为铰链约束,简称铰连接或中间铰,图2-9a所示。图2-9b为计算简图。铰链约束只能限制物体在垂直于销钉轴线的平面内相对移动,但不能限制物体绕销钉轴线相对转动。如图2-9c 所示,铰链约束的约束反力作用在销钉与物体的接触点D,沿接触面的公法线方向,使被约束物体受压力。但由于销钉与销钉孔壁接触点与被约束物体所受的主动力有关,一般不能预先确定,所以约束反力F c的方向也不能确定。因此,其约束反力作

用在垂直于销钉轴线平面内,通过销钉中心,方向不定。为计算方便,铰链约束的约束反力常用过铰链中心两个大小未知的正交分力X c,Y c来表示如图2-9d所示。两个分力的指向可以假设。

四、固定铰支座:

图2-10

将结构物或构件用销钉与地面或机座连接就构成了固定铰支座,如图2-10a所示。固定铰支座的约束与铰链约束完全相同。简化记号和约束反力如图2-10b和图2-10c。

五、辊轴支座

图2-11

在固定铰支座和支承面间装有辊轴,就构成了辊轴支座,又称活动铰支座,如图2-11a所示。这种约束只能限制物体沿支承面法线方向运动,而不能限制物体沿支承面移动和相对于销钉轴线转动。所以其约束反力垂直于支承面,过销钉中心指向可假设。如图2-11b和图2-11c所示。

六、链杆约束

图2-12

两端以铰链与其它物体连接中间不受力且不计自重的刚性直杆称链杆,如图2-12a所示。这种约束反力只能限制物体沿链杆轴线方向运动,因此链杆的约束反力沿着链杆,两端中心连线方向,指向或为拉力或为压力。如图2-12b和图2-12c所示。链杆属于二力杆的一种特殊情形。

七、固定端约束

图2-13

将构件的一端插入一固定物体(如墙)中,就构成了固定端约束。在连接处具有较大的刚性,被约束的物体在该处被完全固定,即不允许相对移动也不可转动。固定端的约束反力,一般用两个正交分力和一个约束反力偶来代替,如图2-13所示。

第四节物体的受力分析与受力图

静力学问题大多是受一定约束的非自由刚体的平衡问题,解决此类问题的关键是找出主动力与约束反力之间的关系。因此,必须对物体的受力情况作全面的分析,即物体的受力分析,它是力学计算的前提和关键。物体的受力分析包含两个步骤:一是把该物体从与它相联系的周围物体中分离出来,解除全部约束,单独画出该物体的图形,称为取分离体。二是在分离体上画出全部主动力和约束反力,这称为画受力图。

一、下面举例说明物体受力分析的方法。

例2-1起吊架由杆件AB和CD组成,起吊重物的重量为Q。不计杆件自重,作杆件AB的受力图。

图2-14

解:取杆件AB为分离体,画出其分离体图。

杆件AB上没有荷载,只有约束反力。A端为固定铰支座。约束反力用两个垂直分力X A和Y A表示,二者的指向是假定的。D点用铰链与CD连接,因为CD为二力杆,所以铰D反力的作用线沿C、D两点连线,以F D表示。图中F D的指向也是假定的。B点与绳索连接,绳索作用给B点的约束反力F T沿绳索、背离杆件AB。图2-14b 为杆件AB的受力图。应该注意,(图b)中的力F T不是起吊重物的重力F G。力F T 是绳索对杆件AB的作用力;力F G是地球对重物的作用力。这两个力的施力物体和受力物体是完全不同的。在绳索和重物的受(图c)上,作用有力F T的反作用力F Tˊ和重力F G。由二力平衡条件,力F Tˊ与力F G是反向、等值的;由作用反作用定律,力F T与F Tˊ是反向、等值的。所以力F T与力F G大小相等,方向相同。

例2-2水平梁AB用斜杆CD支撑,A、C、D三处均为光滑铰链连接,如图2-15所示。梁上放置一重为F G1的电动机。已知梁重为F G2,不计杆CD自重,试分别画出杆CD和梁AB的受力图。

图2-15

解:(1)取CD为研究对象。由于斜杆CD自重不计,只在杆的两端分别受有铰链的约束反力F C和F D的作用,由些判断CD杆为二力杆。根据公理一,F C和F D 两力大小相等、沿铰链中心连线CD方向且指向相反。斜杆CD的受力图如图2-15b 所示。

(2)取梁AB(包括电动机)为研究对象。它受F G1、F G2两个主动力的作用;梁在铰链D处受二力杆CD给它的约束反力F Dˊ的作用,根据公理四,F Dˊ=-F D;

梁在A处受固定铰支座的约束反力,由于方向未知,可用两个大小未知的正交分力X A和Y A表示。梁AB的受力图如图2-15c所示。

例2-3简支梁两端分别为固定铰支座和可动铰支座,在C处作用一集中荷载F P(图2-16a),梁重不计,试画梁AB的受力图。

图2-16

解:取梁AB为研究对象。作用于梁上的力有集中荷载F P,可动铰支座B的反力F B,铅垂向上,固定铰支座A的反力用过点A的两个正交分力X A的Y A表示。受力图如图2-16b所示。由于些梁受三个力作用而平衡,故可由推论二确定F A的方向。用点D表示力F P和F B的作用线交点。F A的作用线必过交点D,如图2-16c所示。

例2-4三铰拱桥由左右两拱铰接而成,如图2-17a所示。设各拱自重不计,在拱AC上作用荷载F。试分别画出拱AC和CB的受力图。

图2-17

解:(1)取拱CB为研究对象。由于拱自重不计,且只在B、C处受到铰约束,因此CB为二力构件。在铰链中心B、C分别受到F B和F C的作用,且F B=-F C。拱

CB的受力图如图2-17b所示。

(2)取拱AC连同销钉C为研究对象。由于自重不计,主动力只有荷载F;点C 受拱CB施加的约束力F Cˊ,且F Cˊ=-F C;点A处的约束反力可分解为X A和Y A。拱AC的受力图如图2-17c所示。

又拱AC在F、F Cˊ和F A三力作用下平衡,根据三力平衡汇交定理,可确定出铰链A处约束反力F A的方向。点D为力F与F Cˊ的交点,当拱AC平衡时,F A的作用线必通过点D,如图2-17d所示,F A的指向,可先作假设,以后由平衡条件确定。

例2-5图2-18a所示系统中,物体F重F G,其它和构件不计自重。作(1)整体;(2)AB杆;(3)BE杆;(4)杆CD、轮C、绳及重物F所组成的系统的受力图。

图2-18

解:整体受力图如图2-18a所示。固定支座A自有两个垂直反力和一个约束反力偶。铰C、D、E和G点这四处的约束反力对整体来说是内力,受力图上不应画出。

杆件AB的受力图如图2-18b所示。对杆件AB来说,铰B、D的反力是外力,应画出。

杆件BE的受力图如图2-18c所示。BE上B点的反力X Bˊ和Y Bˊ是AB上X B 和Y B反作用力,必须等值、反向的画出。

杆件CD、轮C、绳和重物F所组成的系统的受力图如图所示。其上的约束反力分别是图2-18b和图2-18c上相应力的反作用力,它们的指向分别与相应力的指向相反。如X Eˊ是图2-18c上X E的反作用力,力X Eˊ的指向应与力X E的指向相反,不能再随意假定。铰C的反力为内力,受力图上不应画出。

在画受力图时应注意如下几个问题:(1)明确研究对象并取出脱离体。(2)要先画出全部的主动力。(3)明确约束反力的个数。凡是研究对象与周围物体相接触的地方,都一定有约束反力,不可随意增加或减少。(4)要根据约束的类型画约束反力。即按约束的性质确定约束反力的作用位置和方向,不能主观臆断。(5)二力杆要优先分析。(6)对物体系统进行分析时注意同一力,在不同受力图上的画法要完全一致;在分析两个相互作用的力时,应遵循作用和反作用关系,作用力方向一经确定,则反

作用力必与之相反,不可再假设指向。(7)内力不必画出。

思考题

2-1说明下列式子的意义和区别。

(1)F1=F2和F1=F2;(2)F R=F1+F2和F R=F1+F2

2-2力的可传性原理的适用条件是什么?如图2-19所示,能否根据力的可传性原理,将作用于杆AC上的力F沿其作用线移至杆BC上而成力Fˊ?

