车辆系统动力学复习重点

车辆系统动力学复习重点
车辆系统动力学复习重点

1.系统动力学研究内容及发展趋势

研究内容

长期以来,人们一直在很大程度上习惯按纵向、垂向和横向分别独立研究车辆动力学问题;而实际中的车辆同时会受到三个方向的输入,各方向所表现的运动响应特性必然是相互作用、相互耦合的.

纵向动力学:纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系。按车辆工况的不同,可分为驱动动力学和制动动力学两大部分。

行驶动力学:主要是研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯仰以及车辆的运动。

操纵动力学:主要研究车辆的操纵特性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横摆和侧倾运动。

操纵动力学的研究范围分为三个区域:线性域:侧向加速度越小于0.4kg时,通常意味着车辆在高附着路面做小转向运动;

非线性域:在超过线性域且小于极限侧向加速度(约为0.8kg)范围内;

非线性联合工况:通常指车辆在转弯制动或转弯加速时的情况。

发展趋势:

(1)车辆主动控制:ABS,TCS等逐步向车身侧倾控制,可切换阻尼的半主动悬架和四轮底盘控制系统的集成,转向等当面扩展。通过控制算法、传感器技术和执行机构的开发实现的自动调节。

(2)车辆多体运动动力学:车辆的多刚体模型逐步向多柔体模型发型。可以准确分析虚拟样机的性能,检查虚拟样机的缺陷从而缩短产品的设计周期,节约试制费用,同时提高物理样机与最终产品之间的相似性。

(3)“人—车—路”闭环系统:充分考虑驾驶员模型以及车辆本身的一些动力学问题来提高汽车稳定性。

2.轮胎滚动阻力概念及其分类:

概念:当充气的轮胎在理想路面(通常指平坦的干、硬路面)上直线滚动时,其外缘中心对称面与车轮滚动方向一致,所受到的滚动方向相反的阻力。

分类:弹性迟滞阻力、摩擦阻力和风扇效应阻力。

3.什么是滚动阻力系数?影响因素有哪些?

其值等于相应载荷作用下滚动阻力F R与车轮垂直载荷F X的比值。

影响因素:车轮载荷(反比)、胎压(反比)、车速(正比,先缓慢增加,再明显增加)、轮胎的结构设计、嵌入材料和橡胶混合物的选用。

4.滑动率S:表示车辆相对于纯滚动(或纯滑动)状态的偏离程度。驱动工况时称为滑转率,被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

若车轮的转动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则

S在0~1之间变化。当车轮做纯滚动时,及uw=rdω,此时s=0;当被驱动轮处于纯滑动状态

是,s=1.

5.轮胎纵向力与滑动率的关系

(1)与滑转率之间的关系

一般情况下,由于轮胎初始的滑转主要由胎面的弹性变形引起的,因而一开始车轮力矩

与驱动力随着滑转率呈线性关系增加,即OA 段。当车轮力矩和驱动力进一步增加而导致部分轮胎胎面在地面上滑转时,驱动力和滑转率呈非线性关系,汽车行驶时驱动力迅速增加,即AB 段,并在滑转率为15%~20%时达到最大值,当滑转率进一步增加时,会导致轮胎的不稳定工况,驱动力系数从峰值很快下降到纯滑转时的饱和滑动值。

(2)与滑移率关系

车辆制动时,纵向制动力随着滑移率迅速增加,并达到最大值,然后随着滑移率增加,轮胎制动力开始逐渐下降或者显示平稳趋势,直到纯滑移达到饱和状态。 6.轮胎侧偏角:车轮回转平面与车轮中心运动方向的夹角,顺时针方向为正。 7.什么是轮胎侧偏刚度?影响因素有哪些?

轮胎侧偏角是影响轮胎侧向力的一个重要因素,定义为车轮平面与车轮中心运动方向的夹角,顺时针方向为正,用α表示。

在小侧偏角情况下,轮胎侧向力与侧偏角近似成比例,其比值称为轮胎侧偏刚度。 影响因素:侧向载荷的影响;车轮定位的影响(车轮前束角和车轮外倾角)。

补充:(1)轮胎尺寸(成正比),(2)子午线轮胎笔斜角轮胎侧偏刚度高,钢丝子午线轮胎比尼龙子午线轮胎高,(3)直径相同,轮胎宽度越宽越高,(4)载重越小,侧偏刚度越小,(5)车速快,载荷越小,侧偏刚度越小(6)轮胎气压,越低刚度越大。(侧偏刚度越小,越容易甩尾)

8.影响轮胎侧向力的因素

侧偏角:轮胎运行条件决定,取决于车辆前进速度、侧向速度、横摆角速度和转向角。 垂向载荷:由车辆质量分布所决定,但随着载荷在纵向和侧向的重新分配。垂向载荷会发生变化。

车轮外倾角:转向角和通过悬架杆系作用的车身侧倾所决定,但对非独立悬架车辆来说,外倾角只取决于车轴的侧倾角。

9.SAE 标准轮胎运动坐标系:

10.SAE 空气动力学坐标系

11.什么是空气阻力?包括哪些方面?

