第十二章 电磁感应电磁场(一)作业答案

第十二章 电磁感应电磁场(一)作业答案
第十二章 电磁感应电磁场(一)作业答案

第十二章 电磁感应 电磁场(一)

一.选择题

[ A ]1.(基础训练1)半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60?时,线圈中已通过的电量与线圈面积及转动时间的关系是:

(A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【解析】

[ D ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解析】

dt dI L

L -=ε,在每一段都是常量。dt

dI [ B ]3.(基础训练6)如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B ?

行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应

电动势和a 、c 两点间的电势差U a – U c 为

(A) =0,U a – U c =221l B ω (B) =0,U a – U c =22

1l B ω- (C) =2l B ω,U a – U c =2

2

1l B ω (D) =2l B ω,U a – U c

=22

1

l B ω-

【解析】金属框架绕ab 转动时,回路中

0d d =Φ

t

,所以0=ε。 2012c

L a c b c bc b U U U U v B d l lBdl Bl εωω→→→

??-=-=-=-??=-=- ???

??

[ C ]5.(自测提高1)在一通有电流I 的无限长直导线所在平面内,有一半经

为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。当直导线的电流被切断后,沿着导线环流过的电量约为:

(A))1

1(220r a a R Ir +-πμ (B)

a

r a R Ir +ln 20πμ (C)aR Ir 220μ (D) rR Ia 220μ 【解析】直导线切断电流的过程中,在导线环中有感应电动势大小:t

d d Φ

=

ε

B ?

a

b c

l

ω

a

I

r

o

R q 2

1

φφ-=

感应电流为:t

R R

i d d 1Φ

=

=

ε

则沿导线环流过的电量为:?Φ=?Φ=

=??

R

t t R t i q 1

d d d 1d

aR Ir R r a I R S B 212120200μππμ=??=??≈

[ C ]6.(自测提高4)有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为1和2.设r 1∶r 2=1∶2,1∶2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:

(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2. (D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. 【解析】自感系数为l r n V n L 2

2

2

πμμ==,磁能为22

1LI W m =

[ B ]7.(附录C3)在圆柱形空间内有一磁感应强度为B ?的均匀磁场,如图所示,B ?

大小以速率dB/dt 变化。有一长度为l0的金属棒先后放在磁场的两个不同位置1(ab )和2(b a ''),则金属棒在这两个位置时棒内的感应电动势的大小关系为(A)012≠=εε (B).

12εε>(C) 12εε<(D)012==εε

【解析】ab oab dB S dt ε?=

,a b oa b dB S dt

ε''''?= 因为 oa b oab S S ''

??>,所以a b ab εε''>.

二. 填空题

8.(基础训练9)一自感线圈中,电流强度在 0.002 s 内均匀地由10 A 增加到12 A ,此过程中线圈内自感电动势为 400 V ,则线圈的自感系数为L =L =__0.4H__。 【分析】

L dI

L

dt ε=- H

L L

4.0002.010

12400=--=-

9.(基础训练14)载有恒定电流I 的长直导线旁有一半圆环导线cd ,半圆环半径为b ,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图。当半圆环以速度沿平行于直导线的方向平移时,半圆环上的感应电动势的大小为0ln 2I a b

v a b

μεπ+=-。 【解析】=0d dt

?ε=-

i a a'

O

b b'

l 0

?

B ?

00ln 22d

a b cd cd c

a b I I a b v B d l v dx v x a b μμεεππ→→→

+-+??==??=-=- ?-??

?

?

10.(基础训练15)如图12-20所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由

下落,则t 秒末导线两端的电势差=-N M U U a

l

a Igt +-ln 20πμ 【解析】金属杆MN 两端的动生电动势为:

()00ln

22N a l MN M a I Igt a l

v B dx v dx x a μμεππ++=??=??=??v v v

所以金属杆MN 两端的电势差为:

0ln

2MN MN Igt a l

U a μεπ+=-=-

11.(基础训练16)如图12-21所示,aOc 为一折成∠形的金属导线(aO =Oc

=L ),位于xy 平面中;磁感强度为B ?

的匀强磁场垂直于xy 平面.当aOc

以速度v ?

沿x 轴正向运动时,导线上a 、c 两点间电势差U ac =θsin Bvl ;

当aOc 以速度v ?

沿y 轴正向运动时,a 、c 两点的电势相比较, 是___a__

点电势高.

