关于海上风电变压器的防腐研究

关于海上风电变压器的防腐研究
关于海上风电变压器的防腐研究

关于海上风电变压器的防腐研究

发表时间:2018-04-17T11:18:51.173Z 来源:《电力设备》2017年第33期作者:周中良罗海生苏明

[导读] 摘要:本文首先对海上风电变压器的腐蚀环境进行简单介绍,重点分析风电变压器用涂料,在此基础上深入研究海上风电升压站变压器防腐涂料,希望通过本文的研究能够更加全面的了解变压器的腐蚀环境及使用的涂料,同时也为后期为海上风电升压站变压器选择更加合适的防腐涂料提供参考。

(上海振华重工(集团)股份有限公司上海市 200120)

摘要:本文首先对海上风电变压器的腐蚀环境进行简单介绍,重点分析风电变压器用涂料,在此基础上深入研究海上风电升压站变压器防腐涂料,希望通过本文的研究能够更加全面的了解变压器的腐蚀环境及使用的涂料,同时也为后期为海上风电升压站变压器选择更加合适的防腐涂料提供参考。

关键词:海上风电;变压器;防腐涂料

1引言

近年来随着我国工业水平的不断提高,各行业不断发展,电力行业也取得巨大的发展,其中海上风电产业因其自身跟方面的优势受到社会各界的普遍关注,海上风电的开发规模也不断扩大。虽然有效扩大了电力产业的规模,但是海上环境复杂,对发电系统的运行产生较大的影响,尤其是变压器等设备的使用,容易受到严重的腐蚀,导致系统运行不稳定。因此在现阶段加强对于海上风电变压器的研究具有重要的现实意义,能够更加全面的掌握变压器的腐蚀环境,了解变压器使用的防腐涂料,针对海上风电项目的实际情况研究选择最合适的防腐涂料,保护变压器的运行,实现海上升压站变压器的长效防腐,保障海上风电项目的正常发电,实现良好的经济社会效益。

2变压器的腐蚀环境

2.1腐蚀等级的划分

如果大气或者周围环境中湿度比较大,导致金属或者图层表面表现为潮湿的状态,这些金属材质就容易受到大气腐蚀。根据表面电解质性质的不同,发生大气侵蚀、腐蚀的速度有一定的区别,主要取决于空气中悬浮颗粒的含量种类以及在金属表面发生腐蚀作用的时间长短。可以按照相关标准GB/T19292.1利用标准使用确定腐蚀等级。

在变压器运行环境中,影响腐蚀的关键因素主要包括二氧化碳等污染物的含量、空气中盐分的含量(氯化物)以及大气潮湿时间的长短三个方面,这也是划分腐蚀等级的三个关键因素。露水、融雪、下雨或者高湿度等会引起变压器表面潮湿;如果潮湿时间一定,那么影响腐蚀的关键就是空气中的盐分及氯化物含量。在城镇、工业区以及海洋环境下,这些成分含量都比较高,在海洋环境下,盐分污染最为严重。按照国标规定,可以将腐蚀等级划分为C1-C5五个等级,具体的内容如图1所示。其中海洋环境下腐蚀等级最高。

图1

2.2海上风电变压器腐蚀环境

目前建造使用的海上风电升压站属于类海上设施,大多建造在距离海岸线200m以内的海边,可以按照海洋性腐蚀环境进行研究。海洋与内陆环境存在各方面的不同,一方面是空气湿度大,在变压器等金属设备的表面容易形成水膜,而且在大气中含有大量的盐分,这两个条件共同作用就会形成液膜电介质环境,加速钢铁材料的腐蚀。根据相关统计,海洋环境下,钢铁腐蚀程度比陆地环境下高5倍左右。海洋环境下,发电系统中的散热片等设施会产生严重的腐蚀。未来真正发展海上风电产业必将面临更严峻的挑战。

3变压器用涂料分析

3.1变压器油箱内壁用涂料

图2

变压器运行中会受到内外两方面的腐蚀,在内部需要防止油浸和高温腐蚀。一般情况下可以使用耐油耐温的涂料涂刷变压器油箱内部,常用的涂料主要包括酚醛环氧涂料和环氧树脂涂料两种。环氧树脂内含有独特的醚键、羟基以及苯环,分别具备良好的耐腐蚀性能、黏结性能和耐高温性能,因此能够有效抵抗内部变压油的油浸和高温腐蚀。而酚醛环氧树脂中的环氧基数量更多,能够与各种脂肪胺发生固化反应,形成保护膜,耐高温、耐腐蚀性能更加优秀。

3.2变压器散热片及外壁涂料

根据变压器应用环境的不同以及防腐涂料性能的不同,可以将外部防腐涂料划分为以下三类。分析图2中数据可知,外部涂料的相关要求比较低,只能适用于内陆一般环境。

4海上风电升压站变压器防腐涂料

4.1性能要求

海上环境与内陆环境之间有巨大的区别,在海上风电升压站变压器中使用的防腐涂料不能简单搬用传统的防腐涂料。考虑到海上特殊的腐蚀环境以及海上风电升压站长期的运行安全,必须选择符合海上风电运行要求的重防腐涂料。海洋环境属于最高等级的C5腐蚀等级,使用脂肪族聚氨酯涂料、氟碳涂料或者高固分子环氧涂料富锌类底漆比较合适。但是变压器属于特殊的电气设备,在进行表面防腐涂抹的