图2-19 图2-20

2-3作用于刚体上大小相等、方向相同的两个力对刚体的作用是否等效?

2-4物体受汇交于一点的三个力作用而处于平衡,此三力是否一定共面?为什么?

2-5图2-20中力F作用在销钉C上,试问销钉C对AC的力与销钉C对BC的力是否等值、反向、共线?为什么?

2-6图2-21中各物体受力图是否正确?若有错误试改正。

理论力学教案3

\

本次讲稿

第三章平面汇交力系

根据力系中各力作用线的位置,力系可分为平面力系和空间力系。各力的作用线都在同一平面内的力系称为平面力系。在平面力系中又可以分为平面汇交力系、平面平行力系、平面力偶系和平面一般力系。在平面力系中,各力作用线汇交于一点的力系称平面汇交力系。本章讨论平面汇交力系的合成与平衡问题。

§3-1平面汇交力系合成与平衡的几何法

一、平面汇交力系合成的几何法

设在某刚体上作用有由力F1、F2、F3、F4组成的平面汇交力系,各力的作用线交于点A,如图3-1a所示。由力的可传性,将力的作用线移至汇交点A;然后由力的合成三角形法则将各力依次合成,即从任意点a作矢量ab代表力矢F1,在其末端b 作矢量bc代表力矢F2,则虚线ac表示力矢F1和F2的合力矢F R1;再从点C作矢量cd代表力矢F3,则ad表示F R和F3的合力F R2;最后从点d作de代表力矢F4,则ae代表力矢F R2与F4的合力矢,亦即力F1、F2、F3、F4的合力矢F R,其大小和方向如图3-1b,其作用线通过汇交点A。

图3-1

作图3-1b时,虚线ac和ad不必画出,只需把各力矢首尾相连,得折线abcd,则第一个力矢F1的起点a向最后一个力矢F4的终点e作ae,即得合力矢F R。各分力矢与合力矢构成的多边形称为力的多边形,表示合力矢的边ae称为力的多边形的逆封边。这种求合力的方法称为力的多边形法则。

若改变各力矢的作图顺序,所得的力的多边形的形状则不同,但是这并不影响最后所得的逆封边的大小和方向。但应注意,各分力矢必须首尾相连,而环绕力多边形周边的同一方向,而合力矢则把向封闭力多边形。

上述方法可以推广到由n个力F1、F2、…、F n组成的平面汇交力系:平面汇交力系合成的结果是一个合力,合力的作用线过力系的汇交点,合力等于原力系中所有各力的矢量和。

可用矢量式表示为

F R=F1 +F2 +…+F n =ΣF(3-1)

例3-1同一平面的三根钢索边连结在一固定环上,如图3-2所示,已知三钢索的拉力分别为:F1=500N,F2=1000N,F3=2000N。试用几何作图法求三根钢索在环上作用的合力。

图3-2

解先定力的比例尺如图。作力多边形先将各分力乘以比例尺得到各力的长度,然后作出力多边形图(3-2b),量得代表合力矢的长度为,则F R的实际值为

F R=2700N

F R的方向可由力的多边形图直接量出,F R与F1的夹角为71o31'。

二、平面汇交力系平衡的几何条件

图3-3

在图3-3a中,平面汇交力系合成为一合力,即与原力系等效。若在该力系中再加一个与等值、反向、共线的力,根据二力平衡公理知物体处于平衡状态,即为平衡力系。对该力系作力的多边形时,得出一个闭合的力的多边形,即最后一个力矢的末端与第一个力矢的始端相重合,亦即该力系的合力为零。因此,平面汇交力系的平衡的必要与充分的几何条件是:力的多边形自行封闭,或各力矢的矢量和等于零。用矢量表示为

F R =ΣF=0 (3-2)

例3-2 图3-4a 所求一支架,A 、B 为铰链支座,C 为圆柱铰链。斜撑杆BC 与水平杆AC 的夹角为30o。在支架的C 处用绳子吊着重G =20kN 的重物。不计杆件的自重,试求各杆所受的力。

图3-4

解 杆AC 和BC 均为二力杆,其受力如图3-4b 所示。取销钉C 为研究对象,作用在它上面的力有:绳子的拉力F T (F T =G),AC 杆和BC 杆对销钉C 的作用力F CA 和F CB 。这三个力为一平面汇交力系(销钉C 的受力图如图3-4c 所示)。

根据平面汇交力系平衡的几何条件,F T 、F CA 和F CB 应组成闭合的力三角形。选取比例尺如图,先画已知力F T =ab ,过a 、b 两点分别作直线平行于F CA 和F CB 得交点c ,于是得力三角形abc ,顺着abc 的方向标出箭头,使其首尾相连,则矢量ca 和bc 就分别表示力F CA 和F CB 的大小和方向。用同样的比例尺量得

F CA =34.6kN

F CB =40kN

§3-2平面汇交力系合成与平衡的解析法

求解平面汇交力系问题的几何法,具有直观简捷的优点,但是作图时的误差难以避免。因此,工程中多用解析法来求解力系的合成和平衡问题。解析法是以力在坐标轴上的投影为基础的。

一、 在坐标轴上的投影

如图3-5所示,设力F 作用于刚体上的A 点,在力作用的平面内建立坐标系oxy ,由力F 的起点和终点分别向x 轴作垂线,得垂足a 1和b 1,则线段a 1b 1冠以相应的正负号称为力F 在x 轴上的投影,用X 表示。即X=±a 1b 1;同理,力F 在y 轴上的投影用Y 表示,即Y=±a 2b 2。

力在坐标轴上的投影是代数量,正负号规定:力的投影由始到末端与坐标轴正向一致其投影取正号,反之取负号。投影与力的大小及方向有关,即 ???=±==±=βαcos cos F ab Y F ab X (3-3) 式中α、β分别为F 与X 、Y 轴正向所夹的锐角。