空气阻力:指汽车直线行驶时受到空气作用力在行驶方向的分力。

主要包括:压差阻力分量(形状阻力、内循环阻力、诱导阻力)和摩擦阻力两大部分组成,可能还受到侧向气流的影响。

)arctan(w w u v =α

12.减少油耗的途径

燃油经济性指标包括:百公里燃油消耗量,瞬时燃油消耗量

(1)交通管理因素:包括交通管理系统、信号灯控制系统、驾驶员等因素,实际上均影响了车辆的行驶速度。

(2)车辆行驶阻力因素:在保证汽车安全性、人机工程、经济学和舒适性的同时,尽可能降低车辆行驶阻力,如减小整车质量、轮胎滚动阻力系数、空气阻力系数和迎风面积等。(3)尽可能降低附属设备(如空调,动力转向、动力制动等)的能耗;

(4)提高传动系效率,使发动机功率尽可能多地传递到驱动轮上。

13.车辆加速上坡受力分析

14.制动性评价

(1)制动效能即制动距离与制动减速度

(2)制动效能的稳定性即抗热衰退性,指车辆高速行驶或长下坡连续制动时保持一定制动效能的程度。

(3)制动时的方向稳定性即制动时车辆不发生跑偏、侧滑以及失去转向能力的性能。通常用制动时车辆按给定路径行驶的能力来评价。

15.制动跑偏原因

(1)汽车左右轮制动力不相等

(2)制动时悬架导向杆系与转向系拉杆在运动学上不协调。

16.为什么后轮抱死比前轮抱死更危险?(需答出制动跑偏的原因)

前轮抱死丧失转向能力,后轮抱死侧滑甩尾。如图a所示,后轮抱死拖滑,而前轮仍然处在滚动状态,可能由于路面倾斜坡度、侧风或者左右轮制动力不平衡等因素引起的侧向干扰力F y作用于车辆质心,由于后轮抱死拖滑,后轮已无法提供侧向力来平衡Fy,而此时前轮产生的侧向力F yf产生一个绕车辆质心的不稳定力矩F yrf a,该力矩是车辆侧偏角β继续增加,

导致车辆横摆加剧。图b中,前轮先于后轮抱死,后轮能够产生侧向力来形成一个使车辆会整的稳定力矩F yr b,从而减小车辆的初始侧偏角β,因而是稳定工况。但前轮抱死之后,由前轮不能产生侧向力,会使车辆失去转向能力。因此时即使发生碰撞事故,从乘员保护系统的设计角度来看,正面碰撞导致的伤害一般比侧面碰撞要小得多。

17.为什么空载比满载更容易甩尾?

Β线和I线的交点为同步附着系数,从图中克制空载时同步附着系数小于满载时同步附着系数,因此空载时β曲线总是位于I曲线上方,φ>φ0, 制动时总是后轮先抱死,容易出现甩尾。

载重越小,侧偏刚度越小,更易发飘。

18.为什么操纵稳定性良好的汽车应具有适度的不足转向特性?

答:过多转向,转弯半径减小,易发生急转而侧滑或翻车,使汽车有失去稳定性的危险。而中性转向汽车在使用条件变动时,有可能转变为过多转向特性。

19.过多转向特性如何改善?

横向稳定杆

20.为什么加入横向稳定杆后,由过多转向变为不足转向?

汽车转弯时,有一横向倾斜,会导致汽车出现过多转向,而加入横向稳定杆之后,当汽车转向时,会产生一个平衡力,阻止汽车的倾斜,使汽车在转弯时保持平衡,从而能消除汽车的过多转向。

汽车在稳态行驶时,车厢侧倾角取决于侧倾力矩和悬架总的角刚度,悬架总的角刚度为前后悬架及横向稳定杆的侧倾角刚度之和。当增加横向稳定杆之后,前悬架的侧倾角刚度增大,后悬架侧倾角刚度不变,所以前悬架作用于车厢的恢复力矩增加(总侧倾力矩不变),由此汽车前轴左右轮载荷变化就较大。在这种情况下,如果左右车轮轮胎的侧偏刚度在非线性区,则汽车区域增加不足转向量。

21.VSC基本组成和工作原理

组成:车辆稳定性控制系统(VSC)主要由ABS(防抱死控制系统),TCS(驱动力控制系统),YSC (横摆力矩控制)三个子系统组成。前二在制动和加速时工作,直接来控制车轮的纵向滑动率,提高车辆的制动或驱动性能,同时间接控制车辆的侧向稳定性,YSC在车辆行驶的任何时刻都起作用,直接控制车辆的侧向稳定性(由车轮侧偏角和车辆横摆角速度表示)

作用:用来控制车辆的横摆力矩,限制车轮侧偏角在一定范围内,并在紧急情况下对车辆的行驶状态进行主动干预,防止车辆在高速行驶转弯或者制动过程中失控。

工作原理:由于车辆的行驶状态主要由行驶车速、侧向速度和横摆角速度反映,因而,VSC 系统的ECU能根据转向盘转交和制动主缸压力等信号判断驾驶员的驾驶意图。计算出理想的车辆运行状态参数值,通过与各传感器测得的实际车辆状态信号值的比较,根据逻辑控制算法计算出期望的横摆力矩,然后通过控制液压调节系统,对各车轮施加制动力,以实现所需要的车辆横摆力矩。同时,还可以根据需要与发动机管理系统进行通信,改变驱动轮的驱动力以实现车辆运行状态调节。

22.NVH

即:噪声(noise)、振动(vibration)、声振粗糙度(harshness)来描述汽车乘坐舒适性。

23.1/4主动悬架动力学方程,并简化为状态方程。

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

车辆系统动力学知识点

车辆系统基础知识 1. 车辆系统中主要有哪几种非线性关系:(线性化方法、原理。) 轮轨接触几何关系:线性化时踏面锥度、重力刚度、重力角刚度为常数。 蠕滑率-力规律:蠕滑系数在线性化后也为常数。 车辆的悬挂特性: 2. 车辆系统动力学研究内容: 蛇形运动稳定性;车辆曲线通过时运动状态和轮轨作用力;车辆对轨道不平顺的响应;过曲线时抗脱轨、抗倾覆性能;车辆纵向动力学,车辆间相互作用;新型悬挂形式,主动、半主动悬挂,径向转向架;弓网系统动态特性:受流、噪音;车辆系统空气动力学。 3. 轨道车辆的不平顺及其对应的车辆振动类型:(此处需要补充各种常用轨道谱表示方式, 以及不同振动形式耦合程度大小与关系) 直线区段的四种不平顺分别为:垂向轨道不平顺,引起车辆的垂向振动,水平轨道不平顺,引起车辆的横向滚摆耦合振动;方向不平顺,引起车辆的侧滚和左右摇摆;轨距不平顺轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。