【解析】当沿x 轴运动时,导线oc 不切割磁力线,c o U U =, θsin Bvl U U ao oc ==

当沿y 轴运动时,Bvl U oc =,oc oa U Bvl U <=θcos 所以a 点电势高。

12.(自测提高9)如图所示,一半径为r 的很小的金属圆环,在初始时刻与一半径为a (r a >>)的大金属圆环共面且同心,在大圆环中通以恒定的电流I ,方向如图,如果小圆环以匀角速度ω绕其任一方向的直径转动,并设小圆环的

电阻为R ,则任一时刻t 通过小圆环的磁通量φ=

;小圆环中

的感应电流i =。

【解析】

)cos(2cos 2

0t r a I μBS ωπθ=

)

sin(212

0t Ra r I μdt d ΦR I ωωπ=-=

13.(自测提高10)在一个中空的圆柱面上紧密地绕有两个完全相同的线圈aa ′和bb ′(如图).已知每个线圈的自感系数都等于0.05 H .若a 、b 两端相接,a ′、b ′

接入电路,则整个线圈的自感L =_0_.若a 、b ′两端相连,a ′、b 接入电路,则整个线圈的自感L =__0.2H _. 若a 、b 相连,又a ′、b ′相连,再以此两端接入电路,则整个线圈的自感L =_0.05 H __. 【解析】

a a ′ b

M N a

l

x

v ?B ? x v ? c a θ

×

××

×

××

×

×

×

图12-21

a 、

b 两端相接,a ′、b ′接入电路,反接,21212L L L L L -+=; a 、b ′两端相连,a ′、b 接入电路,顺接,21212L L L L L ++=;

a 、

b 相连,又a ′、b ′相连,再以此两端接入电路,不变。 三. 计算题

14.(基础训练18)如图12-26所示,一长直导线,通有电流I ,在与其相距处放有一矩形线圈,共N 匝。线圈以速度v 沿垂直于长导线的方向向右运动,求: (1) 如图所示位置时,线圈中的感应电动势为多少?

(2) 若线圈不动,而长导线通有交变电流),(100sin 5A t I π=线圈中的感应电动势为多少?

【解析】

(1)无限长直导线的磁感应强度为02I

B r

μπ=

考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11NB l v ε=, 远端部分:22NB lv ε=, 则:12εεε=-=

)

(2)1

1(200a d d Ilav N a d d Ilv N +=+-πμπμ。 (2) 无限长直导线的磁感应强度为02I

B r

μπ=

则矩形线圈内的磁通量为:0000ln sin ln

222d a

d

I I l I l d a d a

l dr t r d d

μμμωπππ+++Φ=

?==?

, ∴00cos ln 2N I l d d a

N t dt d

μεωωπΦ+=-=-。 ),(100sin 5A t I π=d

a

d t l N i +-=ln

100cos 2500πμε。 15.(自测提高13))如图12-31所示,长直导线AB 中的电流I 沿导线向上,并以d I /d t =2 A/s 的变化率均匀增长.导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示.求此线框中产生的感应电动势的大小和方向.(=4×10-7 T ·m/A)

【解析】如图建立坐标系,则直角三角形线框斜边方程为

20.2y x =-+

在x 处取一宽度为dx 的小面元,则阴影面积为dS=ydx ,此处的磁感

应强度为()

020.05I

B x μπ=

+,穿过直角三角形线框所围面积的磁通量为

()()0.1

0.1000

020.220.0520.05S

I I x B dS ydx dx x x μμππ-+Φ=?==++???

?r r

000.10.150.15

ln

0.05

I

I

μμπ

π

??=-+

82.5910 ()I Wb -=? 三角形线框中的感应电动势的大小为

882.5910 5.1810d dI

V dt dt

ε--Φ=-

=?=? 根据愣次定律可知ε的方向为逆时针绕行方向。

16.(自测提高18)无限长直导线通以电流I .有一与之共面的直角三角形线圈ABC ,已知AC 边长为b ,且与长直导线平行,BC 边长为a ,

如图所示.若线圈以垂直导线方向的速度v ρ

向右平移,当B 点与长直导线的距离为d 时,求线圈ABC 内的感应电动势大小和感应电动势的指向. 【解答】

解一:,tan b ABC a

θθ∠==

设 000cos()sin ln 222cos 2A

A d a BA

B B d I I I dx b d a v B d l v dl v v x x a d μμμπεθθππθπ→→→

++??=??=-== ??????02()C

AC

A I v

B d l v b d a μεπ→→→

??=??=- ?+??

? 0C

BC

B v B d l ε→→→

??=??= ???

? 00ln 22()

BA AC CB I I

b d a v

v b a d d a μμεεεεππ+∴=++=-+ 解二:x y x

I

s B Φd π2d d 0μ=

?=?

?,

当B 点与长直导线的距离为任意值r 时,有:

a

b

r x y =- r

a

r r a

Ib

Ib

dx r x a

b

x I a

r r

+-

=

-=?

+ln

π2π

2)(π2000μμμφ ??

? ???+-+?+=-

=dt dr a r a dt dr r a r a Ib dt d ln π20μφεi

其中,

v dt

dr

=,时当d r =,??? ??+-+=a d a d a d a Ibv ln π20μεi ,

方向:BACB

17.(自测提高19)求长度为L 的金属杆在均匀磁场B ?