关于海上风电变压器的防腐研究

关于海上风电变压器的防腐研究 发表时间:2018-04-17T11:18:51.173Z 来源:《电力设备》2017年第33期作者:周中良罗海生苏明 [导读] 摘要:本文首先对海上风电变压器的腐蚀环境进行简单介绍,重点分析风电变压器用涂料,在此基础上深入研究海上风电升压站变压器防腐涂料,希望通过本文的研究能够更加全面的了解变压器的腐蚀环境及使用的涂料,同时也为后期为海上风电升压站变压器选择更加合适的防腐涂料提供参考。 (上海振华重工(集团)股份有限公司上海市 200120) 摘要:本文首先对海上风电变压器的腐蚀环境进行简单介绍,重点分析风电变压器用涂料,在此基础上深入研究海上风电升压站变压器防腐涂料,希望通过本文的研究能够更加全面的了解变压器的腐蚀环境及使用的涂料,同时也为后期为海上风电升压站变压器选择更加合适的防腐涂料提供参考。 关键词:海上风电;变压器;防腐涂料 1引言 近年来随着我国工业水平的不断提高,各行业不断发展,电力行业也取得巨大的发展,其中海上风电产业因其自身跟方面的优势受到社会各界的普遍关注,海上风电的开发规模也不断扩大。虽然有效扩大了电力产业的规模,但是海上环境复杂,对发电系统的运行产生较大的影响,尤其是变压器等设备的使用,容易受到严重的腐蚀,导致系统运行不稳定。因此在现阶段加强对于海上风电变压器的研究具有重要的现实意义,能够更加全面的掌握变压器的腐蚀环境,了解变压器使用的防腐涂料,针对海上风电项目的实际情况研究选择最合适的防腐涂料,保护变压器的运行,实现海上升压站变压器的长效防腐,保障海上风电项目的正常发电,实现良好的经济社会效益。 2变压器的腐蚀环境 2.1腐蚀等级的划分 如果大气或者周围环境中湿度比较大,导致金属或者图层表面表现为潮湿的状态,这些金属材质就容易受到大气腐蚀。根据表面电解质性质的不同,发生大气侵蚀、腐蚀的速度有一定的区别,主要取决于空气中悬浮颗粒的含量种类以及在金属表面发生腐蚀作用的时间长短。可以按照相关标准GB/T19292.1利用标准使用确定腐蚀等级。 在变压器运行环境中,影响腐蚀的关键因素主要包括二氧化碳等污染物的含量、空气中盐分的含量(氯化物)以及大气潮湿时间的长短三个方面,这也是划分腐蚀等级的三个关键因素。露水、融雪、下雨或者高湿度等会引起变压器表面潮湿;如果潮湿时间一定,那么影响腐蚀的关键就是空气中的盐分及氯化物含量。在城镇、工业区以及海洋环境下,这些成分含量都比较高,在海洋环境下,盐分污染最为严重。按照国标规定,可以将腐蚀等级划分为C1-C5五个等级,具体的内容如图1所示。其中海洋环境下腐蚀等级最高。 图1 2.2海上风电变压器腐蚀环境 目前建造使用的海上风电升压站属于类海上设施,大多建造在距离海岸线200m以内的海边,可以按照海洋性腐蚀环境进行研究。海洋与内陆环境存在各方面的不同,一方面是空气湿度大,在变压器等金属设备的表面容易形成水膜,而且在大气中含有大量的盐分,这两个条件共同作用就会形成液膜电介质环境,加速钢铁材料的腐蚀。根据相关统计,海洋环境下,钢铁腐蚀程度比陆地环境下高5倍左右。海洋环境下,发电系统中的散热片等设施会产生严重的腐蚀。未来真正发展海上风电产业必将面临更严峻的挑战。 3变压器用涂料分析 3.1变压器油箱内壁用涂料 图2 变压器运行中会受到内外两方面的腐蚀,在内部需要防止油浸和高温腐蚀。一般情况下可以使用耐油耐温的涂料涂刷变压器油箱内部,常用的涂料主要包括酚醛环氧涂料和环氧树脂涂料两种。环氧树脂内含有独特的醚键、羟基以及苯环,分别具备良好的耐腐蚀性能、黏结性能和耐高温性能,因此能够有效抵抗内部变压油的油浸和高温腐蚀。而酚醛环氧树脂中的环氧基数量更多,能够与各种脂肪胺发生固化反应,形成保护膜,耐高温、耐腐蚀性能更加优秀。 3.2变压器散热片及外壁涂料 根据变压器应用环境的不同以及防腐涂料性能的不同,可以将外部防腐涂料划分为以下三类。分析图2中数据可知,外部涂料的相关要求比较低,只能适用于内陆一般环境。 4海上风电升压站变压器防腐涂料 4.1性能要求 海上环境与内陆环境之间有巨大的区别,在海上风电升压站变压器中使用的防腐涂料不能简单搬用传统的防腐涂料。考虑到海上特殊的腐蚀环境以及海上风电升压站长期的运行安全,必须选择符合海上风电运行要求的重防腐涂料。海洋环境属于最高等级的C5腐蚀等级,使用脂肪族聚氨酯涂料、氟碳涂料或者高固分子环氧涂料富锌类底漆比较合适。但是变压器属于特殊的电气设备,在进行表面防腐涂抹的

风电塔筒通用制造工艺

风电塔筒通用制造工艺

目录 1.塔筒制造工艺流程图 2.制造工艺 3.塔架防腐 4.吊装 5.运输 注:本工艺与具体项目的技术协议同时生效,与技术协议不一致时按技术协议执行

一.塔架制造工艺流程图 (一)基础段工艺流程图 1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。 2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。 3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。 4.基础段组装:基础下法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。 (二)塔架制造工艺流程图 1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。 2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。 3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。 4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H 划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。二、塔架制造工艺 (一)工艺要求: 1.焊接要求 (1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。 (2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作

