[31] 一种改进的齿轮非线性动力学模型

[31] 一种改进的齿轮非线性动力学模型
[31] 一种改进的齿轮非线性动力学模型

 万方数据

 万方数据

 万方数据

 万方数据

 万方数据

 万方数据

 万方数据

一种改进的齿轮非线性动力学模型

作者:唐进元, 陈思雨, 钟掘, TANG Jin-yuan, CHEN Si-yu, ZHONG Jue

作者单位:中南大学机电工程学院,湖南,长沙,410083

刊名:

工程力学

英文刊名:ENGINEERING MECHANICS

年,卷(期):2008,25(1)

被引用次数:40次

参考文献(13条)

1.Umezawa K Vibration of power transmission helical gears (Approximate equation of tooth stiffness) 1986(251)

2.Cai Y Simulation on the rotational vibration of helical gears in consideration of the tooth separation phenomenon (A new stiffness function of helical innvolute tooth pair) 1995(09)

3.Kuang J H;Yang Y T An estimate of mesh stiffness and load sharing ratio of a spur gear pair[DE-43-1] 1992

4.Vaishya M;Houser R Modeling and analysis of sliding friction in gear dynamics[DETC2000/PTG-14430] 2000

5.M. Vaishya;R. Singh SLIDING FRICTION-INDUCED NON-LINEARITY AND PARAMETRIC EFFECTS IN GEAR DYNAMICS [外文期刊] 2001(4)

6.王三民,沈允文,董海军含摩擦和间隙直齿轮副的混沌与分叉研究[期刊论文]-机械工程学报 2002(9)

7.颜海燕,唐进元,宋红光直齿轮轮齿变形计算的数值积分法[期刊论文]-机械传动 2005(2)

8.Buckingham Analytical mechanics of gear 1949

9.Chakraborti J;Hunashikatti H G Determination of the combined mesh stiffness of a spur gear pair under load[ASME paper 74-DET-39] 1974

10.Terauchi Y;Nagamura K On tooth deflection calculation and profile modification of spur gear tooth 1981

11.Kelley B W;Lemanski A J Lubrication of involute gearing 1967(3A)

12.Velex P;Cahonet V Experimental and numerical investigations on the influence of tooth friction in spur and helical gear dynamics[DETC2000/PTG-14430] 2000

13.Blankenship G W;Singh R A comparative study of selected gear mesh force interface dynamic

models[DE-43-1] 1992

本文读者也读过(5条)

1.唐进元.陈思雨.TANG Jin-yuan.CHEN Si-yu阻尼和刚度项含时变参数的强非线性振动系统周期解研究[期刊论文]-振动与冲击2007,26(10)

2.王立华.李润方.林腾蛟.杨成云齿轮系统时变刚度和间隙非线性振动特性研究[期刊论文]-中国机械工程2003,14(13)

3.陈思雨.唐进元.CHEN Siyu.TANG Jinyuan间隙对含摩擦和时变刚度的齿轮系统动力学响应的影响[期刊论文]-机械工程学报2009,45(8)

4.陈思雨.唐进元.谢耀东.CHEN Si-yu.TANG Jin-yuan.XIE Yao-dong齿轮传动系统的非线性冲击动力学行为分析[期刊论文]-振动与冲击2009,28(4)

5.张锁怀.李忆平.丘大谋齿轮耦合的转子-轴承系统非线性动力特性的研究[期刊论文]-机械工程学报2001,37(9)引证文献(25条)

1.陈海锋圆柱齿轮传动非线性动力学键合图建模研究[学位论文]硕士 2011

2.随机齿侧间隙的齿轮系统非线性动力学分析[期刊论文]-兰州交通大学学报 2014(03)

3.刘志峰,张志民,张敬莹,罗兵基于多项式的等高齿锥齿轮时变啮合刚度建模[期刊论文]-吉林大学学报(工学版) 2013(04)

4.唐进元,熊兴波,陈思雨基于图胞映射方法的单自由度非线性齿轮系统全局特性分析[期刊论文]-机械工程学报2011(05)

5.李亚鹏,孙伟,魏静,陈涛齿轮时变啮合刚度改进计算方法[期刊论文]-机械传动 2010(05)

6.苟向锋,祁常君,陈代林考虑齿面接触温度的齿轮系统非线性动力学建模及分析[期刊论文]-机械工程学报

2015(11)