中绕平行于磁场方向的定轴OO '转动时的动生电动势.已知杆相对于均匀磁场B ?

的方位角为,杆的角速度为,转向如图。

【解答】在距O 点为l 处的d l 线元中的动生电动势为

l B v d i ??ρd )(??=ε

θ

ωsin l v =

???π=?=L

d cos )21sin(d )(l vB l B v L i αε?

θωθωθθωΛ

220

2

sin 2

1

d sin sin d sin BL l

l B l lB L

===??

方向沿着杆指向上端.

18.(附录D20)均匀磁场B ?

被限制在半径R =10 cm 的无限长圆柱空

间内,方向垂直纸面向里.取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图所示.设磁感强度以d B /d t =1 T/s 的匀速率增加,已知π=

3

1

θ,cm 6==Ob Oa ,求等腰梯形回路中感生电动势的大小和方向。

【解答】由法拉第电磁感应定律有感生电动势大小

()(V dt dB oa ab R S dt dB dt d 3

-2221068.31

6

cos 06.02131.0212cos 2121?-=???-??-=??? ???--=-=-

πθθφε 负号表示感生电动势逆时针绕向。

[附加题]20.(自测提高17)有一很长的长方的U 形导轨,与水平面成角,裸导线ab 可在导轨上无摩擦地下滑,导轨位

于磁感强度B ?

竖直向上的均匀磁场中,如图12-35所示.设导

线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计,abcd 形成电路,t =0时,v =0. 试求:导线ab 下滑的速度v

d

c

b

a θ

l B ?

图12-35

× × × ×

R

B ? c

b d

a

O

θ

与时间t 的函数关系. 【解答】sin()cos 2

Bvl Bvl π

εθθ=+=

回路中的电流:cos Bvl I R R

ε

θ

=

=

导线ab 受安培力:

安培力的方向如图所示,水平向右。

ab 棒沿斜面的动力学方程为:

θθcos sin B F mg ma -=

mR vl B g dt dv θθ222cos sin -= ??=-

t v dt mR

vl B g dv

222cos sin θθ

()()

2

cos cos sin 12

θθ

θBl mgR e v t

mR

Bl ???????

?-=-

R cos θ

vl B IlB F 22B =

=2222222220

0cos (sin )cos cos sin v t B l d g v mR mR dt B vl B l g mR

θθθθθ--=-??22

2

222cos sin ln cos sin B l g v

mR mR t B l g θθθθ--=222222

cos cos sin sin B l t

mR

B l g v mR e g θθ

θθ

--=222cos 222

cos 1sin B l t mR B l v e mgR θθθ--=

222cos 222

cos 1sin B l t mR

B l v e mgR θθθ-=-

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨 道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质的极化强度、体积和表面上单位长度的极化电荷。 解 介质棒距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m = 、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

第八章__电磁感应习题及答案大学物理

8章习题及答案 1、如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正) 2、一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加. (C) 对磁场不起作用. (D) 使铜板中磁场反向. [ ] 3、半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直, 线圈电阻为R ;当把线圈转动使其法向与B 的夹角=60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是 (A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间成正比. (D) 与线圈面积成反比,与时间无关. [ ] 4、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大. (C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. B I (D) I (C) b c d b c d b c d v v I

5、一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴, 以匀角速度旋转(如图所示).设t =0时,线框平面处于纸面 内,则任一时刻感应电动势的大小为 (A) 2abB | cos ω t |. (B) ω abB (C)t abB ωωcos 2 1. (D) ω abB | cos ω t |. (E)ωabB |sin ωt |. 6、如图所示,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向), BC 的长度为棒长的3 1 ,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等. (B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点. [ ] 7、如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Blv . (B) Blv sin . (C) Blv cos . (D) 0. [ ] 8、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为 垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水 平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 9、如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动 时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为: (A) =0,U a – U c =221l B ω. (B) =0,U a – U c =221l B ω-. (C) =2l B ω,U a – U c =221l B ω. (D) =2l B ω,U a – U c =22 1l B ω-. v c a b d N M B B a b c l ω

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场理论习题及答案1

一. 1.对于矢量A u v,若A u v= e u u v x A+y e u u v y A+z e u u v z A, x 则: e u u v?x e u u v=;z e u u v?z e u u v=; y e u u v?x e u u v=;x e u u v?x e u u v= z 2.对于某一矢量A u v,它的散度定义式为; 用哈密顿算子表示为 3.对于矢量A u v,写出: 高斯定理 斯托克斯定理 4.真空中静电场的两个基本方程的微分形式为 和 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为,通常称它为 二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。 1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。() 2.标量场的梯度运算和矢量场的旋度运算都是矢量。() 3.梯度的方向是等值面的切线方向。() 4.恒定电流场是一个无散度场。() 5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。() 6.静电场和恒定磁场都是矢量场,在本质上也是相同的。()