车辆系统动力学指标及评价标准 1. 车辆运行安全性及评价标准: 脱轨系数:评定防止车轮脱轨稳定性的脱轨系数,为某一时刻作用在车轮上的横向力Q和垂向力P的比值。脱轨系数临界值定义为当轮轨接触的切向力T等于摩擦系数乘以接触法向力N时的Q/P值。(有两类脱轨系数,一种与时间相关、一种与时间无关,像这种评价指标的原理,虽与考试没什么关系,但是可以尝试弄清楚,谁整理好了可以弄进来。还有不同标准,比如《铁道机车动力学性能试验鉴定方法及评定标准》(TB/T 2360-93)《高速试验列车动力车强度及动 力学性能规范》(95J 01-L)《高速试验列车动力车强度及动力学性能规范》(95J 01-M )的限定值,这些个常用标准,值得整理) 轮重减载率:评定车辆在轮对横向力为零或接近于0的条件下,因一侧车轮严重减载而脱轨的 安全性指标。(同上) 倾覆系数:评价车辆在侧向风力、离心力和横向振动惯性力的最不利组合下是否会导致使车辆 向一侧倾覆。(同上) 2. 车辆运行平稳性及评价指标: Sperling :评定车辆本身的运行品质以及旅客乘坐舒适度,根据振动加速度及其振动频率来衡 量,不同类型的振动(横向、垂向、不同频率范围内的振动)得到的W值不同,然后汇总取算 术平均得到总的平稳性指标。(关于这样的指标,为什么能衡量稳定性,原理性的东西,,,,太 需要了。) ISO2631-74 :用疲劳时间T表示振动对人体的影响。

汽车动力学题库

1.简要按形成原因汽车空气阻力怎么分类?简单概述各种阻力的形成。(P82) 汽车空气阻力分为形状阻力、干扰阻力、内循环阻力、诱导阻力以及摩擦阻力;1)形状阻力占压差阻力的大部分,主要与边界层流态和车身后的流体分离产生的尾涡有关;2)干扰阻力是由于车身表面凸起物、凹坑和车轮等局部的影响着气流的流动而引起的空气阻力;3)内循环阻力是流经车身内部的气流对通道的作用以及流动中的能量损耗产生的;4)诱导阻力是在侧面由下向上的气流形成的涡流的作用下,车顶上面的气流在后背向下偏转,产生的实际升力中一向后的水平分力;5)摩擦阻力是由于空气粘性使其在车身表面产生的切向力。 2.简述汽车的楔形造型在空气动力特性方面的特点。 1)前端低矮,进入底部的空气量少,底部产生的空气阻力小; 2)发动机罩与前风窗交接处转折平缓,产生的空气阻力小; 3)后端上缘的尖棱,使得诱导阻力较小; 4)前低后高,‘翼形’迎角小,使空气升力小; 5)侧视轮廓图前小后大,气压中心偏后,空气动力稳定性好。 3.假设某电动汽车的质心位置在前后轮轴中间位置,且前后车轮的侧片刚度相 同,电池组放在中间质心位置,试问该车稳态转向特性类型属于哪一类?在以下三种情况下,该车的稳态转向也行会如何变化? 1)将电池组移到前轴放置; 2)将电池组移到后轴放置; 3)将电池组分为两部分(质量相等),分别放在前后轴上。 根据稳定性因数公式 该车稳态转向特性属于中性转向。 1)电池组移至前轴上放置,质心前移,变为不足转向;

2)将电池组移到后轴上放置,质心后移,变为过多转向; 3)质心位置不变,仍为中性转向。 4.什么是被动悬架、半主动悬架、主动悬架?说明采用天棚阻尼的可控悬架属 于哪一类悬架及其理由。 被动悬架是悬挂刚度和阻尼系数都不可调节的传统悬架;半主动悬架的阻尼系数可自动控制,无需力发生器,受减振器原理限制,不能实现最优力控制规律;主动悬架的悬架力可自动控制,需要增设力发生器,理论上可实现最优力控制规律。 采用天棚阻尼的可控悬架属于主动悬架,因为其天棚阻尼是可调节的,同时具有自动控制悬架力的力发生器。 5.1)设某车垂向动力学特性可用1/4模型描述,已知簧上质量为300kg,悬架 弹簧刚度为21000N/m,悬架阻尼系数为1500Ns/m,如果该车身采用天棚阻尼控制器进行悬架控制,取天棚阻尼系数为4200Ns/m。请分别写出两种模型的频率响应函数,绘出该车被动悬架和采用天棚阻尼的可控悬架的幅频响应曲线;2)证明天棚阻尼系统不存在共振峰。 6.试说明ABS的目的和控制难点,并具体阐述ABSA在高附着路面上的一般控制 过程。 目的:调节车轮制动压力、控制制动强度以获得最佳滑转率,防止抱死,提高纵向制动能力和侧向稳定性; 控制难点:ABS的控制目标是最佳滑移率,但最佳滑移率是一个变值,轮胎、路面、在和、车速、侧偏角不同,对应的最佳滑移率也不同,所以要求ABS 能进行自动调节。另外,车轮的滑移率不易直接测得,需要其他的间接参数作为其控制目标参数。 一般控制过程(见P116 汽车系统动力学)

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

汽车系统动力学Matlab

汽车系统动力学Matlab 作业报告 小组成员:

'组内任务分配

二、 Matlab 程序与图形 1、不同转向特性车辆在不同车速下的系统特征根 m=1000;I=1500;a1=1.15;b1=1.35;Caf=53000;Car=53000; i=1;R=[]; for uc=10:5:100; D=(l*(Caf+Car)+m*(a1^2*Caf+b1^2*Car))∕(m*l*uc); S=(a1+b1)^2*Caf*Car∕(m*l*uc^2)+(b1*Car-a1*Caf)∕l; P=[1 D S]; r=roots(P); R(i,1)=r(1,1);R(i,2)=r(2,1);i=i+1; end plot(real(R(:,1)),imag(R(:,1)),'bo'); hold a2=1.25; b2=1.25; t=1; S=[]; for uc=10:5:100 P=[m 0;0 l]; Q=[(Caf+Car)∕uc,m*uc+(a2*Caf-b2*Car)∕uG(a2*Caf-b2*Car)∕uc,(a2^2*Caf+b 2^2*Car)∕uc]; R=[Caf;a2*Caf]; A=-P^(-1)*Q; d=eig(A); i=imag(d); r=real(d); S(t,1)=r(1); S(t,2)=i(1); t=t+1; end plot(S(:,1),S(:,2),'*') a3=1.35; b3=1.15; for uc=10:5:100 P=[m 0;0 l];

Q=[(Caf+Car)∕uc,m*uc+(a3*Caf -b3*Car)∕uc; (a3*Caf-b3*Car)∕uc,(a3^2*Caf+b3^2*Car)∕uc]; R=[Caf;a3*Caf]; A=-P^(-1)*Q; d=eig(A); i=imag(d); r=real(d); S(t,1)=r(1); S(t,2)=i(1); t=t+1; end grid On Plot(S(:,1),S(:,2),'d'); axis([-14 2 0 3]); xlabel('实轴(Re)'); ylabel('虚轴(Im)'); text(-8,2.8,'不足转向'); text(0,0.2,'过多转向'); text(-3,0.2,'中性转向') set(gca,'Fo ntName','Helvetica','Fo ntSize',10) title(['不同转向特性车辆在不同车速下的系统特征根'],'FontSize',12); E 一 書不同转向特杵乍辆在不同乍速下的系统待征戕

汽车理论期末考试复习题及其答案

2016汽车理论期末考试复习题 一、填空题 1、汽车动力性主要由最高车速、加速时间和最大爬坡度三方面指标来评定。 2、汽车加速时间包括原地起步加速时间和超车加速时间。 3、汽车附着力决定于地面负着系数及地面作用于驱动轮的法向反力。 4、我国一般要求越野车的最大爬坡度不小于60%。 5、汽车行驶阻力主要包括滚动阻力、空气阻力、坡度阻力和加速阻力。 6、传动系损失主要包括机械损失和液力损失。 7、在同一道路条件与车速下,虽然发动机发出的功率相同,但档位越低,后备功率越大,发动机的负荷率就越小,燃油消耗率越大。 8、在我国及欧洲,燃油经济性指标的单位是L/100KM,而在美国燃油经济性指标的单位是mile/USgal。 9、汽车带挂车后省油的原因主要有两个,一是增加了发动机的负荷率,二是增大了汽车列车的利用质量系数。 10、制动性能的评价指标主要包括制动效能、制动效能恒定性和制动时方向的稳定性。 11、评定制动效能的指标是制动距离和制动减速度。 12、间隙失效可分为顶起失效、触头失效和托尾失效。 12、车身-车轮二自由度汽车模型,车身固有频率为2.5Hz,驶在波长为6米的水泥路面上,能引起车身共振的车速为54km/h。 13、在相同路面与车速下,虽然发动机发出的功率相同,但档位越高,后备功率越小,发动机的负荷率就越高,燃油消耗率越低。 14、某车其制动器制动力分配系数β=0.6,若总制动器制动力为20000N,则其前制动器制动力为1200N。 15、若前轴利用附着系数在后轴利用附着系数之上,则制动时总是前轮先抱死。 16、汽车稳态转向特性分为不足转向、中心转向和过多转向。转向盘力随汽车运动状态而变化的规律称为转向盘角阶段输入。 17、对于前后、左右和垂直三个方向的振动,人体对前后左右方向的振动最为敏感。 18、在ESP系统中,当出现向左转向不足时,通常将左前轮进行制动;而当出现向右转向过度时,通常将进行制动。 19、由于汽车与地面间隙不足而被地面托起、无法通过,称为间隙失效。 20、在接地压力不变的情况下,在增加履带长度和增加履带宽度两个方法中,更能减小压实阻力的是增加履带长度。 21、对于具有弹性的车轮,在侧向力未达到地面附着极限的情况下,车轮行驶方向依然会偏离其中心平面的现象称为轮胎的侧偏现象。 22、车辆土壤推力与土壤阻力之差称为挂钩牵引力。 二、选择题 2、同一辆汽车,其车速增加一倍,其空气阻力提高(D)。