工程力学教案

第一章静力学基础 力学包括静力学,动力学,运动学三部分,静力学主要研究物体在力系作用下的平衡 规律,静力学主要讨论以下问题: 1.物体的受力分析; 2.力系的等效.与简化; 3. 力系的平衡问题。 第1讲§ 1 - 1静力学的基本概念§1-2静力学公理 【目的与要求】 1 、使学生对静力学基本概念有清晰的理解,并掌握静力学公理及应用范围。 2、会利用静力学静力学公理解决实际问题。 【重点、难点】 1、力、刚体、平衡等概念; 2、正确理解静力学公理。 一、静力学的基本概念 1、力和力系的概念 一)力的概念 1)力的定义:力是物体间的相互作用,这种作用使物体运动状态或形状发生改变。 (举例理解相互作用) 2)力的效应: ○1外效应(运动效应):使物体的运动状态发生变化。(举例) ○2内效应(变形效应):使物体的形状发生变化。(举例) 3)力的三要素:大小、方向、作用点。 力是定位矢量 4)力的表示: ○1图示○2符号:字母+箭头如:F 二)力系的概念 1)定义:作用在物体上的一组力。(举例) 2)力系的分类

○ 1按力的的作用线现在空间分布的形式: A 汇交力系 b 平行力系 c 一般力系 ○ 2按力的的作用线是否在同一平面内 A 平面力系 B 空间力系 3)等效力系与合力 A 等效力系 ——两个不同力系,对同一物体产生相同的外效应,则称之 B 合力——若一个力与一个力系等效,则这个力称为合力 2.刚体的概念: 1)定义:在力的作用下保持其大小和形状不发生变化。 2)理解:刚体为一力学模型。 3.平衡的概念: 1)平衡——物体相对惯性参考系(如地面)静止或作匀速直线运动. 2)平衡力系——作用在刚体上使物体处于平衡状态的力系。 3平衡条件——平衡力系应满足的条件。 二.静力学公里 公理一:二力平衡公里 作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力的大小相等,方向相反,且 作用在同一直线上。 使刚体平衡的充分必要条件 二力构件:在两个力作用下处于平衡的物体。 公理二加减平衡力系原理 在已知力系上加上或减去任意的平衡力系,并不改变厡力系对刚体的作用。 推理1 力的可传性 作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。 作用在刚体上的力是滑动矢量,力的三要素为大小、方向和作用线. 12 F F = -

工程力学答案整理

思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 能量平衡分析 1-1夏天的早晨,一个大学生离开宿舍时的温度为20℃。他希望晚上回到房间时的温度能够低一些,于是早上离开时紧闭门窗,并打开了一个功率为15W 的电风扇,该房间的长、宽、高分别为5m 、3m 、2.5m 。如果该大学生10h 以后回来,试估算房间的平均温度是多少? 解:因关闭门窗户后,相当于隔绝了房间内外的热交换,但是电风扇要在房间内做工产生热 量:为J 5400003600 1015=??全部被房间的空气吸收而升温,空气在20℃时的比热为:1.005KJ/Kg.K,密度为1.205Kg/m 3 ,所以89.11005.1205.15.235105400003 =?????=?-t 当他回来时房间的温度近似为32℃。 1-9 一砖墙的表面积为122 m ,厚为260mm ,平均导热系数为1.5W/(m.K )。设面向室内的 表面温度为25℃,而外表面温度为-5℃,试确定次砖墙向外界散失的热量。 解:根据傅立叶定律有: W t A 9.207626.05 )(25125.1=--? ?=?=Φδλ 1-10 一炉子的炉墙厚13cm ,总面积为202 m ,平均导热系数为1.04w/m.k ,内外壁温分别 是520℃及50℃。试计算通过炉墙的热损失。如果所燃用的煤的发热量是2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 KW t A Q 2.7513.0) 50520(2004.1=-??=?= δλ 每天用煤 d Kg /9.3101009.22 .753600244 =??? 1-11 夏天,阳光照耀在一厚度为40mm 的用层压板制成的木门外表面上,用热流计测得木 门内表面热流密度为15W/m 2。外变面温度为40℃,内表面温度为30℃。试估算此木门在厚度方向上的导热系数。 解: δλ t q ?=,)./(06.0304004 .015K m W t q =-?=?= δλ 1-12 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w =69℃,空气温度t f =20℃,管子外径 d=14mm ,加热段长 80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式 ()f w t t rlh q -=π2 所以 () f w t t d q h -= π=49.33W/(m 2.k) 1-13 对置于水中的不锈钢束采用电加热的方法进行压力为1.013Pa 5 10?的饱和水沸腾换 热实验。测得加热功率为50W ,不锈钢管束外径为4mm ,加热段长10mm ,表面平均温度为109℃。试计算此时沸腾换热的表面传热系数。

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

工程力学教案 (详细讲稿)

理论力学教案1

本次讲稿 第一章绪论 第一节工程力学的研究对象 建筑物中承受荷载而起骨架作用的部分称为结构。结构是由若干构件按一定方式组合而成的。组成结构的各单独部分称为构件。例如:支承渡槽槽身的排架是由立柱和横梁组成的刚架结构,如图1-1a所示;单层厂房结构由屋顶、楼板和吊车梁、柱等构件组成,如图1-1b所示。结构受荷载作用时,如不考虑建筑材料的变形,其几何形状和位置不会发生改变。 图1-1ab 结构按其几何特征分为三种类型: (1)杆系结构:由杆件组成的结构。杆件的几何特征是其长度远远大于横截面的宽度和高度。 (2)薄壁结构:由薄板或薄壳组成。薄板或薄壳的几何特征是其厚度远远小于另两个方向的尺寸。 (3)实体结构:由块体构成。其几何特征是三个方向的尺寸基本为同一数量级。 工程力学的研究对象主要是杆系结构。 第二节工程力学的研究内容和任务 工程力学的任务是研究结构的几何组成规律,以及在荷载的作用下结构和构件的强度、刚度和稳定性问题。研究平面杆系结构的计算原理和方法,为结构设计合理的形式,其目的是保证结构按设计要求正常工作,并充分发挥材料的性能,使设计的结构既安全可靠又经济合理。 进行结构设计时,要求在受力分析基础上,进行结构的几何组成分析,使各构

件按一定的规律组成结构,以确保在荷载的作用下结构几何形状不发生发变。 结构正常工作必须满足强度、刚度和稳定性的要求。 强度是指抵抗破坏的能力。满足强度要求就是要求结构的构件在正常工作时不发生破坏。 刚度是指抵抗变形的能力。满足刚度要求就是要求结构的构件在正常工作时产生的变形不超过允许范围。 稳定性是指结构或构件保持原有的平衡状态的能力。满足稳定性要求就是要求结构的构件在正常工作时不突然改变原有平衡状态,以免因变形过大而破坏。 按教学要求,工程力学主要研究以下几个部分的内容。 (1)静力学基础。这是工程力学的重要基础理论。包括物体的受力分析、力系的简化与平衡等刚体静力学基础理论。 (2)杆件的承载能力计算。这部分是计算结构承载能力计算的实质。包括基本变形杆件的内力分析和强度、刚度计算,压杆稳定和组合变形杆件的强度、刚度计算。 (3)静定结构的内力计算。这部分是静定结构承载能力计算和超静定结构计算的基础。包括研究结构的组成规律、静定结构的内力分析和位移计算等。 (4)超静定结构的内力分析。是超静定结构的强度和刚度问题的基础。包括力法、位移法、力矩分配法和矩阵位移法等求解超静定结构内力的基本方法。 第三节刚体、变形固体及其基本假设 工程力学中将物体抽象化为两种计算模型:刚体和理想变形固体。 刚体是在外力作用下形状和尺寸都不改变的物体。实际上,任何物体受力的作用后都发生一定的变形,但在一些力学问题中,物体变形这一因素与所研究的问题无关或对其影响甚微,这时可将物体视为刚体,从而使研究的问题得到简化。 理想变形固体是对实际变形固体的材料理想化,作出以下假设: (1)连续性假设。认为物体的材料结构是密实的,物体内材料是无空隙的连续分布。 (2)均匀性假设。认为材料的力学性质是均匀的,从物体上任取或大或小一部分,材料的力学性质均相同。 (3)向同性假设。认为材料的力学性质是各向同性的,材料沿不同方向具有相同的力学性质,而各方向力学性质不同的材料称为各向异性材料。本教材中仅研究各向同性材料。 按照上述假设理想化的一般变形固体称为理想变形固体。刚体和变形固体都是工程力学中必不可少的理想化的力学模型。 变形固体受荷载作用时将产生变形。当荷载撤去后,可完全消失的变形称为弹性变形;不能恢复的变形称为塑性变形或残余变形。在多数工程问题中,要求构件只