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( ) 9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( ) 三.简答:(共30分,每小题5分) 1.用数学式说明梯无旋。 2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。 四.计算:(共10分)半径分别为a,b(a>b),球心距为c(c

电磁感应中的各种题型(习题,答案)

电磁感应中的各种题型 一.电磁感应中的“双杆问题” 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等 1.“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。 [例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。(1)求作用于每条金属细杆的拉力的大小。 (2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。 2.“双杆”同向运动,但一杆加速另一杆减速:当两杆分别沿相同方向运动时,相当于两个电池反向串联。 [例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少。 (2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少? 3. “双杆”中两杆都做同方向上的加速运动。:“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 [例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少? 4.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

电磁场与电磁波课后答案

第一章 矢量分析 重点和难点 关于矢量的定义、运算规则等内容可让读者自学。应着重讲解梯度、散度、旋度的物理概念和数学表示,以及格林定理和亥姆霍兹定理。至于正交曲面坐标系一节可以略去。 考虑到高年级同学已学过物理学,讲解梯度、散度和旋度时,应结合电学中的电位、积分形式的高斯定律以及积分形式的安培环路定律等内容,阐述梯度、散度和旋度的物理概念。详细的数学推演可以从简,仅给出直角坐标系中的表达式即可。讲解无散场和无旋场时,也应以电学中介绍的静电场和恒定磁场的基本特性为例。 至于格林定理,证明可免,仅给出公式即可,但应介绍格林定理的用途。 前已指出,该教材的特色之一是以亥姆霍兹定理为依据逐一介绍电磁场,因此该定理应着重介绍。但是由于证明过程较繁,还要涉及? 函数,如果学时有限可以略去。由于亥姆霍兹定理严格地定量描述了自由空间中矢量场与其散度和旋度之间的关系,因此应该着重说明散度和旋度是产生矢量场的源,而且也是惟一的两个源。所以,散度和旋度是研究矢量场的首要问题。 此外,还应强调自由空间可以存在无散场或无旋场,但是不可能存在既无散又无旋的矢量场。这种既无散又无旋的矢量场只能存在于局部的无源区中。 重要公式 直角坐标系中的矢量表示:z z y y x x A A A e e e A ++= 矢量的标积:代数定义:z z y y x x B A B A B A ++=?B A 几何定义:θcos ||||B A B A =? 矢量的矢积:代数定义:z y x z y x z y x B B B A A A e e e B A =? 几何定义:θsin ||B ||A e B A z =? 标量场的梯度:z y x z y ??+??+??=?Φ ΦΦΦe e e x 矢量场的散度:z A y A x A z y x ??+??+??= ??A 高斯定理:???=??S V V d d S A A 矢量场的旋度:z y x z y A A A z y x ?? ???? = ??e e e A x ; 斯托克斯定理: ???=???l S d d )(l A S A

电磁场习题解答

1—2—2、求下列情况下,真空中带电面之间的电压。 (2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。 解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。对此圆柱体的外表面应用高斯通量定理,得 l S D s τ=?? d 考虑到此问题中的电通量均为r e 即半径方向,所以电通量对圆柱体前后 两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是 l rD l τπ=2 即 r e r D πτ2= , r e r E 02πετ= 由此可得 a b r e e r r E U b a r r b a ln 2d 2d 00 ? ?επτ=?επτ=?= 1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的

内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。内导体的半径为 a ,其值可以自由选定但有一最佳值。因为a 太大,内外导体的间隙就变得很 小,以至在给定的电压下,最大的E 会超过介质的击穿场强。另一方面,由于 E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。试问a 为何值时,该电缆能承受最大电压?并求此最大电压。 (击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。 解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为 r E πετ2= , a E πετ 2max = 而内外导体之间的电压为 a b r r r E U b a b a ln 2d 2d πετπετ? ?===