浅析风电塔筒防腐工装的应用措施

浅析风电塔筒防腐工装的应用措施 发表时间:2017-12-30T17:53:56.737Z 来源:《电力设备》2017年第24期作者:白竹 [导读] 摘要:伴随着对能源需求的日益增加,人类对环境的污染程度也越来越严重,因此清洁干净的新能源成为各个国家发展的重要目标之一。 (中国水利水电第八工程局有限公司贵州贵定 551302) 摘要:伴随着对能源需求的日益增加,人类对环境的污染程度也越来越严重,因此清洁干净的新能源成为各个国家发展的重要目标之一。风力发电作为一种绿色清洁的能源,其能源的储量是非常丰富的,塔筒的建造也相对较独立,有着巨大的市场发展前景,有效的改善了当前能源供应紧缺的境况。本文阐明了风电塔筒防腐的意义,指出塔筒防腐中的一些问题,并对风电塔筒的防腐提出了相应的解决措施。 关键词:风电塔筒;防腐;应用措施 近年来,风力发电作为一种新型的清洁能源,在国内取得较大的发展,作为对主机和叶片起重要支撑作用的塔筒,其材料的焊接质量是非常重要的,防腐的质量也越来越受到企业的重视,不仅要确保油漆涂料在设备的运行期间不生锈,还要保证油漆涂料的外观质量,不能出现明显的表面缺陷,漆膜的厚度也不能不均匀,不能出现色差等表面问题。现在塔筒的喷漆一般是采用国外的产品,油漆本身的工艺,以及油漆的质量经过长时间的应用后,都相对较为稳定。同时,由于塔筒的体积相对较大,在防腐过程中对塔筒的支撑以及转动,为防腐工作提供了非常理想的操作环境,然而,目前国内对风力发电的投入越来越多,且风机塔筒的装机容量也在逐渐增大,而随之而来的防腐和维护工作也就成为风电急需关注的问题。 一风电塔筒防腐的意义 风电机组中的主要支撑装置就是风电塔筒,风电塔筒是风力发电的塔杆,其主要是将机舱及风轮托举到所需要的高度,并对主机和叶片起到一定的支撑作用,此外,其还能吸收机组的震动。因此,对风电塔筒进行分析和控制是风电机组设计过程中必不可少少的工序。风电塔筒在运用的过程中,不但会受到来自风轮,机舱以及自身的重力作用,还会受到各种的风况作用,且长期遭受紫外线。风吹雨打,昼夜温差等各种恶劣的自然环境的腐蚀,使得其表面涂层受到损坏。此外,设计防腐配套系统失败也会造成涂层过早的失效,有或者是由于在进行原始的施工时,没有对风电塔筒的表面进行相应的处理,或者是对其表面处理的不够彻底就进行了油漆作业,使得塔筒的涂层松动且有脱落的现象,使得潮湿污浊的空气渗进底材,致使风电塔筒受到腐蚀。风电塔筒一旦受到腐蚀,就极易使塔筒受到损坏,影响塔筒的支撑和转动,严重的甚至会影响到风机的转速,减少发电量,降低发电的利用率,从而增大风力发电的运营成本。所以,对风电塔筒进行相应的维护和预防是非常重要的,是风力发电工作中的关键工作。 二塔筒防腐中的常见问题 塔筒尺寸相对较大,在实际设计中,筒体一般为分段结构,每两段间用锻造法兰进行连接,且每段的长度也比较长。 2.1在对塔筒进行喷丸时 塔筒放在转胎上,打砂时会造成打砂后表面与转胎再次接触,对筒体表面造成污染,且通常筒体为锥形,在旋转时由于两端直径不同。例如:连续同方向旋转,会造成筒体螺旋前进,会增加接触污染面积,且有从转胎上掉落的风险;例如:反复正反转,会造成筒体表面对转胎上粘连砂粒反复辗压,加重表面的磕伤。 2.2在对塔筒油漆施工时 在进行油漆施工时转动会造成油漆表面受到损伤,需修复的面积过大,修复难度较大,且修复后油漆表面会与原表面形成色差等。喷漆要求采用无气喷涂机,如筒体位于固定位置不旋转,会造成油漆喷涂厚度不均匀,表面易形成流挂,桔皮等各种缺陷。如不采取合适的工装,就很难保证防腐质量满足设计及业主需要。 三风电塔筒的防腐措施 3.1采用合格的防腐涂料 适合运用风力发电的地方,应具备风速快、人烟稀少以及地面广阔等特点,例如我国的新疆、内蒙、甘肃、海域等地区,这就要根据实际应用环境,解决风电塔筒的耐风沙吹蚀性能、防海洋大气以及盐雾等问题,而随着我国风电行业的快速发展,专用的配套防腐蚀涂料的用量逐年增加,我国幅员辽阔,南北方气候各有不同,其所要求的防腐蚀技术也不尽相同,因此,在选用防腐蚀涂料时,应充分考虑到自然环境的影响,选用综合性能优异,且能根据不同环境下的腐蚀情况的有效实验数据,而设计出的处于国际先进水平的防腐蚀涂料产品,以此进行风电塔筒的防腐蚀保护,确保其在沙漠环境、工业大气环境、海洋环境等环境下不被腐蚀,延长风力发电设施的使用寿命,降低其维护的费用。 3.2使用工装可以为防腐工作提供理想的操作环境 由于风电塔筒的体积比较庞大,在进行防腐的工作时,在其技术的操作过程中,必定会出现各种各样的问题。而在防腐过程中,对塔筒进行支撑和转动,为防腐工作提供了非常理想的操作环境,是保障防腐有良好效果的关键。在实际的操作过程中,应根据实际情况,设计并制作合适的风电塔旋转工装,并将其很好的应用在防腐操作中,将筒体的两端和工装通过螺栓进行连接,使筒体的表面不直接的与支撑点接触,避免筒体喷砂和喷油漆时会出现二次污染,从而造成返修,筒体连续转动喷漆,可以使涂层更加的均匀,且人工操作起来更加的方便,同时,也更易形成相对稳定的喷漆工艺,确保有稳定的喷漆质量,使用工装可以为风电塔筒的防腐提供比较理想的操作环境,能有效的防止由于施工环境因素导致最终产品不符合要求,并能缩短防腐的时间,同时,能有效的提高工作效率,确保防腐的质量。 3.3沿用恰当的防腐技术进行施工工作 风电塔筒的防腐是一项巨大的工程,只有沿用恰当的工艺加以维修,才能达到事半功倍的效果。进行塔筒外表面的维修有一下几点:(1)应处理其局部锈蚀部位的表面,可采用喷射的方法去除风电塔筒被氧化的锈蚀层和旧涂层等锈蚀部位,与传统的手工打磨方法相比,喷射的方法更能彻底地去除被氧化甚至产生坑蚀钢板深层的锈蚀和旧涂层,其被处理部位边缘采用动力砂轮打磨形成有梯度的过渡层以便进行油漆施工后有一个平滑光顺的表面。 (2)按照原始配套方案进行手刷或者滚涂底漆,在不污染边缘的原始涂层,有效地控制底漆的消耗的情况下,使其达到规定的漆膜厚度。