工程力学教案(很经典)汇编

工程力学教案 第一章 物体的受力分析 静力学:研究物体在力系作用下平衡规律的科学。 主要问题:力系的简化; 建立物体在力系作用下的平衡条件。 本章将介绍静力学公理,工程中常见的典型约束,以及物体的受力分析。静力学公理是静力学理论的基础。物体的受力分析是力学中重要的基本技能。 §1.1 力的概念与静力学公理 一、力的概念 力的概念是人们在长期生活和生产实践中逐步形成的。例如:人用手推小车,小车就从静止开始运动;落锤锻压工件时,工件就会产生变形。 力是物体与物体之间相互的机械作用。 使物体的机械运动发生变化,称为力的外效应; 使物体产生变形,称为力的内效应。 力对物体的作用效应取决于力的三要素,即力的大小、方向和作用 点。 力是矢量,常用一个带箭头的线段来表示,在国际单位制中,力的单位牛顿(N)或千牛顿(KN)。 二、静力学公理 公理1力的平行四边形法则 作用在物体上同一点的两个力,可以合成一个合力。合力的作用点仍在该点,合力的大小和方向由这两个力为邻边所构成的平行四边形的对角线确定。其矢量表达式为 FR =F1+F2 根据公理1求合力时,通常只须画出半个平行四边形就可以了。如图1-2b、c所示,这样力的平行四边形法则就演变为力的三角形法则。

【说明】:1.FR=F1+F2表示合力的大小等于两分力的代数和 2.两力夹角为α,用余弦定理求合力的大小,正弦定理求方向 3.可分解力:(1) 已知两分力的方向,求两分力的大小 (2) 已知一个分力的大小和方向,求另一分力大小和方向 4.该公理既适用于刚体,又适用于变形体,对刚体不需两力共点 公理2二力平衡公理 刚体仅受两个力作用而平衡的充分必要条件是:两个力大小相等,方向相反,并作用在同一直线上,如图1-3所示。即 F1=-F2

工程力学教案

《工程力学》教案2016~2017学年第2 学期 学院名称:机械学院 授课专业:16级机械全部专业 14五年机械全部专业 课程名称:工程力学 主讲教师:王琳琳 山东凯文科技职业学院教务处制

备注: 一、教案和讲稿的区别 1.讲稿,所承载的是知识信息。教案,所承载的是课堂教学的组织管理信息。 2.讲稿的思路形成,受教学过程的知识逻辑支配,而教案的思路形成,受教学过程的管理逻辑支配。 3.讲稿与教案,二者是决定与被决定的关系。 4.在内容上,讲稿涉及的是知识性和能力开发项目,教案涉及的是组织性项目。 5.在表现形式上,讲稿篇幅较长,是课程教学内容和教师个人观点的浓缩或延伸;教案篇幅较短。 二、教学反思 所谓教学反思,是指教师对教育教学实践的再认识、再思考,并以此来总结经验教训,进一步提高教育教学水平。教学反思一直以来是教师提高个人业务水平的一种有效手段,教育上有成就的大家一直非常重视之。现在很多教师会从自己的教育实践中来反观自己的得失,通过教育案例、教育故事、或教育心得等来提高教学反思的质量。

山东凯文科技职业学院 教案首页 课程名称工程力学总学时:48 其中: 讲课:41学时 实验实训:3学时课程性质A:理论课()B:(理论+实践)课(√)C:实践课() 授课对象机械工程学院16级全部专业,14五年一贯全部专业 授课时间2016-2017学年第二学期授课地点综合楼 教材《工程力学(第六版)》大连理工大学出版社蒙晓影李聚霞主编 主要参考资料《工程力学》冶金工业出版社张百新主编 《工程实验力学》机械工业出版社计欣华、邓宗白、鲁阳主编《工程力学》高等教育出版社沈养中主编 教学目标知识目标1.使学生掌握必要的力学基础理论知识; 2.初步运用这些力学知识对简单的工程技术问题问题进行分析、科学的抽象,进而予以解决; 3.了解材料的主要力学性能并有测试材料强度指标的能力了; 4.掌握等直杆的四种基本变形形式,并学会分析应力和应变; 5.掌握压杆稳定的计算及提高压杆稳定性的措施; 6.为后续学习其他专业课以及进行施工实践、结构设计及职业岗位能力打好力学基础,也为终身继续学习打下良好的力学基础。

工程力学课后习题答案

第一章 静力学基本概念与物体的受力分析 下列习题中,未画出重力的各物体的自重不计,所有接触面均为光滑接触。 1.1 试画出下列各物体(不包括销钉与支座)的受力图。 解:如图 (g) (j) P (a) (e) (f) W W F F A B F D F B F A F A T F B A 1.2画出下列各物体系统中各物体(不包括销钉与支座)以及物体系统整体受力图。 解:如图 F B B (b)

(c) C (d) C F D (e) A F D (f) F D (g) (h) EO B O E F O (i)

(j) B Y F B X B F X E (k) 1.3铰链支架由两根杆AB、CD和滑轮、绳索等组成,如题1.3图所示。在定滑轮上吊有重为W的物体H。试分别画出定滑轮、杆CD、杆AB和整个支架的受力图。 解:如图 ' D 1.4题1.4图示齿轮传动系统,O1为主动轮,旋转 方向如图所示。试分别画出两齿轮的受力图。 解: 1 o x F 2o x F 2o y F o y F F F' 1.5结构如题1.5图所示,试画出各个部分的受力图。

解: 第二章 汇交力系 2.1 在刚体的A 点作用有四个平面汇交力。其中F 1=2kN ,F 2=3kN ,F 3=lkN , F 4=2.5kN ,方向如题2.1图所示。用解析法求该力系的合成结果。 解 0 00 1 42 3c o s 30c o s 45c o s 60 c o s 45 1.29 Rx F X F F F F KN = =+- -=∑ 00001423sin30cos45sin60cos45 2.54Ry F Y F F F F KN ==-+-=∑ 2.85R F KN == 0(,)tan 63.07Ry R Rx F F X arc F ∠== 2.2 题2.2图所示固定环受三条绳的作用,已知F 1=1kN ,F 2=2kN ,F 3=l.5kN 。求该力系的合成结果。 解:2.2图示可简化为如右图所示 23cos60 2.75Rx F X F F KN ==+=∑ 013sin600.3Ry F Y F F KN ==-=-∑ 2.77R F KN == 0(,)tan 6.2Ry R Rx F F X arc F ∠==- 2.3 力系如题2.3图所示。已知:F 1=100N ,F 2=50N ,F 3=50N ,求力系的合力。 解:2.3图示可简化为如右图所示 080 arctan 5360 BAC θ∠=== 32cos 80Rx F X F F KN θ==-=∑ 12sin 140Ry F Y F F KN θ==+=∑ 161.25R F KN == ( ,)tan 60.25Ry R Rx F F X arc F ∠= = 2.4 球重为W =100N ,悬挂于绳上,并与光滑墙相接触,如题2.4 图所示。已知30α=,