高中物理第二章 电磁感应与电磁场单元测试题及解析

第二章电磁感应与电磁场章末综合检测 (时间:90分钟;满分100分) 一、单项选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项正确) 1.下列过程中一定能产生感应电流的是( ) A.导体和磁场做相对运动 B.导体一部分在磁场中做切割磁感线运动 C.闭合导体静止不动,磁场相对导体运动 D.闭合导体内磁通量发生变化 2.关于磁通量的概念,下列说法中正确的是( ) A.磁感应强度越大,穿过闭合回路的磁通量也越大 B.磁感应强度越大,线圈面积越大,穿过闭合回路的磁通量也越大 C.穿过线圈的磁通量为零时,磁感应强度不一定为零 D.磁通量发生变化时,磁感应强度一定发生变化 3.如图2-3,半径为R的圆形线圈和矩形线圈abcd在同一平面内,且在矩形线圈内有变化的磁场,则( ) 图2-3 A.圆形线圈有感应电流,矩形线圈无感应电流 B.圆形线圈无感应电流,矩形线圈有感应电流 C.圆形线圈和矩形线圈都有感应电流 D.圆形线圈和矩形线圈都无感应电流 4.以下叙述不正确的是( ) A.任何电磁波在真空中的传播速度都等于光速 B.电磁波是横波 C.电磁波可以脱离“波源”而独自存在 D.任何变化的磁场都可以产生电磁波 5.德国《世界报》曾报道过个别西方发达国家正在研制电磁脉冲波武器——电磁炸弹.若一枚原始脉冲波功率10 kW、频率5千兆赫的电磁炸弹在不到100 m的高空爆炸,它将使方圆400 m2~500 m2地面范围内电场达到每米数千伏,使得电网设备、通信设施和计算机中的硬盘与软盘均遭到破坏.电磁炸弹有如此破坏力的主要原因是( ) A.电磁脉冲引起的电磁感应现象 B.电磁脉冲产生的动能 C.电磁脉冲产生的高温 D.电磁脉冲产生的强光 6.在图2-4中,理想变压器的原副线圈的匝数比为n1∶n2=2∶1,A、B为完全相同的灯泡,电源电压为U,则B灯两端的电压有( ) 图2-4 A.U/2 B.2U

电磁场与电磁波第四版谢处方课后答案

电磁场与电磁波(第四版)谢处方 课后答案 第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ; (8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ = ==A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1235 02 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e

电磁场作业答案

2.6 在圆柱坐标系中电荷分布为P ={①r∕a, r≤a②0, r>a , r为场点到 常数。求电场强度。 解:电场强度只有沿r方向分量,选取长度为I的圆柱 2.7在直角坐标系中电荷分布为P (X,y,Z)={①P 0 ∣ X ∣≤a②O 度。解:电场与y,Z均无关,电场强度只有沿X方向分量, 4 ■J~?. E= : EX= 一X X > O时E X为有限值所以C=O 「0 r a 时]=0 代入(1)得:Er=C 在x=a处E r连续,所以C'二 E r Z轴的距离,a为 IE dS =2二rlE r S (1) r a求电场强 (1) 代入(1)得: :?0X ‘0 q

V 2.16已知电场强度为E=3x+4y-5z ,试求点(0,0,0)与点(1,2,1)之间的电 b b b b 压 解:U=E dl = E X dX E y dy E Z dZ = 6 a a a a 2.26两同心导体球壳半径分别为a 、b ,两导体之间有两层介质,介电常数 分别为ε 1、ε 2,介质界面半径为C ,内外导体球壳电位分别为 V 和0,求两导 体球壳之间的电场和球壳上的电荷面密度, 以及介质分界面上的束缚电荷面密度。 解:两球壳之间电介质不带电电位分布满足拉普拉斯方程 ? ? -0 C 1 ' —C1 r C 2 ' -C 2 代入边界条件 φ I _ — 2 r z b _ b C 1 _ C 1 =V a 由上式可得: I I ■ I I ,(…:C) (1-1) S 1Jr 2 a C ;2 c b ■ I I I I ,(c"b ) 2(1j ) (^1)r 2 j 1 a C C b 在介质与导体分界面上的电荷密度匚= D n 选取球坐标则有:V 2 =1 : r 2 ;:r / ;:r C 2 =0 D Inr Z C= D 2n r =C C I C 2 (1 T)J(1 -[) a C ;2 c b V 1 1 1 )(-) C C b 2 (1 E 1 E 2

电磁感应习题解答电磁场习题解答

第十三章 电磁感应 一 选择题 3.如图所示,一匀强磁场B 垂直纸面向内,长为L 的导线ab 可以无摩擦地在导轨上滑动,除电阻R 外,其它部分电阻不计,当ab 以匀速v 向右运动时,则外力的大小是: R L B R L B R L B R BL L B 222222222 E. D. 2 C. B. A.v v v v v 解:导线ab 的感应电动势v BL =ε,当 ab 以匀速v 向右运动时,导线ab 受到的外力与安培力是一对平衡力,所以R L B L R B F F v 22===ε 安外。 所以选(D ) 4.一根长度L 的铜棒在均匀磁场B 中以匀角速度ω旋转着,B 的方向垂直铜棒转动的平面,如图,设t = 0时,铜棒与Ob 成θ角,则在任一时刻t 这根铜棒两端之间的感应电动势是:( ) A. )cos(2θωω+t B L B. t B L ωωcos 2 12 C. )cos(22θωω+t B L D. B L 2ω E. B L 22 1ω 解:???= ==??=L L BL l l B l B )00221d d d ωωεv l B v ( 所以选(E ) 6.半径为R 的圆线圈处于均匀磁场B 中,B 垂直于线圈平面向上。如果磁感应强度为B =3 t 2+2 t +1,则线圈中的感应电场为:( ) A . 2π(3 t + 1)R 2 ,顺时针方向; B. 2π(3 t + 1)R 2 ,逆时针方向; C . (3 t + 1)R ,顺时针方向; D . (3 t + 1)R ,逆时针方向; 解:由??? ???-=?S B l E d d i t ,则感应电场的大小满足 选择题4图 选择题3图 v