海上风电材料防护措施报告

中国航天科工集团第六研究院 内蒙古航天亿久科技发展有限责任公司 编 写 校 对 审 核 标 审 批 准 档 号: 保管期限: 编 号: 密 级: 名 称 海上风电材料防腐 措施报告

1 引言 海上风电场具有风能资源储量大、开发效率高、环境污染小、不占用耕地等优点,自1991 年世界上首座海上风电场在丹麦建成以来, 海上风力发电已经成为世界可再生能源发展的焦点领域。然而海上风电运行环境十分复杂:高温、高湿、高盐雾和长日照等, 腐蚀环境非常苛刻,对海上风电设备的腐蚀防护提出了严峻挑战,防腐蚀成为每个风电场必须考虑的突出问题, 防腐蚀设计成为海上风电场设计的重要环节之一。目前对于海上风电工程基础设施以及风机的防腐蚀措施, 主要来自于海上石油平台、破冰船以及海底管线等方面的防腐蚀经验,海上风电场的防腐尽管可以在很大程度上参考海洋平台现有的防腐经验,但是两者之间也有不同,所以直接借鉴海洋平台防腐经验实现海上风电材料防腐还有很大的困难。 2 海洋环境的腐蚀机理及区域划分 2.1 腐蚀机理 对于暴露在空气中的金属部分,因海上的潮湿空气中盐分和水分均很高,长期积累后附着在物体表面,由于其成分中有少量的碳存在,极易形成无数个原电池,进而使金属表面腐蚀而生锈。 对于浸入海水中的金属部分,表面会出现稳定的电极电势,且由于金属有晶界存在,金属表面上各部位的电势不同,形成了局部的腐蚀电池或微电池,电势较高的部位为阴极,较低的为阳极。电势较高的金属,如铁,腐蚀时阳极进行铁的氧化,释放的电子从阳极流向阴极,使氧在阴极被还原,氢氧根离子经海水介质移向阳极,与亚铁离子生成氢氧化亚铁,进而脱水形成铁锈。金属在海水中的腐蚀,影响因素很多,包括化学、物理和生物等因素,其中化学因素主要有溶解氧、盐度、酸碱度等,物理因素主要有温度、流速、潮差等。从这些机理来看,腐蚀的根源其实就是金属通过接触氧化物产生了电化学腐蚀。 2.2 腐蚀区域划分 海上风电场的钢结构风塔(图1a)按海洋腐蚀环境的特点,可以分成5个部分,海洋大气区、飞溅区、潮差区、全浸区和海泥区。钢结构在海洋环境下的腐蚀,无论是海洋环境下长钢尺的挂片试验,还是实际的生产实践中,都具有很强的规律性。图1b是钢桩在美国kureBeach(基尔海滨)中暴露5 a后的腐蚀示意图。 钢铁结构在海洋环境海洋大气与内陆大气有着明显的不同。海洋大气湿度大,易在钢铁表面形成水膜;海洋大气中盐分多,它们积存钢铁表面与水膜一起形成导电良好的液膜电解质,是电化学腐蚀的有利条件,因此海洋大气比内陆大气对钢铁的腐蚀程度要高4~5倍。 海洋飞溅区的腐蚀,除了海盐含量、湿度、温度等大气环境中的腐蚀影响因素外,还要

海上风电发展防腐蚀技术

海上风电发展防腐蚀技术 在能源日益紧张的今天,风力发电由于高效清洁,越来越受到人们的青睐。随着国家有关部门将对海上风电的规划和建设工作部署的展开,我国海上风电发展的帷幕正式拉开。海上风电极易遭到腐蚀经过10多年的发展,世界海上风电技术日趋成熟,已经进入大规模开发阶段。而中国还处于起步阶段,有着巨大的发展空间。一方面,中国拥有十分丰富的近海风资源。有数据显示,我国近海10米水深的风能资源约1亿千瓦,近海20米水深的风能资源约3亿千瓦,近海30米水深的风能资源约4.9亿千瓦。另一方面,东部沿海地区经济发达,能源紧缺,开发丰富的海上风能资源将有效改善能源供应情况。因此,开发海上风电已经成为我国能源战略的一个重要内容。但事实上,我国尚缺乏海上风电建设经验,海上风能资源测量与评估以及海上风电机组国产化刚刚起步,海上风电建设技术规范体系也亟需建立。其中海上风电防腐蚀技术相关标准的匮乏就是一个严重问题。记者在采访中了解到,由于海上含盐分比较高,对设备腐蚀相当严重。而风电机组不同于海上钻井平台,受到腐蚀时可以随时修补,海上风电机组由于其特殊的地理环境和技术要求,维修费用极高。国家能源局可再生能源司副司长史立山认为,海上风电机组面临的最大问题就是抗腐蚀,他说:“与陆上风电相比,海上风电的运行环境更复杂,技术要求更高,施工难度更大。对于风机而言最大的问题在于抗腐蚀抗盐雾以及海上输配电。这些技术上的困难只能在实践中解决。” 钢铁研究总院青岛海洋腐蚀研究所副所长曲政认为,海上风机所处环境恶劣,海面以上部分和海面以下部分环境不同,所需防腐蚀技术也不同,因此海上风电容易遭到腐蚀,并且防腐技术比较复杂。他对记者解释说:“海上风电机组下部承托平台为钢筋混凝土结构,防腐蚀工作重在对钢筋锈蚀的保护;海面以上的部分主要受到盐雾、海洋大气、浪花飞溅的腐蚀,因此,海上风电机组的防腐蚀比较复杂,需要分部分、针对性的进行。” 防腐蚀技术整合亟待跟上曲政告诉记者,防腐蚀技术的研发周期并不太长,从单项的防腐蚀技术来看,我国的研发水平与国际水平是基本同步的。目前国内所欠缺的,是技术的整合,即如何把各种防腐技术整合到一个设备上。” 据记者了解,目前国内对于海上风电机组的防腐蚀并无相关标准或规定。曲政说:“海上风电机组防腐蚀,是一个系统的问题,对于机组的每一部分,在设计上、材料上、密闭性上,都应该考虑到防腐蚀问题。” 他认为,目前国内海上风电发展刚刚起步,因此在防腐蚀技术发展的各方面都有所欠缺。他说:“国外有统一的标准,对防腐蚀技术的各方面都有规定。国外这个系统已经比较完整了,而国内目前还缺乏。”他以汽车制造为例给记者生动的阐释了防腐蚀技术的整合。他说,在国外,如果要设计汽车,考虑到将来会销往内陆或者海边,其钢板和涂层就会相应作出不同的设计。不同设计的来源是在不同环境下钢板腐蚀情况的实验数据,根据实验数据,汽车制造商最终会选择经济又耐腐蚀的设计。这对于我国的海上风电机组防腐蚀发展,是很好的借鉴,因为我国幅员辽阔,南北方气候各有不同,因此,所要求的防腐蚀技术也不同。史立山在谈到我国海上风电技术的开发时曾说:“只有通过实践总结,才能找到政府应该怎么去管理、怎么保障安全的一些规范,现在还为时尚早。” 曲政也认为,现在要求出台海上风电防腐蚀的国家标准为时尚早。他说:“一般的标准制定肯定需要经过试用、发现问题、解决问题几个阶段,最后形成比较成熟的东西,形成标准,供大家参照。我们现在还在初期阶段。”