《工程力学》整体教学设计

《工程力学》整体教学设计 一、管理信息 课程名称:《工程力学》 学分:4 学时:60 课程类型:专业基础课 授课对象:一年级第一学期的高职土建类专业学生 先修课程:高等数学、道路工程制图、建筑材料 后修课程:、结构力学、结构设计原理、土力学、基础工程等 学生情况分析:应往届高中毕业生,应届职高毕业生,文理科生都有,交流表达能力较好,愿意动手,有一定的计算机操作能力。多数学生数理基础差,学习习惯差,自我控制力差,团队合作意识欠缺,职业素养欠缺,自主学习能力差。 二、课程设计 1、课程目标设计 课程目标的设计应突出职业能力培养,体现基于职业岗位分析和职业岗位技术应用能力培养的教学设计理念,以学生为主体,以真实工作任务或土建工程结构为载体组织教学内容,在真实工程案例中采用行动导向的教学方法和手段进行实施。培养学生在工程施工中必备的力学素养和实际问题的解决能力。 《工程力学》课程目标分为职业能力目标和关键能力目标两个方面。见表1。 表1 课程目标 职业能力目标关键能力目标 静定结构受力分析能力 力系平衡条件的应用能力 梁、柱的强度、刚度、稳定性计算能力基本的力学实验操作能力 工程结构实际问题的解决能力学习能力 工作能力 数字逻辑应用能力信息技术能力 合作协调能力 创新能力 2、课程内容设计 重构内容体系:为适应湖南交通职业技术学院道路桥梁工程技术专业的校企合作、工学交替人才培养模式和“专业+产业”系企一体的专业建设模式,以工作过程导向的课程观为指导思想,根据职业岗位能力要求、职业标准要求、工作任务要求、职业素质要求和前后续课程的衔接。按照职业岗位和职业能力培养的要求,对教学内容进行遴选,重新构建了适应施工岗位工作的过程性知识为主、陈述性知识为辅的内容体系,以梁、轴和柱等结构件为载体,形成模块化的课程内容结构(见表2、表3)。 实践内容设计:为了以真实的工作任务为载体,强化学生能力培养,本课程精心设计了与理论知识相对应的实践教学项目。研究建立虚拟力学实验室,设计验证性实验的模拟实验软件。在校办企业试验检测中心建立仿真力学试验室,与企业工程师合作开发出真实的力学试验项目(见表2、表3)。

【工程力学期末复习题】经典必考填空题计算题集锦

一、判断题(对的打“√”,错的打“×”) 1.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。 ( ) 2.平面问题中,固定端约束可提供两个约束力和一个约束力偶。 ( ) 3.力偶使物体转动的效果完全由力偶矩来确定,而与矩心位置无关。只有力偶矩相同,不管其在作用面内任意位置,其对刚体的作用效果都相同。 ( ) 4.延伸率和截面收缩率是衡量材料塑性的两个重要指标。工程上通常把延伸率小于5%的材料称为塑性材料。 ( ) 5.受扭圆轴横截面上,半径相同的点的剪应力大小也相同。 ( ) 6.当非圆截面杆扭转时,截面发生翘曲,因而圆杆扭转的应力和变形公式不再适用。( ) 7.如果梁上的荷载不变,梁长不变,仅调整支座的位置,不会改变梁的内力。 ( ) 8.若梁的截面是T 形截面,则同一截面上的最大拉应力和最大压应力的数值不相等。( ) 9.当梁弯曲时,弯矩为零的截面,其挠度和转角也为零。 ( ) 10.计算压杆临界力的欧拉公式只适用于>,的大柔度压杆。 ( ) 11. 如图所示,将力F 沿其作用线移至BC 杆上而成为 F ′,对结构的作用效应不变。( ) 12. 如图所示,半径为R 的圆轮可绕通过轮心轴O 转动,轮上作用一个力偶矩为M 的力偶 和一与轮缘相切的力P ,使轮处于平衡状态。这说明力偶可用一力与之平衡。( ) A B C F′ F

13.作用于刚体上的平衡力系,如果移到变形体上,该变形体也一定平衡。() 14.力系向简化中心简化,若主矢和主矩都等于零,则原平面一般力系是一个平衡力系。() 15.研究变形固体的平衡问题时,应按变形固体变形后的尺寸进行计算。() 16.当圆杆扭转时,横截面上切应力沿半径线性分布,并垂直与半径,最大切应力在外表面。 () 17.梁横截面上作用面上有负弯矩(弯矩以下部受拉为正),则中性轴上侧各点作用的是拉 应力,下侧各点作用的是压应力。() 18.校核梁的强度时通常不略去切应力对强度的影响。() 19.有正应力作用的方向上,必有线应变;没有正应力作用的方向上,必无线应变。() 20.压杆的临界压力(或临界应力)与作用载荷大小有关。() 21. 受平面任意力系作用的刚体,力系的合力为零,刚体就一定平衡。( ) 22. 作用面平行的两个力偶,若其力偶矩大小相等,则两力偶等效。( ) 23. 力对于一点的矩不因力沿其作用线移动而改变。( ) 24. 力系的主矢与简化中心的位置无关,而主矩与简化中心的位置有关。( ) 25. 直径为D的实心圆轴,两端受扭矩力偶矩T作用,轴内的最大剪应力为τ。若轴的直 径改为D/2,则轴内的最大剪应力为2τ。( ) 26. 轴向拉压杆的任意截面上都只有均匀分布的正应力。( ) 27. 在集中力作用处梁的剪力图要发生突变,弯矩图的斜率要发生突变。( ) 28. 用同一种材料制成的压杆,其柔度(长细比)愈大,就愈容易失稳。( ) 29. 一点的应力状态是指物体内一点沿某个方向的应力情况。( ) 30. 用叠加法求梁横截面的挠度、转角时,材料必须符合胡克定律这一条件。( ) 31.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。() 32.力偶是物体间相互的机械作用,这种作用的效果是使物体的转动状态发生改变。力偶

工程力学教案

绪 论 一、工程力学的研究对象 建筑物中承受荷载而起骨架作用的部分称为结构。结构是由若干构件按一定方式组合而成的。组成结构的各单独部分称为构件。例如:支承渡槽槽身的排架是由立柱和横梁组成的刚架结构,如图1-1a 所示;单层厂房结构由屋顶、楼板和吊车梁、柱等构件组成,如图1-1b 所示。结构受荷载作用时,如不考虑建筑材料的变形,其几何形状和位置不会发生改变。 结构按其几何特征分为三种类型: (1)杆系结构:由杆件组成的结构。杆件的几何特征是其长度远远大于横截面的宽度和高度。 (2)薄壁结构:由薄板或薄壳组成。薄板或薄壳的几何特征是其厚度远远小于另两个方向的尺寸。 (3)实体结构:由块体构成。其几何特征是三个方向的尺寸基本为同一数量级。 (a ) (b ) 图0-1