7.张转周,鲍春梅,代珊妮,吴祥标齿轮传动系统在随机激励下的响应分析[期刊论文]-重庆理工大学学报(自然科学版) 2014(8)

8.鲍春梅,吕士宝,张丽齿轮时变系统在随机激励下的响应分析[期刊论文]-重庆理工大学学报:自然科学

2012(07)

9.朱恩涌,巫世晶,王晓笋,邓明星,潜波含摩擦力的行星齿轮传动系统非线性动力学模型[期刊论文]-振动与冲击2010(08)

10.冯治恒,王时龙,雷松,萧红时变摩擦系数对准双曲面齿轮动力学行为的影响[期刊论文]-重庆大学学报:自然科学版 2011(12)

11.李宽阳,陈彩凤,张亮,胡永安行星齿轮系统时变啮合刚度研究[期刊论文]-通信电源技术 2015(5)

12.陈思雨,唐进元间隙对含摩擦和时变刚度的齿轮系统动力学响应的影响[期刊论文]-机械工程学报 2009(08)

13.刘贵敏非对称渐开线齿轮传动系统动力学仿真分析与研究[学位论文]硕士 2010

14.唐进元,陈海锋齿轮传动非线性动力学键合图建模研究[期刊论文]-重庆大学学报:自然科学版 2012(02)

15.张青锋,唐力伟,郑海起,杨通强轮齿疲劳裂纹非线性动力学模型的参数确定及仿真[期刊论文]-振动、测试与诊断 2011(01)

16.周玉成风力发电机组齿轮传动系统动力学研究[学位论文]硕士 2010

17.熊兴波基于图胞映射法的齿轮非线性随机系统全局特性数值解研究[学位论文]硕士 2011

18.陈思雨,唐进元,谢耀东齿轮传动系统的非线性冲击动力学行为分析[期刊论文]-振动与冲击 2009(04)

19.李亚鹏齿轮时变啮合刚度改进算法及刚度激励研究[学位论文]硕士 2009

20.魏永祥不确定参数机构动力分析与动力可靠性优化[学位论文]博士 2011

21.林梅彬齿轮非线性系统的参数灵敏度分析[学位论文]硕士 2014

22.康焱齿轮副整体误差及其在齿轮配对中的应用[学位论文]博士 2011

23.白温毓多工况下风电齿轮传动系统的动力学特性及其动态可靠性研究[学位论文]硕士 2013

24.王朝兵新型定日镜跟踪机构精密传动特性研究[学位论文]博士 2013

25.冯治恒螺旋锥齿轮多体多自由度非线性动力学研究[学位论文]博士 2011

引用本文格式:唐进元.陈思雨.钟掘.TANG Jin-yuan.CHEN Si-yu.ZHONG Jue一种改进的齿轮非线性动力学模型[期刊论文]-工程力学 2008(1)