风力发电塔筒防腐施工方案样本

风力发电塔筒防腐施工方案模板

*********风电场 塔筒防腐工程 施工方案 编制单位: 江苏三里港高空建筑防腐有限公司 编制: 周荣东 电话: 二O一七年一十月三十日 (一)、工程概况 1、项目概况 本工程为***************风电场风机防腐处理涂装工作, 要求风电塔

筒修复表面处理采用手工机械除锈, 局部锈蚀部位的表面处理、表面刷漆。塔筒外表面按C5-M环境设计执行, 干膜总厚度不低于320μm, 20 年内腐蚀深度不超过0.5mm, 富锌底漆Zn(R)中锌粉在干膜中的重量含量不低于80%。防腐涂料本公司选用海虹老人的产品。 2、设备概况 *********风电场位于****县东北部的和安镇境内, 地理坐标位于在N 20°31′~20°38′和E 110°19′~110°24′之间, 距离***县直线距离36km, 距离湛江市直线距离73km, 风场采用重庆海装生产的H87N-2.0MW 风电机组, 共25台。 单台塔筒主要技术参数 塔筒类型: 圆锥形钢制塔筒 塔筒高度: 77.261m 塔筒节数: 4节 塔筒立柱面积; 837.1435㎡ 塔筒各分节长度和重量技术参数见下表。 当前塔筒油漆方案

在机组巡视过程中发现机组塔筒局部表面出现点蚀、油漆脱落、腐蚀较为严重等现象。该风电场离海边不远, 空气湿度大, 含盐份大, 塔筒的钢构架在严酷的海洋大气腐蚀条件下, 腐蚀速度较快, 这对风机塔筒受力以及寿命有很大影响, 不能满足塔筒20年寿命的要求, 若不及时对腐蚀的塔筒做合适的防腐处理将会在以后的生产工作中存在重大安全隐患。江苏三里港高空建筑防腐有限公司周荣东 ( 二) 编制依据 1、编制简要 依据我公司已经过的国际质量管理体系( IS09001: ) 、国际环境管理体系( IS014001: 1996) 、职业健康安全管理体系( GB/T28001— ) 标准所发布的有关工程管理文件。参照国家相关施工及验收规范、质量验评标准、有关安全技术操作规程,结合现场条件和工程特点, 以及我公司多年的施工经验, 当前的施工技术力量和施工设备生产能力进行编制。江苏三里港高空建筑防腐有限公司周荣东 2、引用规范 应遵循的主要现行标准、规范,必须符合下列标准, 但不限于此: 508-1996《钢结构防腐涂装工艺标准》 SY/T0407-1997 《涂装前钢材表面处理规范》 YB/T9256-1996《钢结构、管道涂装技术规程》 GB /T 8 9 23-1988 《涂装前钢材表面锈蚀等级和除锈等级》 GBT 18839.3《涂覆涂料前钢材表面处理表面处理方法》手工和动力工具

风电塔筒制造工艺

目录 1.塔筒制造工艺流程图 2.制造工艺 3.塔架防腐 4.吊装 5.运输

一、塔架制造工艺流程图 (一)基础段工艺流程图 1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。 2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。 3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。 4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。 (二)塔架制造工艺流程图 1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。 2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。 3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。 4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。 二、塔架制造工艺 (一)工艺要求: 1.焊接要求 (1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进