工程力学的研究对象主要是杆系结构。 二、工程力学的研究内容和任务 工程力学的任务是研究结构的几何组成规律,以及在荷载的作用下结构和构件的强度、刚度和稳定性问题。研究平面杆系结构的计算原理和方法,为结构设计合理的形式,其目的是保证结构按设计要求正常工作,并充分发挥材料的性能,使设计的结构既安全可靠又经济合理。 进行结构设计时,要求在受力分析基础上,进行结构的几何组成分析,使各构件按一定的规律组成结构,以确保在荷载的作用下结构几何形状不发生发变。 结构正常工作必须满足强度、刚度和稳定性的要求。 强度是指抵抗破坏的能力。满足强度要求就是要求结构的构件在正常工作时不发生破坏。 刚度是指抵抗变形的能力。满足刚度要求就是要求结构的构件在正常工作时产生的变形不超过允许范围。 稳定性是指结构或构件保持原有的平衡状态的能力。满足稳定性要求就是要求结构的构件在正常工作时不突然改变原有平衡状态,以免因变形过大而破坏。 按教学要求,工程力学主要研究以下几个部分的内容。 (1)静力学基础。这是工程力学的重要基础理论。包括物体的受力分析、力系的简化与平衡等刚体静力学基础理论。 (2)杆件的承载能力计算。这部分是计算结构承载能力计算的实质。包括基本变形杆件的内力分析和强度、刚度计算,压杆稳定和组合变形杆件的强度、刚度计算。 (3)静定结构的内力计算。这部分是静定结构承载能力计算和超静定结构计算的基础。包括研究结构的组成规律、静定结构的内力分析和位移计算等。 (4)超静定结构的内力分析。是超静定结构的强度和刚度问题的基础。包括力法、位移法、力矩分配法和矩阵位移法等求解超静定结构内力的基本方法。 三、刚体、变形固体及其基本假设 工程力学中将物体抽象化为两种计算模型:刚体和理想变形固体。 刚体是在外力作用下形状和尺寸都不改变的物体。实际上,任何物体受力的作用后都发生一定的变形,但在一些力学问题中,物体变形这一因素与所研究的问题无关或对其影响甚微,这时可将物体视为刚体,从而使研究的问题得到简化。 理想变形固体是对实际变形固体的材料理想化,作出以下假设: (1)连续性假设。认为物体的材料结构是密实的,物体内材料是无空隙的连续分布。 (2)均匀性假设。认为材料的力学性质是均匀的,从物体上任取或大或小一部分,材料的力学性质均相同。 (3)向同性假设。认为材料的力学性质是各向同性的,材料沿不同方向具有相同的力学性质,而各方向力学性质不同的材料称为各向异性材料。本教材中仅研究各向同性材料。 按照上述假设理想化的一般变形固体称为理想变形固体。刚体和变形固体都是工程力学中必不可少的理想化的力学模型。 变形固体受荷载作用时将产生变形。当荷载撤去后,可完全消失的变形称为弹性变形;不能恢复的变形称为塑性变形或残余变形。在多数工程问题中,要求构件只发生弹性变形。工程中,大多数构件在荷载的作用下产生的变形量若与其原始尺寸相比很微小,称为小变形。小变形构件的计算,可采取变形前的原始尺寸并可略去某些高阶无穷小量,可大大简化计算。 综上所述,工程力学把所研究的结构和构件看作是连续、均匀、各向同性的理想变形固体,在弹性范围内和小变形情况下研究其承载能力。

工程力学教案-2模板复习过程

教学课题第一章、静力学基础 第三节约束与约束反力第四节物体的受力分析与受力图教学目的 (一)、知识点 1、掌握约束的概念; 2、掌握主动力和约束反力的概念; 3、了解常见的约束类型; 4,掌握受力图的画法。 (二)、能力训练 1、培养学生运用概念去分析问题、解决问题的能力。 2、培养学生的认识能力,进一步发展学生的思维能力。 (三)、德育渗透 1、树立正确的辩证唯物主义观点。 2、培养学生勤学好问、严谨求实、勇于探索的优秀品质。 教学方法 本节内容理论性强,宜采用讲授法。 重点、难点、及解决方法 (一)、重点 约束的概念;主动力和约束反力的概念;受力图的画法。 (二)、难点 受力图的画法 (三)、解决办法 1、重点解决的办法。 (1)、从概念上讲清约束的概念。

(2)、用图示的方法弄清主动力和约束反力的概念。 (3)、用举例法阐述受力图的画法。 2、难点解决的办法 用实例和做图的方法使学生弄懂受力图的画法。 教学准备 工程力学(武汉大学出版社)教案挂图ppt等其他教学工具 课时安排 2课时 板书设计 力的概念→力的三要素→力学中标量和矢量的概念→力的表达方式→力学四大公理。复习旧课 所谓刚体,是指在任何外力的作用下,物体的大小和形状始终保持不变的物体。静力学的研究对象仅限于刚体,所以又称之为刚体静力学。 所谓公理就是无需证明就为大家在长期生活和生产实践中所公认的真理。静力学公理是静力学全部理论的基础。 导入新课 工程上所遇到的物体通常分两种:可以在空间作任意运动的物体称为自由体,如飞机、火箭等;受到其它物体的限制,沿着某些方向不能运动的物体称为非自由体。如悬挂的重物,因为受到绳索的限制,使其在某些方向不能运动而成为非自由体,这种阻碍物体运动的限制称为约束。约束通常是通过物体间的直接接触形成的。 讲授新课 第三节约束与约束反力 既然约束阻碍物体沿某些方向运动,那么当物体沿着约束所阻碍的运动方向运动或有运动趋势时,约束对其必然有力的作用,以限制其运动,这种力称为约束反力。简称反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反,它的作用点就在约束与被约束的物体的接触点,大小可以通过计算求得。 工程上通常把能使物体主动产生运动或运动趋势的力称为主动力。如重力、风力、水压力等。通常主动力是已知的,约束反力是未知的,它不仅与主动力的情况有关,同时也与约