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

汽车系统动力学期末重点

1.除了影响车辆纵向运动及其子系统的动力学响应(如发动机、传动、加速、制动、防抱死和牵引力控制系统等方面的因素)外,还有车辆在垂向和横向两个方面的动力学内容,即行驶动力学和操纵动力学。 2.纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系,按车辆工况的不同,可分为驱动动力学和制动动力学。 3.行驶阻力的两个最基本部分是车辆的滚动阻力和空气阻力,行驶阻力代表了车辆对动力和功率的需求。 4.操纵动力学的研究范围的三个区域:线性域、非线性域、非线性联合工况。 5.车辆动力学特征的设计方法:系统建模、分析 8.稳态:指当周期性(或恒定)操作输入(或扰动输入)施加在车辆上引起的周期性(或恒定)车辆响应,在任意长的时间内不发生变化时,便称该车处于稳定。 9.瞬态:指车辆的运动响应和作用在车辆上的外力或操作位置随时间变化而变化,便称此时车辆的运动处于瞬态。 10.车辆控制系统的构成包括:控制算法、传感器技术和执行机构的开发。 11.假如在车前部安装前视预瞄传感器来可靠地提供前轮前方路面的输入信息,那么主动悬架系统就可以利用车辆对前后轮的路面预测信息进行控制,这就是预瞄控制。 第二章 1.建立系统微分方程的传统方法主要有两种:(1)利用牛顿矢量力学体系的动量定理及动量矩定理(2)利用拉格朗日的分析力学体系 2.约束与约束方程:一般情况下,力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程 3.完全约束:如果约束方程仅是系统位形和时间的解析方程,这种约束称为完全约束 4.非完全约束:如果约束方程不仅包含系统的位形,还包括广义坐标对时间的导数或广义坐标的微分,而且不能通过积分使之转化为包含位形和和时间的完全约束方程,这种约束称为非完全约束 5.完整系统:具有完整约束的力学系统 6.非完整系统:具有非完整约束的力学系统 第三章1.SAE标准轮胎运动坐标系:被定义为法向坐标向下的三维右手正交坐标系,坐标的原点是轮胎接地印迹中心,x轴定义为车轮平面与地面的交线,前进方向为正,y轴是指车轮旋转轴线在地面上的投影线,向右为正,z轴与地面垂直,向下为正。 离程度,是影响轮胎产生纵向力的一个重要因素 定义:车轮回转平面与车轮中心运动方向的夹角,顺时针方向为正。 4.根据车辆动力学研究的内容不同,轮胎模型可分为(1)轮胎纵滑模型(2)轮胎侧偏模型和侧倾模型(3)轮胎垂向振 动模型 y=Dsin(Carctan(Bx-E(Bx-arctanBx)))它以三角形函数组合的形式来拟合试验数据,得出了一套形式相同并可同时表达纵向力侧向力和回正力矩的轮胎模型(y可以是纵向力侧向力和回正力矩,而自变量x可以在不同情况下分别表示轮胎侧偏角或纵向滑移率) 6.轮胎垂直刚度的三种不同定义:静刚度,非滚动动刚度,滚动动刚度。 7.在60—100HZ的频率范围内,子午线轮胎的垂向振动传递特性幅值显著地高于斜交轮胎,该频率范围的振动正对应于乘员的“颤振”感觉区域。在约150—200HZ左右的频率范围,斜交轮胎的振动特性远差于子午线轮胎,通常将该频率范围的轮胎振动称之为轮胎“噪声”,即通常所说的“路面噪声”。 8.轮胎噪声的产生机理 (1)空气泵吸效应随着轮胎的滚动,空气在胎面与路面的空隙中被吸入和挤压。当压缩的空气在接地区间的出口处被告诉释放到空气中时,就会产生噪声。 (2)胎面单元振动当轮胎滚动时,胎面单元作用于路面,当它离开接触区域时,胎齿便由高变形状态下恢复,从而引起胎面噪声,此为主要的轮胎噪声源。同时,胎体振动、胎面花纹沟、花纹凸块空隙就像谐振管一样,也促进了轮胎的噪声辐射。 由于空气泵吸效应、胎体和胎齿单元的振动均和车速有关,因此轮胎噪声的程度是车辆行驶速度的函数。 (3)路面材料对轮胎噪声也有影响。 9.影响轮胎侧向力的三个最重要的因素是侧偏角、垂向载荷和车轮外倾角。侧偏角由轮胎的运行条件所决定,它取决于车辆前进速度、侧向速度、横摆角速度和转向角。轮胎垂向载荷的静态值由车辆质量分布所决定,但随着载荷在纵向和侧向的重新分配,轮胎的垂向载荷会发生变化。车轮外倾角由转向角和通过悬架杆系作用的车身侧倾所决定,但对非独立悬架车辆来说,外倾角只取决于车轴的侧倾角。(填空题)

车辆系统动力学复习重点

1.系统动力学研究内容及发展趋势 研究内容 长期以来,人们一直在很大程度上习惯按纵向、垂向和横向分别独立研究车辆动力学问题;而实际中的车辆同时会受到三个方向的输入,各方向所表现的运动响应特性必然是相互作用、相互耦合的. 纵向动力学:纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系。按车辆工况的不同,可分为驱动动力学和制动动力学两大部分。 行驶动力学:主要是研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯仰以及车辆的运动。 操纵动力学:主要研究车辆的操纵特性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横摆和侧倾运动。 操纵动力学的研究范围分为三个区域:线性域:侧向加速度越小于0.4kg时,通常意味着车辆在高附着路面做小转向运动; 非线性域:在超过线性域且小于极限侧向加速度(约为0.8kg)范围内; 非线性联合工况:通常指车辆在转弯制动或转弯加速时的情况。 发展趋势: (1)车辆主动控制:ABS,TCS等逐步向车身侧倾控制,可切换阻尼的半主动悬架和四轮底盘控制系统的集成,转向等当面扩展。通过控制算法、传感器技术和执行机构的开发实现的自动调节。 (2)车辆多体运动动力学:车辆的多刚体模型逐步向多柔体模型发型。可以准确分析虚拟样机的性能,检查虚拟样机的缺陷从而缩短产品的设计周期,节约试制费用,同时提高物理样机与最终产品之间的相似性。 (3)“人—车—路”闭环系统:充分考虑驾驶员模型以及车辆本身的一些动力学问题来提高汽车稳定性。 2.轮胎滚动阻力概念及其分类: 概念:当充气的轮胎在理想路面(通常指平坦的干、硬路面)上直线滚动时,其外缘中心对称面与车轮滚动方向一致,所受到的滚动方向相反的阻力。 分类:弹性迟滞阻力、摩擦阻力和风扇效应阻力。 3.什么是滚动阻力系数?影响因素有哪些? 其值等于相应载荷作用下滚动阻力F R与车轮垂直载荷F X的比值。 影响因素:车轮载荷(反比)、胎压(反比)、车速(正比,先缓慢增加,再明显增加)、轮胎的结构设计、嵌入材料和橡胶混合物的选用。 4.滑动率S:表示车辆相对于纯滚动(或纯滑动)状态的偏离程度。驱动工况时称为滑转率,被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。 若车轮的转动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则 S在0~1之间变化。当车轮做纯滚动时,及uw=rdω,此时s=0;当被驱动轮处于纯滑动状态 是,s=1. 5.轮胎纵向力与滑动率的关系 (1)与滑转率之间的关系 一般情况下,由于轮胎初始的滑转主要由胎面的弹性变形引起的,因而一开始车轮力矩