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场 () ()2 2 003 3 2 2 2 22IR IR B x R x R x μμ= ≈ >>+ 3 2 202x r IR BS πμφ= = v x r IR dt dx x r IR dt d 4 22042202332πμπμφ ε=--=-= 9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ? 的方向垂直于金属架 COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ? 与 MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ? 不随时间改变,框架内的感应电动势i ε. 解:12m B S B xy Φ=?=?,θtg x y ?=,vt x = 22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N 9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。 解:当线圈ABC 向右平移时,AB 和AC 边中会产 生动生电动势。当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02() I B a d μπ= + AC 中产生的动生电动势大小为: x r I R x v C D O x M θ B ? v ?

电磁场与电磁波课后答案第1章

第一章习题解答 给定三个矢量、和如下: 求:(1);(2);(3);(4);(5)在上的分量;(6); (7)和;(8)和。 解(1) (2) (3)-11 (4)由,得 (5)在上的分量 (6) (7)由于 所以 (8) 三角形的三个顶点为、和。 (1)判断是否为一直角三角形; (2)求三角形的面积。 解(1)三个顶点、和的位置矢量分别为 ,, 则,, 由此可见 故为一直角三角形。 (2)三角形的面积 求点到点的距离矢量及的方向。 解,, 则 且与、、轴的夹角分别为 给定两矢量和,求它们之间的夹角和在上的分量。 解与之间的夹角为 在上的分量为 给定两矢量和,求在上的分量。 解 所以在上的分量为 证明:如果和,则; 解由,则有,即 由于,于是得到 故 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设为一已知矢量,而,和已知,试求。

解由,有 故得 在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。 解(1)在直角坐标系中、、 故该点的直角坐标为。 (2)在球坐标系中、、 故该点的球坐标为 用球坐标表示的场, (1)求在直角坐标中点处的和; (2)求在直角坐标中点处与矢量构成的夹角。 解(1)在直角坐标中点处,,故 (2)在直角坐标中点处,,所以 故与构成的夹角为 球坐标中两个点和定出两个位置矢量和。证明和间夹角的余弦为 解由 得到 一球面的半径为,球心在原点上,计算:的值。 解 在由、和围成的圆柱形区域,对矢量验证散度定理。 解在圆柱坐标系中 所以 又 故有 求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。 解(1) (2)对中心在原点的一个单位立方体的积分为 (3)对此立方体表面的积分 故有 计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。 解 又在球坐标系中,,所以 求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。再求对此回路所包围的曲面积分,验证斯托克斯定理。 解 又

电磁感应习题答案

电磁感应 、选择题 1、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通 量随时间的变化率相等,则(D ) A.铜环中有感应电动势,木环中无感应电动势 B.铜环中感应电动势大,木环中感应电动势小 C.铜环中感应电动势小,木环中感应电动势大 D.两环中感应电动势相等 2、面积为S和2S的两线圈A, B。通过相同的电流I,线圈A的电流所产生的通过线圈B的磁通用 面积为S和2S的两圆线圈A, B。通过相同的电流I,线圈A的电流所产生的通过线圈B的磁通用①21表示,线圈B的电流所产生的通过线圈A的磁通用①12表示,则应该有: (A)① 12 = 2 ① 2i . (B)① 12 =① 21/2 . (C )① 12 =① 21. (D )① 12 < ① 21 3如图所示,导线AB在均匀磁场中作下列四种运动, (1)垂直于磁场作平动; (2)绕固定端A作垂直于磁场转动; (3)绕其中心点0作垂直于磁场转动; (1) (2) (3) (4)绕通过中心点0的水平轴作平行于磁场的转动