海上风机技术之争-风电设备防腐蚀成当务之急

海上风机技术之争风电设备防腐蚀成当务之急 2010/8/10/17:17来源:中国高新技术产业导报 目前正在进行的海上风电招投标将为我国未来海上风电发展打下坚实基础。到底什么类型的风机适合海上风力发电,成为业内专家讨论的热点,而各家企业也有自己不同的答案。 据悉,目前,国内风机种类大概可分为三类:直驱风机、双馈风机、半直驱风机。其中直驱风机代表企业为金风科技,双馈风机代表企业为华锐风电,半直驱风机许多企业均有涉及,但还没有成为市场主流。专家表示:“和陆上风电一样,海上风电仍将上演直驱风机、双馈风机对决。 据金风科技技术人员介绍:“直驱风机、双馈风机、半直驱风机最大区别就是有无齿轮箱。齿轮箱是目前在兆瓦级风力发电机组中属易过载和过早损坏率较高的部件,因此齿轮箱的存在也成为制约风力发电机组发展的因素之一。” 从上个世纪末开始,以德国Enercon公司为首的风电机组制造商推出了一系列无齿轮箱直驱式风力发电系统。风机叶轮直接驱动多级同步发电机的转子发电,免去齿轮箱这一传统部件。发电机采用高磁能积的永磁材料作为磁极,省去了励磁绕组产生的损耗。这就是目前直驱的机型。而双馈风力发电机是通过叶轮将风能转变为机风轮转动惯量,通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。 据悉,双馈式发电机必须配备一个齿轮箱,与其它工业齿轮箱相比,由于风电齿轮箱安装在距地面几十米甚至一百多米高的狭小机舱内,其本身的体积和重量对机舱、塔架、基础、机组风载等都有重要影响。由于是机械部件,齿轮箱也是损坏率最高的部件,导致双馈机型系统运行的可靠性和寿命大打折扣,运营维护成本升高。目前,陆上风机每年需进行12次三类保养及巡检,两次二类保养,一次一类维护。维护人员需要爬上塔筒,进入机舱进行操作。将这项维护工作从陆地移到海上,其难度可想而知,后续维护成本开支更大。如果不维护,根据国外经验,问题将会在风机运行3-5年后集中爆发。比如双馈电机中滑环和电刷之间容易产生碳粉,如果不清理,将会引起电机绝缘或短路。而直驱电机由于舍弃了齿轮箱,减少了机械磨损和能量损失,有效避免了这一问题。 金风科技董事长武钢向记者表示:“如果海上风电设备出现问题,企业需要大吨位的拖船将每台50-60吨的风机拆卸后运回陆地进行维修,然后再运回海上进行安装,不仅费时费力,还需要不菲的维修成本。一套流程下来,电场投资企业的利润将损失殆尽。” 正是技术路线的不同,导致市场更为看好金风科技在海上风电领域的市场占有率。虽然我国首座大型海上风电场上海东海大桥100兆瓦海上风电场技术均采用双馈机型,但这并不代表双馈机型对直趋机型有相对优势。业内专家表示:“从欧洲来看,技术更替趋势却很明显。比如全球风电巨头GE公司本来拥有3.6兆瓦双馈风机技术,但目前已经逐渐放弃该产品,转而推出更适合海上风电场的永磁直驱电机产品。” 华锐风电一维护人员告诉记者,虽然理论上说,直驱永磁风电机具有较多双馈风机无法具备的特点,但其技术还不是非常成熟。因此目前因技术成熟而占主流的双馈风电机在海上风电行业还具有一定优势,未来到底何种技术主导海上风电市场,“鹿死谁手”仍未可知。 值得一提的是,永磁直驱技术是我国具有自主知识产权的产品。

风电塔筒施工方案

风电场塔筒制作防腐 施 工 技 术 方 案 绍兴县防腐保温工程公司 二〇一四年十月二十八日

目录 1 综述.......................................................... ............... ................ .................... 2 涂层质量检查.................................................. ........ ................ ................... 2.1腐蚀环境及保护期............................................ ........ ................ ................ 2.2涂层质量检查................................................. ........ ................ ................... 3 表面准备..................................................... ........ ................ .................... ... 3.1准备工艺........................................... ........ ................ .............................. ... 3.2准备步骤、打砂清理和粗糙度要求.............................. ................... .......... 3.3涂装施工要求................................................. ................... ................... ..... 4 防腐涂料配套组合方案......................................... ................... ................... 4.1塔筒筒体和门防腐涂料配套组合方案............................ ................... ......... 4.2塔筒基础段防腐方案.......................................... ................... ................... ... 4.3塔筒附件防腐方案........................................... ................... ................... ....... 4.4防腐质量检测................................................ .... ................... ................... ......

风电塔筒

风电塔筒 风电塔筒就是风力发电的塔杆,在风力发电机组中主要起支撑作用,同时吸收机组震动。 风电塔筒 风电塔筒的生产工艺流程一般如下:数控切割机下料,厚板需要开坡口,卷板机卷板 成型后,点焊,定位,确认后进行内外纵缝的焊接,圆度检查后,如有问题进行二次 较圆,单节筒体焊接完成后,采用液压组对滚轮架进行组对点焊后,焊接内外环缝, 直线度等公差检查后,焊接法兰后,进行焊缝无损探伤和平面度检查,喷砂,喷漆处 理后,完成内件安装和成品检验后,运输至安装现场。 风塔焊接生产线及装备 - 无锡罗尼威尔机械设备有限公司 - 无锡罗尼威尔机械设备有限公司 ---------高效自动化风塔焊接生产线及装备的引领者基于整合国内外风塔焊接生产线的成功经验和成熟技术的整厂生产工艺; 基于对风塔制造整厂各工艺环节的深刻理解和认知; 基于已经为国内外众多风塔制造商提供各类生产线及装备的成功案例; 我们可为您提供: 1、风电塔筒焊接生产线的整厂工艺流程设计规划服务; 2、风电塔筒焊接生产线的整厂设备制造安装调试培训服务;

3、风电塔筒焊接生产线的整厂设备长期完善的售后服务; 客户应用现场

风塔焊接生产线整厂工艺流程:

板材下料切割及坡口加工: 数控切割下料扇形板坡口加工板材卷制: 进口卷板机国产卷板机 单节塔筒焊接及底法兰焊接: 单节塔筒内外纵缝焊接底法兰焊接 多节塔筒组对焊接生产线:

塔筒组对焊接生产线塔筒多节组对系统 塔筒内环埋弧自动焊接塔筒外环埋弧自动焊接塔筒喷砂喷漆系统: 塔筒喷砂滚轮架塔筒喷漆滚轮架

焊接滚轮架 焊接滚轮架主要用于圆柱形筒体的焊接、打磨、衬胶及装配,有自调式、可调式及平车式、倾斜式、防窜式、移动式等多种结构形式。可根据客户的需求选择结构,也可为客户设计制造各种特制专用滚轮架。 1.自调式滚轮架 主要技术参数: 2.可调式滚轮架

风电塔筒常识

风电塔筒 一、塔筒概述 风电塔筒就是风力发电的塔杆,在风力发电机组中主要起支撑作用,同时吸收机组震动。 海风风电塔筒 风电塔筒的生产工艺流程一般如下:数控切割机下料,厚板需要开坡口,卷板机卷板成型后,点焊,定位,确认后进行内外纵缝的焊接,圆度检查后,如有问题进行二次较圆,单节筒体焊接完成后,采用液压组对滚轮架进行组对点焊后,焊接内外环缝,直线度等公差检查后,焊接法兰后,进行焊缝无损探伤和平面度检查,喷砂,喷漆处理后,完成内件安装和成品检验后,运输至安装现场。 二、风电塔筒产生锈蚀的原因: 1、因涂层使用寿命超限产生的旧涂层粉化、脱落、起泡、松动等造成的; 2、原始施工时表面处理不彻底或没有进行表面处理的情况下进行了油漆施工而造成的涂层脱落、松动、污物潮湿空气浸透至底材所造成的;