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

车辆系统动力学复习题 (2)

《车辆系统动力学》 (此复习题覆盖大部分试题。考试范围以课堂讲授内容为准。) 一、概念题 1. 约束和约束方程(19) 力学系统在运动时会受到某些几何和运动学特性的限制,这些构成限制条件的物体称为约束。 用数学方程表示的约束关系称为约束方程。 2. 完整约束和非完整约束(19) 如果系统约束方程仅是系统位形和时间的解析方程,则这种约束称为完整约束; 如果约束方程不仅包括系统的位形,还包括广义坐标对时间的倒数或者广义坐标的微分,而且不能通过积分使之转化为包括位形和时间的完整约束方程,则这种约束就称为非完整约束。 3. 轮胎侧偏角(31) 车轮回转平面与车轮中心运动方向的夹角。 4. 轮胎径向变形(31) 定义为无负载时的轮胎半径rt 与负载时的轮胎半径rtf 之差。 5. 轮胎的滚动阻力系数(40) 相应载荷下的滚动阻力与轮胎垂直载荷的比值。 6. 轮胎驱动力系数(50) 轮胎驱动力系数定义为驱动力与法向力的比值 7. 边界层(70) 当流体绕物体流动时,在物体壁面附近受流体粘性影响显著的薄层称为边界层。 8. 压力系数(74) 假设车身某点压力p 、速度v ,来流压力p ∞、速度v ∞,定义压力系数 2 1??? ? ??-==∞∞∞ v v q p-p C p 9. 风洞的堵塞比(77) 车辆迎风面积和风洞送风横断面面积的关系(堵塞比) 10. 雷诺数(79) 雷诺数定义为气流速度v 、流体特性长度L 的乘积与流体运动粘度ν的比值。Re=vL/ν 11. 空气阻力系数(82-83) q /A F Aq F C D D D == Fd 为空气阻力,A 为参考面积,通常采用汽车迎风面积,q 为动压力 12. 旋转质量换算系数(88) 12 d v i i +=r m Θδ 其中 ) (Ti c e 2 g 20dr 20w i ΘΘΘi i Θi ΘΘ++++=为等效转动惯量。mv 是整车整 备质量,rd 为驱动轮的滚动半径。 13. 后备驱动力(92) 车辆行驶时实际需要的驱动力FDem 与车辆所能提供的最大驱动力Fx 的差值。 14. 驱动附着率和制动附着率(101-102,105) 驱动附着率f 定义为纵向驱动力与法向力的比值 制动附着率:制动力力与法向力的比值 15. 驱动效率(103) 定义:驱动轴静载与整车重量的比值 W F /zs =τ

机械动力学复习题

机械动力学复习试题 1、试求图1-1所示系统的等效弹簧常数,并导出其运动微分方程。 2、一无质量的刚性杆铰接于O ,如图2-1所示。试确定系统振动的固有频率,给出参数如下:k 1=2500磅/英寸(4.3782×105N/m ), K 2=900磅/英寸(1.5761×105N/m ), m=1磅*秒2/英寸(175.13kg ), a=80英寸 (2.03m), b=100英寸(2.54m )。 3、试求出图3-1所示系统的固有频率。弹簧是线性的,滑轮对中心0的转动惯量为I 。设R=2500磅/英寸(4.3782×105N/m ), I=600磅*英寸*秒2(67.79N*m*s 2), m=2.5磅*秒2/英寸(437.82kg ), R=20英寸(0.5/m ) 4、一台质量为M 的机器静止地置于无质量的弹性地板上,如图4-1所示。当一单位载荷作用于中心点时的挠度为x st 。今在机器上放有一总质量为ms并带有两个旋转的不平衡质量的振动器提供一铅垂的谐波力mlw 2sinwt ,这里,转动的频率w 是可以改变的。试说明怎样用此振动器来测定系统弯曲振动的固有频率。 2 k 图3-1 图2-1

5,、图5-1中所示的系统模拟一在粗糙道路上运动的车辆,速度为均匀,即V=常数。试计算其响应Z(t)和传给车辆的力。 图5-1 6,、试导出如图6-1所示系统的运动微分方程,并求解位移X1(t)。

7、转动惯量分别为I 1和I 2的两个圆盘安装在扭转刚度分别为GJ 1和GJ 2的圆轴上如图7-1。导出这两个圆盘的转动微分方程。 8、导出图8-1所示系统当θ为微小角时的运动微分方程。 图 6-1 GJ 1 GJ 2 1() t θ2()t θ M 2(t) M 1(t) I 1 I 2