关于导线 AB 的感应电动势哪个结论是错误的? (B ) (A) (1)有感应电动势,A 端为高电势;(B) (2)有感应电动势,B 端为 高电势; (C) (3)无感应电动势; (D) (4)无感应电动势。 二、 填空题 4、 如图,aob 为一折成/形的金属导线 (aO=Ob=)位于XOY 平面中;磁感强度为 B 的匀强磁场垂直于 XOY 平面。当aob 以速 度 沿X 轴正向运动时,导线上a 、b 两点 间电势差Ui b =_ BLvsin _;当aob 以速度 沿Y 轴正向运动时,a 、b 两点中是_a _______ 点电势高。 5、 半径为a 的无限长密绕螺线管,单位长度上的匝数为 n ,螺线管 导线中通过交变电流i l °sin t ,贝卩围在管外的同轴圆形回路(半径 为r )上的感生电动势为 二°n a 2 l ° cos t_(V) 6、 感应电场是由 变化的磁场产生的,它的电场线是 闭合曲线。 7、 弓|起动生电动势的非静电力是 洛仑兹力,引起感生电动势的 非静 电是感生电场。 三、 计算题 8矩形线圈长I =20cm 宽b =10cm 由100匝导线绕成,放置在无限 长直 导线旁边,并和直导线在同一平面内,该直导线是一个闭合回路 的一部分,其余部分离线圈很远,其影响可略去不计。求图(a )、图 XXX XX XXX N 丈 * xxxx xx x xxx XXXXXXXXXXXX XXXXXXXXKXXX

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: 0 ερ= ??E 0=??E 已知电荷分布求解电场强度: 1,)()(r r E ?-?=; ? ' '-'= V V 0 d ) (41)(| r r |r r ρπε ? 2,? ' ''-'-'= V V 3 d |4) )(()(| r r r r r r E πε ρ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1,t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2,s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ?S n - =?? 静电场的能量:

电磁感应 第一节作业1 - 答案

电磁感应作业1 d ,倾角为α,轨道顶端连有一阻值为R 的定值电阻,用力将质量为m 、电阻也为R 的导体棒CD 固定于离轨道顶端l 处。整个空间存在垂直轨道平面向上的磁场,磁感应强度B 的变化规律如图(b)所示(图中B 0、t 1已知),在t =t 1时刻撤去外力,之后导体棒下滑距离x 后达到最大速度,导体棒与导轨接触良好,不计导轨电阻,重力加速度为g 。求: (1)0~t 1时间内通过导体棒CD 的电流大小和方向; (2)导体棒CD 的最大速度v m ; (3)导体棒CD 加速运动的时间和该过程中导体棒产生的焦耳热Q 。 解析:(1)由楞次定律可知,流过导体棒CD 的电流方向为D 到C 由法拉第电磁感应定律得E 1=B 0t 1 ld 由闭合电路欧姆定律得I 1=E 12R =B 0dl 2Rt 1 。 (2)当导体棒CD 下滑最大速度时匀速运动,切割磁感线产生感应电动势E 2 E 2=B 0dv m ,I 2=E 2 2R ,mg sin α=B 0I 2d 解得:v m =2mgR sin α B 02d 2 。 (3)设导体棒CD 开始下滑到达到最大速度时间为t ,则由动量定理mg sin α·t -B 0d I ·t =mv m -0 又I t =q ,q =ΔΦR 总=B 0dx 2R 解得:t =2mR B 02d 2+B 02d 2x 2mgR sin α 下滑过程电阻与导体棒产生热量相等,由能量守恒定律得mgx sin α=12 mv m 2 +2Q 得Q =m ????1 2 gx sin α-????mgR sin αB 02d 22。 14. (2018·宁波十校联考)如图所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高度均为d ,两者间距也为d ,磁感应强度大小为B ,方向垂直纸面向里,质量为m 的水平金属杆从距磁场Ⅰ上边界h 处由静止释放,进入磁场Ⅰ时的速度大小和进入磁场Ⅱ时的速度大小相等。金属杆在导轨间的电阻为r ,与导轨接触良好且始终保持水平,导轨上端连接一个定值电阻R ,不计其余电阻和空气阻力,重力加速度为g 。求: (1)金属杆离开每个磁场区域时的速度大小; (2)穿过每个磁场区域过程中金属杆上产生的焦耳热; (3)求穿过每个磁场区域所需的时间。

习题9 电磁感应与电磁场

习题9 9-1在磁感应强度B 为0、4T 的均匀磁场中放置一圆形回路,回路平面与B 垂直,回路的面积与时间的关系为:S =5t 2+3(cm 2),求t=2s 时回路中感应电动势的大小? 解:根据法拉第电磁感应定律得 dt d m Φ- =εdt dS B =Bt 10= V 4108-?=ε 9-2 如题9-2图所示,载有电流I 的长直导线附近,放一导体半圆环Me N与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a 、设半圆环以速度v平行导线平移.求半圆环内感应电动势的大小与方向及MN 两端的电压U M -UN 、 题9-2 解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ?+-<+-= =b a b a MN b a b a Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向, 大小为 b a b a Iv -+ln 20πμ M 点电势高于N 点电势,即 b a b a Iv U U N M -+= -ln 20πμ 题9-3