基于ADAMS的驱动桥齿轮啮合动力学仿真研究

文章编号:1003-1251(2010)01-0028-04 基于ADA M S 的驱动桥齿轮啮合动力学仿真研究 陈 克1 ,高 洁1 ,张闯英2 ,孙文周3 ,李家永 1 (1.沈阳理工大学汽车与交通学院,辽宁沈阳110159;2.三一重型装备有限公司,辽宁沈阳110027; 3.曙光车桥有限责任公司,山东诸城262233)摘 要:运用C AT I A 软件建立驱动桥主减速器和差速器齿轮传动系统的三维实体模 型,基于ADAM S 软件建立了主减速器和差速器齿轮传动的虚拟样机模型.将H ertz 接触理论嵌入仿真模型,在齿轮之间施加接触力,实现了齿轮啮合的动态实时仿真.通过在主减速器主动齿轮施加转速驱动,差速器半轴齿轮施加不同的负载转矩,模拟了汽车在转弯工况下驱动桥主减速器和差速器的齿轮传动,得到了主减速器齿轮、差速器齿轮的转速以及啮合力曲线,为深入研究齿轮传动系统动态特性提供了理论参考依据.关 键 词:驱动桥;主减速器;差速器;齿轮啮合;动力学;ADAM S 中图分类号:TH 132.41 文献标识码:A Dyna m ic Si m ulation St udy of Driving Axle G earM es hing Based on ADA M S CHEN K e 1 ,GAO Jie 1 ,Z HANG Chuang -y i n g 2 (1.Sh enyang L i gong Un i versity ,Shenyang 110159,Ch i na ;2.Sany H eavy Equ i pm ent C o .,Ltd .Shenyang 110027,Ch i na) A bstract :Three -di m ensionalm odels o f dri v e ax le fi n al drive and d ifferential gears m esh i n g trans m ission are created by C ATI A .The dri v ing m ode l and v irtua l pr o totype of gear m esh i n g trans m ission are estab lished based on ADAMS. B ased on the H ertz elasticity i m pact t h eory ,the contact forces bet w een gears are buil.t The rea-l ti m e dyna m ic si m u lations of gearing m esh are achieved .By i m posing speed drive on the dri v i n g gear of fi n al drive and d ifferent load torque on the ha lf ax le gear of differentia,l the process of gear trans m ission of fi n al drive and d ifferential is si m ulated under the tur n i n g cond itions .The curves of angular speed and m es -h i n g f o rce on t h e gears trans m issi o n o f fi n a l drive and d ifferenti a l are obta i n ed ,w h i c h pro -v ides references to research on dyna m ic character i s tics of gear dri v i n g dev ice . K ey words :dri v ing axle ;fina l dri v e ;d ifferentia;l gearing m esh ;dyna m ic si m ulation;ADAM S 收稿日期:2009-10-13 作者简介:陈克(1965)),男,教授,博士,研究方向:车辆计算机 辅助工程分析. 驱动桥由主减速器、差速器、半轴及桥壳等几部分组成.其基本功用是增大由传动轴或变速器 传来的转矩,并将动力合理分配给左、右驱动轮, 使左、右驱动车轮具有汽车行驶运动学所要求的差速功能.在驱动桥传动系统中,主减速器、差速 器齿轮传动的性能是决定该传动系统性能的关键.有关齿轮传动的早期研究大都局限于系统的静态性能,近年来,才对齿轮传动动态特性进行了 较多的研究[1-2] .本文利用C AT I A (Co m puter A-i ded T r-i D i m ensi o na l I n terface A pplicati o n)软件建 第29卷第1期 沈阳理工大学学报 Vo.l 29No .1 2010年2月 J OURNA L O F S HENYANG L I GONG UN I V ERSITY Feb .2010

综述 齿轮系统动力学的理论体系_王建军

齿轮系统动力学的理论体系 * 王建军 副教授 王建军 李润方 摘要 根据对国内外齿轮系统动力学研究成果的系统总结,阐述齿轮 系统动力学理论的基本结构体系。说明齿轮动力学的发展过程;围绕动态激 励、模型类型、建模和求解方法以及齿轮系统的固有特性、动态响应和动力稳定性等介绍齿轮系统动力学所涉及的基本问题,讨论该理论的主要工程应用的基础上,提出应进一步研究的方向与重点。 关键词 齿轮系统 动力学性能 理论体系 正问题 反问题 中国图书资料分类法分类号 T G132.41 1 齿轮系统动力学基本理论体系 齿轮系统动力学[1]是研究齿轮系统在传递运动和动力过程中的动力学行为的一门科学。它以齿轮系统为对象,以齿轮副啮合过程的动力学特性为核心,以提高和改善齿轮系统的动力学行为为目的,在充分考虑系统各零部件动态特性的基础上,利用振动力学理论和方法,研究齿轮系统在传递动力和运动中振动、冲击、噪声的基本规律, 为设计制造小振动、低噪声、高可靠性、高传动性能的齿轮系统提供理论依据。 齿轮系统是机器最主要的动力和运动传递装置,其力学行为和工作性能对整个机器有重要影响。因此,齿轮系统动力学近百年来一直受到人们的广泛关注,尤其是近20年来,由于相关力学的理论与实验技术的发展,促进了齿轮系统动力学的深入研究。迄今,已经形成了较为完整的齿轮系统动力学的基本理论体系(见图1),系统总结齿 图1齿轮系统动力学的基本理论体系 ?动载系统的计算方法?振动噪声的评价与防治?状态监测与故障诊断 ?系统参数与动态性能的关系?载荷识别与动态设计 齿轮动力学理论的应用 动态响应 (系统的输出)系统模型 (系统的力学、数学描述)动态激励(系统的输入)?稳定性指标?稳定性区域?稳定性性能?系统参数对稳定性的影响 动力稳定性?动载荷系统振动?系统参数的影响 动态响应?固有频率?固有振型?参数对固有特性的影响 固有特性?时变刚度?传递误差?齿侧间隙?支承弹性与间隙?系统阻尼 考虑因素?齿轮副纯扭模型?齿轮传动系统模型 模型类型?集中参数法 ?传递矩阵法 ?有限元法?动态子结构综合法 建模方法?时变啮合刚度?轮齿传递误差?啮入啮出冲击 内部激励?原动机的扭矩 ?负载的反作用力矩 外部激励求解方法 ?时域法 ?频域法?解析法?数值法?实验法 *国家自然科学基金资助项目(59575006),机械传动国家重点实验室开放基金资助项目 收稿日期:1997—01—03 修回日期:1998—11—20 轮系统动力学理论与方法的时机已经成熟。 2 齿轮系统动力学的发展 2.1 分析理论 (1)在本世纪50年代以前,以啮合冲击作为描述和解释齿轮动态激励、动态响应的基础,将齿轮系统简化为单自由度系统,以冲击作用下的单自由度系统的动态响应来表达齿轮系统的动力学行为。 50年代以后,将齿轮系统作为弹性的机械振动系 统,以振动理论为基础,分析在啮合刚度、传递误差和啮合冲击作用下,系统的动力学行为。这一发展奠定了现代齿轮系统动力学的基础。 (2)在振动理论的框架内,齿轮系统动力学经历了由线性振动理论向非线性振动理论的发展。在线性振动理论范畴内,人们以平均啮合刚度替代时变啮合刚度,并由此计算齿轮副的固有频率和振型,利用数值积分法计算系统的动态响应,不考虑因时变啮合刚度引起的动态稳定问题,且避免研究由齿侧间隙引起的非线性以及多对齿轮副、齿轮副 ? 55?齿轮系统动力学的理论体系——王建军 李润方