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

车辆系统动力学试卷

1、系统动力学有哪三个研究容? (1)优化:已知输入和设计系统的特性,使得它的输出满足一定的要求,可称为系统的设计,即所谓优化。就是把一定的输入通过选择系统的特性成为最优化的输出。 (2)系统识别:已知输入和输出来研究系统的特性。 (3)环境预测。已知系统的特性和输出来研究输入则称为环境预测。 例如对一振动已知的汽车,测定它在某一路面上行驶时所得的振动响应值(如车身上的振动加速度),则可以判断路面对汽车的输入特性,从而了解到路面的不平特性。 车辆系统动力学研究的容是什么? (1)路面特性分析、环境分析及环境与路面对车辆的作用; (2)车辆系统及其部件的运动学和动力学;车辆各子系统的相互作用; (3)车辆系统最佳控制和最佳使用; (4)车辆-人系统的相互匹配和模型研究、驾驶员模型、人机工程等。 2、车辆建模的目的是什么? (1)描述车辆的动力学特性; (2)预测车辆性能并由此产生一个最佳设计方案; (3)解释现有设计中存在的问题,并找出解决方案。 车辆系统动力学涉及哪些理论基础? (1)汽车构造 (2)汽车理论

(3)汽车动力学 (4)信号与系统 在“时间域”及“频率域”下研究时间函数x(t)及离散序列 x(n)及系统特性的各种描述方式,并研究激励信号通过系统 时所获得的响应。 (5)自动控制理论 (6)系统辨识 (7)随机振动分析 研究随机振动中物理量的描述方法(相关函数、功率谱密度), 讨论受随机激励的振动系统的激励、系统特性、响应三者统 计规律性之间的关系。 (8)多体系统动力学 建立车辆系统动态模型的方法主要有哪几种? 数学模型 (1)各种数学方程式:微分方程式,差分方程,状态方程,传递函数等。 (2)用数字和逻辑符号建立符号模型—方框图。 3、路面不平度功率谱密度的表达式有几种?各有何特点?试举出2 种以上路面随机激励方法,并说明其特点。(10分) 路面功率谱密度的表达形式分为幂函数和有理函数两种 (1)路面不平度的幂函数功率谱密度 ISO/DIS8608和国家标准GB7031-1987《车辆振动输入路面平

汽车运用工程模拟试题(带答案)

汽车运用基础复习试题 一.填空题 1、评价汽车动力性的指标有最高车速、加速时间、最大爬坡度。 3、在对汽车作动力学分析时,应用车轮的静力rs 半径;而作运动学 分析时应用滚动半径,但是一般以滚动rr 半径代替,作粗略分析时,通常不计 其差别,统称为车轮半径。 4、空气阻力包括压力阻力和摩擦阻力两大部分。 5、汽车加速行驶时不仅产生平移质量产生惯性力,旋转质量还要产生惯性力偶矩。 6、汽车行驶的驱动-附着条件是; Fr+Fw+Fi<=Ft<=Fxg 驱动力<=附着力。 8、用汽车的动力特性图来确定汽车的动力性时,可以确定汽车的最高车速、 最大爬坡度、加速时间。 9、汽车行驶中,其每一瞬时发动机发出的功率始终等于机械传动损失、 全部运动阻力所消耗的功率。 14、影响汽车的燃料消耗的因素概括起来有汽车技术状况和汽车使用因素。 15、在良好的路面上,汽车在一定车速范围内,既可以用最高档行驶, 也可以用次高档行驶,应选用最高档行驶。 16、变速器设置超速档的目的是降低油耗;所以超速档又称节能档。 18、目前扩大选用柴油机已成为汽车的发展方向之一。柴油机之所以具有高于 汽油机的经济性能,最主要的原因是压缩比大。 21、制动效能的稳定性包括抗水衰退、抗热衰退。

22、汽车制动全过程由驾驶员行动反应阶段制动系统协调阶段制动最大效能阶段 25、汽车制动距离随制动初速度的增加、车重的增加、和附着系数的 减小而增长。 26、汽车在制动过程中丧失方向稳定的情况有跑偏、侧滑、 失去转向能力三类。 27、汽车的地面制动力取决于制动器制动力,同时要受到地面 附着系数条件的限制。 28、当汽车车轮作纯滚动时,滑移率S= 0 ;当汽车车轮抱死时, 滑移率S= 1 。 29、评价汽车制动效能的最基本指标是制动距离和制动减速度 36、汽车噪声主要由发动机噪声、传动系噪声、车胎噪声、 车身干扰空气及喇叭声等。 40、间隙失效可分为顶起失效、触头失效、托尾失效等。 41、通过性的几何参数主要有最小离地间隙、接近角与离去角、纵向通过角、 转弯通过圆等。 44、汽车在松软的路面上行驶时,轮胎气压应降低,而在硬路面上行驶时, 适当提高轮胎气压。 45、汽车的接近角越大,汽车接近障碍物时,越不容易发生触头;汽车的离

车辆系统动力学试题及答案

西南交通大学研究生2009-2010学年第( 2 )学期考试试卷 课程代码 M01206 课程名称 车辆系统动力学 考试时间 120 分钟 阅卷教师签字: 答题时注意:各题注明题号,写在答题纸上(包括填空题) 一. 填空题(每空2分,共40分) 1.Sperling 以 频率与幅值的函数 ,而ISO 以 频率与加速度的函数 评定车辆的平稳性指标。 2.在轮轨间_蠕滑力的_作用下,车辆运行到某一临界速度时会产生失稳的_自激振动_即蛇行运动。 3.车辆运行时,在转向架个别车轮严重减重情况下可能导致车辆 脱轨 ,而车辆一侧全部车轮严重 减重情况下可能导致车辆 倾覆 。 4.在车体的六个自由度中,横向运动是指车体的横移、 侧滚 和 摇头 。 5.在卡尔克线性蠕滑理论中,横向蠕滑力与 横向 蠕滑率和 自旋 蠕滑率呈相关。 6.设具有锥形踏面的轮对的轮重为W ,近似计算轮对重力刚度还需要轮对的 接触角λ 和 名义滚动圆距离之半b 两个参数。 7.转向架轮对与构架之间的 横向定位刚度 和 纵向定位刚度 两个参数对车辆蛇行运动稳定性影 响较大。 8. 纯滚线距圆曲线中心线的距离与车轮 的_曲率_成反比、与曲线的_曲率_成正比。 9.径向转向架克服了一般转向架 抗蛇行运动 和 曲线通过 对转向架参数要求的矛盾。 10.如果两辆同型车以某一相对速度冲击时其最大纵向力为F ,则一辆该型车以相同速度与装有相同缓冲器 的止冲墩冲击时的最大纵向力为_21/2F _,与不装缓冲器的止冲墩冲击时的最大纵向力为_2F_。 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