3、涂装施工过程中施工时没得到很好的控制使漆膜厚度不均匀出现大面积底漆膜现象没有起到很好的防腐效果所造成的; 4、设计防腐配套系统失败所造成的涂层过早失效; 5、由于自然灾害(特大风沙等)使得涂层损伤; 6、运输、吊装过程中没有得到很好的保护造成涂层损伤 三、塔筒维修方案及施工工艺的意义: 海风风电科技有限公司进行专业的塔筒外表面维修步骤: 1、局部锈蚀部位表面处理,采用喷射的方法完全去除锈蚀部位被氧化的锈蚀层和旧涂层露出金属母材达到S2.5级,被处理部位边缘采用动力砂轮打磨形成有梯度的过渡层以便进行油漆施工后有一个平滑光顺的表面。(喷射的方法较传统的手工打磨相比,它可以完全彻底地去除被氧化甚至产生坑蚀钢板深层的锈蚀和旧涂层并可以形成良好的锚链型的粗糙纹,有利于与底漆形成良好的结合力) 2、喷射处理后应按原始配套方案手刷(滚涂)底漆达到规定的漆膜厚度。(手刷、滚涂可以控制底漆施工时的部位控制,不污染边缘的原始涂层,也可以有效地控制底漆的消耗) 3、中涂漆施工可采用刷涂或喷涂达到原始配套的施工漆膜厚度,采用喷涂需对边缘区域进行保护遮挡,遮挡的形状应为“口”字形,形成有规则的外观效果(中涂漆施工进行边缘保护即可以有效的控制消耗又可以保证外观效果) 4、面漆施工:如果采取局部修补的方案,在中间漆施工达到厚度标准且满足第3点要求后可直接喷涂或刷涂面漆达到原始的设计厚度要求。如

海上风电设施的防腐措施[1]

海上风电设施的防腐措施 班级:风能111 姓名:陈卓学号:2011325130 摘要针对海上风力发电高温度、高盐分干湿交替、浸渍等强度腐蚀环境。结合目前国际上应用的《IOS 12944—钢结构防腐涂装规范》,为海上风电设施选择正确的防腐系统。为确保涂装系统能够达到20年以上的设计防腐年限,本文分析了海上风电设施的腐蚀原因与防腐蚀措施并且参考了NORSOK M-501和IOS 20304对海上风电的防腐系统进行了性能测试要求,以此为海上风电设备防腐系统的选择提供理论依据。 关键词海上风电防腐防腐保护防腐系统设计 NORSOK M-501 IOS 20340 风电作为快速发展的绿色可再生能源,逐渐成为许多国家可持续发展战略的重要组成部分。截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增长了21%。世界海上风电技术日趋成熟,进入大规模开发阶段,已有国外企业开始设计和制造8-10兆瓦风电机组。欧洲风能协会最新统计显示,2009年欧洲海上风力产业营业额约为15亿欧元,预计2010年将增加1倍。在我国,尽管近年来国内的风电产业发展如火如荼,但海上风电领域仍在起步阶段。 中国气象科学研究院初步探明,我国可开发和利用的陆地上风能储量2.53亿千瓦,近海可开发和利用的风能储量有7.5亿千瓦,海上风能储量远远大于陆上,有广阔的发展空间。但与陆上风能相比,海上风电运行技术要求更高,施工难度更大并且海上风电的运行环境更为复杂:高湿度、高盐分的海风,盐雾,海水浸泡,海浪飞溅形成的干湿交替区等,从而对海上风电设备的防腐提出了更高的技术、性能要求。 经过10多年的发展,世界海上风电技术日趋成熟,已经进入大规模开发阶段。中国虽处于起步阶段,但有着巨大的发展空间。一方面,中国拥有十分丰富的近海风资源。有数据显示,我国近海10米水深的风能资源约1亿千瓦,近海30米水深的风能资源约4.9亿千瓦。另一方面,东部沿海地区经济发达,能源紧缺,开发丰富的海上风能资源将有效改善能源供应情况。因此,开发海上风电已经成为我国能源战略的一个重要内容。 据了解,海上风电场的造价约为陆上风电场的2-3倍,平均发电成本也远远高于陆上风电,海上风电场初装成本中的基础建设、并网接线盒安装等费用在总投资成本中所占的份额要比陆上风电场高,其成本占比随着风电场的离岸距离和水深程度等情况大幅变动,维修费用和折旧费用占运营成本比例远大于陆上风电场。除了要突破研发技术和高成本瓶颈,加紧研发海上风电设备防腐蚀的新技术也是当务之急。此前全国两会期间,工信部副部长苗圩曾提出对风电设备寿命的质疑。因此,与陆上风电相比,海上风电设备所需防腐技术更为复杂、要求更高。 我国海上风能资源测量与评估以及海上风电机组国产化刚刚起步,海上风电建设技术规范体系也亟需建立。而其中海上风电防腐蚀技术相关标准的匮乏就是一个严重问题。曾有相关记者在采访中了解到,由于海上含盐分比较高,对设备腐蚀相当严重。而风电机组不同于海上钻井平台,受到腐蚀时可以随时修补,海上风电机组由于其特殊的地理环境和技术要求,维修费用极高。

海上风电环境监测控制系统

海上风电环境监测控 制系统 一、项目基本情况 项目背景与必要性 海上风电机组时刻运行于高盐雾、高湿度和硫化氢气体积累的恶劣海洋环境。盐雾指含氯化钠等氯化物的大气,氯离子会穿透金属表面的氧化层发生电化学反应,使机舱内的机械和电子元件受到腐蚀;硫化氢气体由风机基础周围海泥物质分解产生而来,容易在底塔积累,溶于水后对钢结构有电化学腐蚀性,且剧毒。因此,海上风机的正常运行,需要一套严格的环境监测与有害指标控制系统,用以监测和控制各类有害成分,保护风机工作人员的安全健康和风机重要设备、结构的安全运行。 公司以此前研发的油品监测系统为基本框架,开发了针对海上风电环境气体、盐雾和湿度的监测系统,并对气体与湿度的排放和去除手段做了完善的配套。海上风电环境监测与控制系统应用于海上风电塔筒和机舱,通过对塔筒和机舱的有害有毒气体硫化氢、腐蚀性盐雾和过大的湿度进行实时监测,并在线控制排风风机、除湿风机等执行机构,将硫化氢和盐雾湿气等排放至塔筒和机舱外部,保障海上风机工作人员和设备的正常运行。 国内外市场分析 风能行业作为绿色清洁能源,在中国发展迅猛,我国近海10米水深的风能资源约1亿千瓦,近海20米水深的风能资源约3亿千瓦,近海30米水深的风能资源约4.9亿千瓦。仅2019年,我国海上风电装机量新增量就达到了1.71GW (400套)。海上风电场的造价约为陆上风电场的2-3倍,平均发电成本也远远高于陆上风电,海上单台机组平均运维费用也达到了30万/年(5MW机组)。 随着装机量的大幅提升,保养维修的成本和难度以及折旧费用将会占运营成本的