9-3 如题9-3图所示,在两平行载流的无限长直导线的平面内有一矩形线圈、两导线中的电流方向相反、大小相等,且电流以错误!的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势、 解: 以向外磁通为正则 (1) ]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I a b b a d d m +-+= -= ?? ++μμμΦ (2) t I b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε 题9-4 9-4 如题9-4图所示,长直导线通以电流I=5 A,在其右方放一长方形线圈,两者共面、线圈长b=0.06 m,宽a =0.04 m,线圈以速度v =0.03 m /s 垂直于直线平移远离、求:d =0.05 m时线圈中感应电动势的大小与方向、 解: AB 、CD 运动速度v 方向与磁力线平行,不产生感应电动势. DA 产生电动势 ?==??=A D I vb vBb l B v d 2d )(01πμε BC 产生电动势 ) (π2d )(02d a I vb l B v C B +-=??=? με ∴回路中总感应电动势 8021106.1)11 (π2-?=+-= +=a d d Ibv μεεε V 方向沿顺时针、 9-5 长度为l 的金属杆ab 以速率v 在导电轨道a bcd上平行移动、已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题9-5图所示),B的大小为B=kt (k 为正常数)、设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小与方向. 题9-5图 解: ?==?=?=2 22 12160cos d klvt lv kt Blvt S B m Φ ∴ klvt t m -=-=d d Φε 即沿abcd 方向顺时针方向.

冯恩信--电磁场与电磁波-课后习题答案

习题 1.1 已知z y x B z y x A ?2??;??3?2-+=-+= ,求:(a) A 和B 的大小(模); (b) A 和B 的单位 矢量;(c) B A ?;(d) B A ?;(e)A 和B 之间的夹角;(f) A 在B 上的投影。 解:(a) A 和B 的大小 74.314132222222==++=++= =z y x A A A A A 45.2621122222 2==++=++==z y x B B B B B (b) A 和B 的单位矢量 z y x z y x A A a ?267.0?802.0?535.0)??3?2(74.31?-+=-+== z y x z y x B B b ?816.0?408.0?408.0)?2??(45 .21?-+=-+== (c) A B ? 7232=++=++=?z z y y x x B A B A B A B A (d) B A ? z y x z y x B B B A A A z y x B A z y x z y x ??3?52 11132??????-+-=--==? (e)A 和B 之间的夹角α 根据αcos AB B A =? 得 764.0163 .97 cos ==?=AB B A α 019.40=α (f) A 在B 上的投影 86.245 .27?==?=?B B A b A 1.2如果矢量A 、B 和C 在同一平面,证明A ·(B ?C )=0。 证明:设矢量A 、B 和C 所在平面为xy 平面 y A x A A y x ??+= y B x B B y x ??+= y C x C C y x ??+=

电磁场作业答案

2.6 在圆柱坐标系中电荷分布为ρ={①r/a ,r ≤a ②0,r >a ,r 为场点到z 轴的距离,a 为常数。求电场强度。 解:电场强度只有沿r 方向分量,选取长度为l 的圆柱 s d 2r q E S rlE πε?==??u r u v ò (1) r a ≤时3 223r lr q dV rldr a a πρπ===???? 代入(1)得: 2 3r r E a ε= r a >时2 223a r la q dV rldr a πρπ===???? 代入(1)得: 2 3r a E r ε= 2.7在直角坐标系中电荷分布为ρ(x ,y ,z )={①ρ0 ∣x ∣≤a ②0 ∣x ∣>a 求电场强度。 解:电场与y ,z 均无关,电场强度只有沿x 方向分量, ()0 x E E x ρ ε???==?u v (1) r a ≤时0ρρ= 代入(1)得: 00 x x E C ρε= + 0x →时x E 为有限值所以0C = 00 x x E ρε= r a >时0ρ= 代入(1)得: 'r E C = 在x a =处r E 连续,所以'00 a C ρε= 00 r a E ρε=

2.16已知电场强度为E=3x+4y-5z,试求点(0,0,0)与点(1,2,1)之间的电压

解:6b b b b x y z a a a a U E dl E dx E dy E dz =?=++=????u r r 2.26两同心导体球壳半径分别为a 、b ,两导体之间有两层介质,介电常数分别为ε1、ε2,介质界面半径为c ,内外导体球壳电位分别为V 和0,求两导体球壳之间的电场和球壳上的电荷面密度,以及介质分界面上的束缚电荷面密度。 解:两球壳之间电介质不带电电位分布满足拉普拉斯方程20??= 选取球坐标则有:222 10r r r r ?????? ?== ????? '1 11C C r ?=- + ' 222 C C r ?=-+ 代入边界条件 ' 2220r b C C b ?=∣=-+= '1 11r a C C V a ?=∣=-+= 12n r c n r c D D ==∣=∣ 12r c r c ??==∣=∣ 由上式可得: 1122211111 ()()1111()()V C a c c b V C a c c b εεεε=- -+-=- -+- 12122221,() 1111()(),() 1111()()V E a r c r a c c b V E c r b r a c c b εεεε= <<-+-= <<-+- 在介质与导体分界面上的电荷密度s n D ρ=

相关文档
最新文档