共2页 第1页 5.什么是稳定的极限环? 极限环附近的内部和外部都收敛于该极限环,则称该极限环为稳定的极限环。 6.轨道不平顺有几种?各自对车辆的哪些振动起主要作用? 方向、轨距、高低(垂向)、水平不平顺。方向不平顺引起车辆的侧滚和左右摇摆。轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。高低不平顺引起车辆的垂向振动。水平不平顺则引起车辆的横向滚摆耦合振动。 三.问答题 (每题15分,共30分) 1.已知:轮轨接触点处车轮滚动圆半径r ,踏面曲率半径R w ,轨面曲率半径R t , 法向载荷N ,轮轨材料的弹性模量E 和泊松比o 。试写出Hertz 理论求解接触椭圆 长短半径a 、b 的步骤。P43-P44 根据车轮滚动圆半径、踏面在接触点处的曲率半径、钢轨在接触点处的曲率半径得到A+B 、B-A ,算得cos β,查表得到系数m 、n ,然后分别根据钢轨和车轮的弹性模量E 和泊松比σ,求得接触常数k ,得出轮轨法向力N ,然后带人公式求得a 、b 。 2. 在车辆曲线通过研究中,有方程式 ()W f r y f w O W μψλ212 1 2 222 * 11=??? ?????+???? ?? 二.简答题 (每题5分,共30分) 1.与传统机械动力学相比,轨道车辆动力学有何特点? 2.轮轨接触几何关系的计算有哪两种方法,各有何优缺点? 解析和数值方法。数值方法可以用计算机,算法简单,效率高,但存在一定误差;解析方法是利用轮轨接触几何关系建立解析几何的方式求解,比较准确,但是计算繁琐,方法难于理解。 3.在车辆系统中,“非线性”主要指哪几种关系? 轮轨接触几何非线性、轮轨蠕滑关系非线性、车辆悬挂系统非线性 4.怎样根据特征方程的特征根以判定车辆蛇行运动稳定性?。 根据求出的特征根实部的正负判断车辆蛇行运动的稳定性,当所有的特征根实部均为负时,车辆系统蛇行运动稳定,存在特征根为零或者负时,车辆系统的蛇行运动不稳定。

车辆系统动力学复习题精选.

车辆系统动力学复习题 1.何谓系统动力学?系统动力学研究的任务是什么? 2.车辆系统动力学研究的内容和范围有哪些? 3.车辆系统动力学涉及哪些理论基础? 4.何谓多体系统动力学?多刚体系统动力学与多柔体系统动力学各有何特点?采用质量-弹簧-阻尼振动模型和多体系统模型研究车辆动力学问题各有何特点? 5.简述车辆建模的目。 6.期望的车辆特性是什么?如何来评价? 7.何谓轮胎侧偏角?何谓轮胎侧偏刚度?影响轮胎侧偏的因素有哪些? 8.何谓轮胎模型?根据车辆动力学研究内容的不同,轮胎模型可分为哪几种?整车建模中对轮胎模型需考虑的因素有哪些? 9.简述轮胎噪声产生的机理。 10.车辆空气动力学研究的主要内容有哪些?车辆的空气阻力有哪些?产生的原因是什么?试分析空气动力对车辆性能的影响。汽车空气动力学装置有那些? 11.简述风洞试验的特点? 12.车辆的制动性能主要由哪三个方面评价?试分析汽车制动跑偏的原因。 13.车辆动力传动系统由哪几部分组成?在激励作用下通常会产生何种振动?标出图示车辆简化扭振系统各部分名称?并说明其主要激振源? 14.写出货车动力传动系统动力学方程,并写出刚度阵等。 15.路面输入模型有几种?各有何特点?写出各自的表达式? 16.在整车虚拟仿真中常用的一些典型的特殊路面有哪些?各有何特点?

17.简述最新的舒适性评价标准。 18.车辆的平顺性是如何测量的? 19.车辆典型的共振频率范围通常是多少? 20.车辆行驶动力学模型是如何简化的?试写出1/4、1/2和整车系统垂直振动的微分方程式,并写成矩阵的形式。 21.车辆悬架系统的性能一般用哪3个基本参数进行定量评价?各对车辆行驶性能有何影响? 22.被动悬架存在的问题是什么?半主动悬架和主动悬架的工作原理是什么?写出其系统运动方程。 23.操纵性能的总体目标和期望的车辆操纵特性是什么? 24.基本操纵模型假设和存在最大问题是什么? 25.车辆操纵特性分析一般进行哪三种分析?其内容是什么? 26.何谓中性转向、不足转向和过多转向?各有何特点? 27.利用拉格朗日方程推导平面3自由度和5自由度汽车振动模型的运动方程,并写成矩阵形式。假定车身是一个刚体,车辆在水平面做匀速直线运动,以2个车轮不同激励和激振力F=F0cos2ωt作为系统输入。

相关文档
最新文档