大部分比例。因此,海上风电的设备安全长期运行和保养工作人员的安全健康将会逐步占有更多比重,维护保障产品也将会逐步提升配套设备的市场占比。 国内外相关技术和产业现状、发展趋势 据统计,海上风电机组中所有故障中20-25%是由湿气和腐蚀直接或间接造成的,且硫化氢造成的人员中毒事件也屡见不鲜,针对性的抗盐雾和除硫化氢手段在目前的海上风电产业中至关重要。通常的防盐雾涂层在电容器、变流器或电气接线等部位的应用技术难度很高;通常的抽水、密封等防硫化氢的方案也存在工作量巨大,效果一般留有隐患等缺陷。因此一套通过监测、排放手段进行除盐雾除硫化氢的系统将会在海水风电产业中有很高的市场前景。通过通风排放的手段去除有害气体(烟雾等),已有应用先例。本系统通过使用防爆设计通风机(防爆等级dIIB T3)进行硫化氢排放,并辅以吸附式轮转除湿排风机构进行盐雾的排放和湿度的去除。 二、主要内容和技术指标 总体目标和主要内容 妨碍海上风机的正常运行各因素中,以风机基础海泥产生的硫化氢气体,和高湿度高盐雾浓度为主。海上风电环境监测与控制系统以各采集器和设备控制终端、报警装置等组成的SCADA为主,加入对执行机构的远程实时控制,做到对有害环境指标的实时监测和智能净化。

海上风电设施的防腐措施定稿版

海上风电设施的防腐措 施 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

海上风电设施的防腐措施 班级:风能111 姓名:陈卓学号:2011325130 摘要针对海上风力发电高温度、高盐分干湿交替、浸渍等强度腐蚀环境。结合目前国际上应用的《IOS 12944—钢结构防腐涂装规范》,为海上风电设施选择正确的防腐系统。为确保涂装系统能够达到20年以上的设计防腐年限,本文分析了海上风电设施的腐蚀原因与防腐蚀措施并且参考了NORSOK M-501和IOS 20304对海上风电的防腐系统进行了性能测试要求,以此为海上风电设备防腐系统的选择提供理论依据。 关键词海上风电防腐防腐保护防腐系统设计 NORSOK M-501 IOS 20340 风电作为快速发展的绿色可再生能源,逐渐成为许多国家可持续发展战略的重要组成部分。截止到2012年2月7日,全球海上风电场累计装机容量达到238, 000MW,比上年增长了21%。世界海上风电技术日趋成熟,进入大规模开发阶段,已有国外企业开始设计和制造8-10兆瓦风电机组。欧洲风能协会最新统计显示,2009年欧洲海上风力产业营业额约为15亿欧元,预计2010年将增加1倍。在我国,尽管近年来国内的风电产业发展如火如荼,但海上风电领域仍在起步阶段。 中国气象科学研究院初步探明,我国可开发和利用的陆地上风能储量2.53亿千瓦,近海可开发和利用的风能储量有7.5亿千瓦,海上风能储量远远大于陆上,有广阔的发展空间。但与陆上风能相比,海上风电运行技术要求更高,施工难度更大并且海上风电的运行环境更为复杂:高湿度、高盐分的海风,盐雾,海水浸泡,海浪飞溅形成的干湿交替区等,从而对海上风电设备的防腐提出了更高的技术、性能要求。 经过10多年的发展,世界海上风电技术日趋成熟,已经进入大规模开发阶段。中国虽处于起步阶段,但有着巨大的发展空间。一方面,中国拥有十分丰富的近海风资源。有数据显示,我国近海10米水深的风能资源约1亿千瓦,近海30米水深的风能资源约4.9亿千瓦。另一方面,东部沿海地区经济发达,能源紧缺,开发丰富的海上风能资源将有效改善能源供应情况。因此,开发海上风电已经成为我国能源战略的一个重要内容。 据了解,海上风电场的造价约为陆上风电场的2-3倍,平均发电成本也远远高于陆上风电,海上风电场初装成本中的基础建设、并网接线盒安装等费用在总投资成本中所占的份额要比陆上风电场高,其成本占比随着风电场的离岸距离和水深程度等情况大幅变动,维修费用和折旧费用占运营成本比例远大于陆上风电场。除了要突破研发技术和高成本瓶颈,加紧研发海上风电设备防腐蚀的新技术也是当务之

海上发电的塔架防腐

摘要 该文主要讲海上风机的腐蚀保护要求最严格,海上风机塔架腐蚀分为六种,即海洋大气区的腐蚀,飞溅区的腐蚀,潮差区的腐蚀,全浸区的腐蚀,海泥区的腐蚀,海生物的影响。海上风电行业的发展,推动了风电涂料产业的发展。 关键词电力系统,风机塔架防腐,腐蚀分类,涂料市场前景

Abstract In this paper the mainly stresses on offshore wind turbine corrosion protection requirements of the most demanding, offshore wind turbine tower corrosion are divided into six types, namely the marine atmosphere corrosion zone, splash zone corrosion, tidal and full immersion zone corrosion, corrosion, corrosion in sea mud area, biological effects. Offshore wind power industry development, promote the industrial development of wind power coatings. Key Words electric power system, wind turbine tower anticorrosion coating, corrosion classification, market prospect

相关文档
最新文档