工程力学含答案

1. 一物体在两个力的作用下,平衡的充分必要条件是这两个力是等值、反向、共线。 ( √ ) 2. 若作用在刚体上的三个力的作用线汇交于同一个点,则该刚体必处于平衡状态。 ( × ) 3. 理论力学中主要研究力对物体的外效应。 ( √ ) 4. 凡是受到二个力作用的刚体都是二力构件。 ( × ) 5. 力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。 ( √ ) 6. 在任何情况下,体内任意两点距离保持不变的物体称为刚体。 ( √ ) 7. 加减平衡力系公理不但适用于刚体,而且也适用于变形体。 ( × ) 8. 力的可传性只适用于刚体,不适用于变形体。 ( √ ) 9. 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。 ( × ) 10. 力的平行四边形法则只适用于刚体。 ( √ ) 1.作用在刚体上两个不在一直线上的汇交力F 1和F 2 ,可求得其合力R = F 1 + F 2 ,则其合力的大小 ( B;D ) (A) 必有R = F 1 + F 2 ; (B) 不可能有R = F 1 + F 2 ; (C) 必有R > F 1、R > F 2 ; (D) 可能有R < F 1、R < F 2。 2. 以下四个图所示的力三角形,哪一个图表示力矢R 是F 1和F 2两力矢的合力矢量 ( B ) 3. 以下四个图所示的是一由F 1 、F 2 、F 3 三个力所组成的平面汇交力系的力三角形,哪一个图表示此汇交力系是平衡的 ( A ) 4.以下四种说法,哪一种是正确的 ( A ) (A )力在平面内的投影是个矢量; (B )力对轴之矩等于力对任一点之矩的矢量在该轴上的投影; (C )力在平面内的投影是个代数量; (D )力偶对任一点O 之矩与该点在空间的位置有关。 5. 以下四种说法,哪些是正确的? ( B ) (A) 力对点之矩的值与矩心的位置无关。 (B) 力偶对某点之矩的值与该点的位置无关。 (C) 力偶对物体的作用可以用一个力的作用来与它等效替换。 (D) 一个力偶不能与一个力相互平衡。 四、作图题(每图15分,共60分) 画出下图中每个标注字符的物体的受力图和整体受力图。题中未画重力的各物体的自重不计。所有接触处均为光滑接触。 F 1 F 2 R (A) F 1 F 2 R (B) F 1 F 2 R (C) F 1 R F 2 (D) F 1 F 2 F 3 (A) F 1 F 2 F 3 (B) F 1 F 2 F 3 (C) F 1 F 2 F 3 (D)

工程力学

第一章物体受力分析 §1.1基本概念与公理 1、三个基本概念: (1)平衡的概念 (2)刚体的概念 (3)力的概念 2、四个公理: (1)二力平衡公理 (2)加减平衡力系公理 (3)力的平行四边形法则 (4)作用与反作用定律 3、两个推论 (1)力的可传性原理 (2)三力平衡汇交定理 这些概念和公理是我们画受力图的基础,但这还不够,要画受力图,还必须学习约束与约束反力。 §1.2约束与约束反力 1、在力学中通常把物体分成两类: (1)自由体——物体能在空间做任意运动,他们的位移不受任何限制。如天空中飞行的飞机、鸟等。 (2)非自由体——物体总是以一定的形式与周围其他物体相互联系,即物体的位移要受到周围其他物体的限制。如用绳悬挂的灯可向上、前、后、左、右运动,但不能向下运动,转轴要受到轴承的限制。 2、约束——这种对非自由体的某些位移起限制作用的周围其他物体称为约束。如绳是灯的约束,轴承就是转轴的约束。

既然约束限制了物体的某些运动,所以一定有约束力作用于物体上。 3、约束力——这种约束对物体的作用力称为约束力。约束力也叫约束反力。 4、工程实际中将物体所受的力分为两类: (1)一类是主动力——这种能使物体产生运动或运动趋势的力,称为主动力,主动力有时也叫载荷;如重力,一般大小、方向往往已知。 (2)另一类是约束反力,它是由主动力引起的,是一种被动力,是未知力。静力分析的重要任务之一就是要确定未知的约束反力大小、方向。 四种常见约束类型的约束反力 工程中约束的种类很多,对于一些常见的约束,根据其特性可归纳为下列四种基本类型。 一、柔性约束(柔索) 1、组成:由柔性绳索、胶带或链条等柔性物体构成。 2、约束特点:只能受拉,不能受压。 3、约束反力方向:作用在接触点,方向沿着柔体的中心线背离物体。通常用FT表示。见图1-8 二、光滑面约束(刚性约束) 1、组成:由光滑接触面构成的约束。当两物体接触面之间的摩擦力小到可以忽略不计时,可将接触面视为理想光滑的约束。

工程力学2019尔雅答案100分

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 章节测验 1 【单选题】 关于力的作用效果,下面说法最准确的是()?D A、 力的作用效果是使物体产生运动 B、 力的作用效果是使整个物体的位置随时间发生变化,称之为运动 C、 力的作用效果是使物体自身尺寸、形状发生改变,称之为变形 D、 力的作用效果有2类,一类是整个物体的位置随时间的变化,称之为运动;另一类是物体自身尺寸、形状的改变,称之为变形 2 【单选题】 力与运动的关系,下面说法最准确的是()?A A、

物体运动状态的改变(dv/d 正确=a)与作用于其上的力成正比,并发生于该力的作用线上,即错误=ma B、 运动与力没有关系 C、 有力就有运动,有运动就有力 D、 力与运动成正比关系 3 【单选题】 力与变形的关系,下面说法最准确的是()?C A、 力与变形成正比,有力就有变形 B、 力与变形满足胡克定律 C、 力与变形的关系与材料的性质相关

D、 力太小物体就没有变形 4 【单选题】 关于物体的平衡,下面说法最准确的是()?D A、 平衡就是物体处于静止 B、 运动速度为零的物体就平衡 C、 物体的平衡与物体的运动无关 D、 物体运动状态不发生改变就处于平衡 5 【单选题】 关于工程力学研究内容,下面说法最准确的是()?D A、 工程力学只需要研究物体的受力

工程力学教案课程

绪 论 课题 第1讲——绪论 学时 1学时 教学目的要求 1、掌握工程力学的任务、地位、作用和学习方法,可变形固体的基本假设,工程力学的研究对象(杆件),杆件变形的形式。 2.理解工程力学的研究对象(杆件)的几何特征,使学生对工程力学这门课程的任务、研究对象有一个全面的概念。 3.了解工程的发展简史和学习本课程的方法。 主要内容 工程力学的研究内容 重点难点 变形固体及其基本假设 教学方法 和手段 以讲授为主,使用电子教案 课后作业练习 预习:第一章 静力学基本概念 一、工程力学的研究对象 建筑物中承受荷载而起骨架作用的部分称为结构。结构是由若干构件按一定方式组合而成的。组成结构的各单独部分称为构件。例如:支承渡槽槽身的排架是由立柱和横梁组成的刚架结构,如图1-1a 所示;单层厂房结构由屋顶、楼板和吊车梁、柱等构件组成,如图1-1b 所示。结构受荷载作用时,如不考虑建筑材料的变形,其几何形状和位置不会发生改变。 结构按其几何特征分为三种类型: (1)杆系结构:由杆件组成的结构。杆件的几何特征是其长度远远大于横截面的宽度和高度。 (2)薄壁结构:由薄板或薄壳组成。薄板或薄壳的几何特征是其厚度远远小于另两个方向的尺寸。 (3)实体结构:由块体构成。其几何特征是三个方向的尺寸基本为同一数量级。 (a ) (b ) 图0-1

工程力学的研究对象主要是杆系结构。 二、工程力学的研究内容和任务 工程力学的任务是研究结构的几何组成规律,以及在荷载的作用下结构和构件的强度、刚度和稳定性问题。研究平面杆系结构的计算原理和方法,为结构设计合理的形式,其目的是保证结构按设计要求正常工作,并充分发挥材料的性能,使设计的结构既安全可靠又经济合理。 进行结构设计时,要求在受力分析基础上,进行结构的几何组成分析,使各构件按一定的规律组成结构,以确保在荷载的作用下结构几何形状不发生发变。 结构正常工作必须满足强度、刚度和稳定性的要求。 强度是指抵抗破坏的能力。满足强度要求就是要求结构的构件在正常工作时不发生破坏。 刚度是指抵抗变形的能力。满足刚度要求就是要求结构的构件在正常工作时产生的变形不超过允许范围。 稳定性是指结构或构件保持原有的平衡状态的能力。满足稳定性要求就是要求结构的构件在正常工作时不突然改变原有平衡状态,以免因变形过大而破坏。 按教学要求,工程力学主要研究以下几个部分的内容。 (1)静力学基础。这是工程力学的重要基础理论。包括物体的受力分析、力系的简化与平衡等刚体静力学基础理论。 (2)杆件的承载能力计算。这部分是计算结构承载能力计算的实质。包括基本变形杆件的内力分析和强度、刚度计算,压杆稳定和组合变形杆件的强度、刚度计算。 (3)静定结构的内力计算。这部分是静定结构承载能力计算和超静定结构计算的基础。包括研究结构的组成规律、静定结构的内力分析和位移计算等。 (4)超静定结构的内力分析。是超静定结构的强度和刚度问题的基础。包括力法、位移法、力矩分配法和矩阵位移法等求解超静定结构内力的基本方法。 三、刚体、变形固体及其基本假设 工程力学中将物体抽象化为两种计算模型:刚体和理想变形固体。 刚体是在外力作用下形状和尺寸都不改变的物体。实际上,任何物体受力的作用后都发生一定的变形,但在一些力学问题中,物体变形这一因素与所研究的问题无关或对其影响甚微,这时可将物体视为刚体,从而使研究的问题得到简化。 理想变形固体是对实际变形固体的材料理想化,作出以下假设: (1)连续性假设。认为物体的材料结构是密实的,物体内材料是无空隙的连续分布。 (2)均匀性假设。认为材料的力学性质是均匀的,从物体上任取或大或小一部分,材料的力学性质均相同。 (3)向同性假设。认为材料的力学性质是各向同性的,材料沿不同方向具有相同的力学性质,而各方向力学性质不同的材料称为各向异性材料。本教材中仅研究各向同性材料。 按照上述假设理想化的一般变形固体称为理想变形固体。刚体和变形固体都是工程力学中必不可少的理想化的力学模型。 变形固体受荷载作用时将产生变形。当荷载撤去后,可完全消失的变形称为弹性变形;不能恢复的变形称为塑性变形或残余变形。在多数工程问题中,要求构件只发生弹性变形。工程中,大多数构件在荷载的作用下产生的变形量若与其原始尺寸相比很微小,称为小变形。小变形构件的计算,可采取变形前的原始尺寸并可略去某些高阶无穷小量,可大大简化计算。 综上所述,工程力学把所研究的结构和构件看作是连续、均匀、各向同性的理想变形固体,在弹性范围内和小变形情况下研究其承载能力。

工程力学

《工程力学(二)》(02392)实践答卷 1、工程设计中工程力学主要包含哪些内容? 答:静力学、结构力学、材料力学。分析作用在构件上的力,分清已知力与未知力;选择合适的研究对象,建立已知力与未知力的关系;应用平衡条件与平衡方程,确定全部未知力 2、杆件变形的基本形式就是什么? 答:1拉伸或压缩:这类变形就是由大小相等方向相反,力的作用线与杆件轴线重合的一对力引起的。在变形上表现为杆件长度的伸长或缩 方向相反、力的作用线相互平行的力引起的。在变形上表现为受剪杆件的两部分沿外力作用方向发生相对错动。截面上的内力称为剪力。 力近似相等。3扭转:这类变形就是由大小相等、方向相反、作用面都垂直于杆轴的两个力偶引起的。表现为杆件上的任意两个截面发生 沿着杆件截面平面内的的切应力。越靠近截面边缘,应力越大。4弯曲:这类变形由垂直于杆件轴线的横向力,或由包含杆件轴线在内的纵向平面内的一对大小相等、方向相反的力偶引起,表现为杆件轴线由 面上,弯矩产生垂直于截面的正应力,剪力产生平行于截面的切应力。

另外,受弯构件的内力有可能只有弯矩,没有剪力,这时称之为纯剪构件。越靠近构件截面边缘,弯矩产生的正应力越大。 3、根据工程力学的要求,对变形固体作了哪三种假设? 答:连续性假设、均匀性假设、各项同性假设。 4、如图所示,设计一个三铰拱桥又左右两拱铰接而成,在BC作用一主动力。忽略各拱的自重,分别画出拱AC、BC的受力图。(20分) 答:(1)选AC拱为研究对象,画分离体,AC杆为二力杆。受力如图 (2)选BC拱为研究对象,画出分析体,三力汇交原理。 F NC F C C F NC’ F NA B F NB 5、平面图形在什么情况下作瞬时平动?瞬时平动的特征就是什么? 答:某瞬时,若平面图形的转动角速度等于零(如有两点的速度vA VB 而该两点的连线AB不垂直于速度矢时)而该瞬时图形上的速度分布规律与刚体平动时速度分布规律相同,称平面图形在该瞬时作瞬时平动。 瞬时平动的特征就是: 平面图形在该瞬时的角速度为零;平面图形在该瞬时的各点的速度相

工 程 力 学 教 案-圆轴扭转

工程力学教案 【理、工科】

§4-1 扭转的概念和实例 工程上的轴是承受扭转变形的典型构件,如图4-1所示的攻丝丝锥,图4-2所示的桥式起重机的传动轴以及齿轮轴等。扭转有如下特点: 1. 受力特点: 在杆件两端垂直于杆轴线的平面内作用一对大小相等,方向相反的外力偶--扭转力偶。其相应内力分量称为扭矩。 2. 变形特点 横截面绕轴线发生相对转动,出现扭转变形。若杆件横截面上只存在扭矩这一个内力分量则这种受力形式称为纯扭转。 §4-2 扭矩扭矩图 1.外力偶矩 如图4-3所示的传动机构,通常外力偶矩不是直接给出的,而是通过轴所传递的功率和转速n计算得到的。 如轴在m作用下匀速转动角,则力偶做功为,由功率定义

角速度(单位:弧度/秒,rad/s)与转速n(单位:转/分,r/min)的关系为。 因此功率N的单位用千瓦(KW)时有关系,即 (4-1a) 式中:-传递功率(千瓦,KW),-转速(r/min) 如果功率单位是马力(PS),由于1KW =1000 N·m/s =1.36 PS,式(4-1a)成为 (4-1b) 式中:-传递功率(马力,PS) -转速(r/min) 2. 扭矩 求出外力偶矩后,可进而用截面法求扭转内力--扭矩。如图4-4所示圆轴,由,从而可得A-A截面上扭矩T , 称为截面A-A上的扭矩;扭矩的正负号规定为:按右手螺旋法则,矢量离开截面为正,指向截面为负。或矢量与横截面外法线方向一致为正,反之为负。

【例4-4】传动轴如图4-5a所示,主动轮A输入功率马力,从动轮B、C、D输出功率分别为马力,马力,轴的转速为 。试画出轴的扭矩图。 【解】按外力偶矩公式计算出各轮上的外力偶矩 从受力情况看出,轴在BC,CA,AD三段内的扭矩各不相等。现在用截面法,根据平衡方程计算各段内的扭矩。 在BC段内,以表示截面I-I上的扭矩,并任意地把的方向假设为如图4-5b所示。

相关文档
最新文档