研究控制非线性动力学模型

Study on Nonlinear Dynamical Model and Control Strategy of Transient Process in Hydropower Station with Francis turbine Haiyan Bao , Jiandong Yang, Liang Fu State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University No.8 Donghu South Road, Wuchang District, Wuhan 430072, China Haiyan_8931@https://www.360docs.net/doc/111879087.html, Abstract —The transient process in conduits of hydropower stations is a very complicated dynamic procedure coupled with fluid, machines, electricity. In this paper, a whole nonlinear dynamical model of transient process in hydropower station with Francis turbine has been developed, and the control strategies of each transient process are studied. The nonlinear characteristics of hydraulic turbine and the elastic water hammer effect of pressure water supply conduit are considered in the model. The developed model is accurate enough to represent and simulate each transient process of the plant and may enable a plant operator to carry out economical, convenient study for the static stability and transient stability of the hydropower station under a wide range of transient processes. In addition, the literature takes a hydropower station as engineering case to simulate the transient processes of hydro-generator units ’ start-up, load variation, full load rejection from the grid and emergency stop. And the results of simulation are very satisfied. Keywords-hydraulic transients; nonlinear mathematical model; numerical simulation; control strategy I.I NTRODUCTION H ydropower is an important and vital renewable energy resource, which converts energy in flowing water into electricity. Generally, a hydro-generator unit has many different operating conditions, and any operating condition changes will result in different hydraulic transients. The calculation of hydraulic transient is a key link for the safety and reliability of units and hydraulic installations. Traditionally, the objective of hydraulic transient calculation is to predict three primary regulation guaranteed parameters including the maximum dynamic pressure in the spiral case, the maximum rising ratio of rotating speed and the draft tube minimum pressure, consequently to ensure safety operation of hydropower station. H owever, with the development of hydroelectric construction and technology in China, the content of hydraulic transient calculation is continuously being enriched, it already not only include calculation of regulation guaranteed parameters, but also include calculation and research of stabilization and dynamic quality [1]. In conventional hydropower stations, there are a series of hydraulic transient processes, such as start-up, load variation, full load rejection from the grid, and emergency stop, where power and frequency regulations may always be needed [2]. In order to design suitable control law, stabilize the nonlinear systems, solve many existing control problems, reduce operating costs and energy losses, and improve guarantee security and safety of equipments and plants, it is necessary to develop a whole nonlinear dynamical model that is accurate enough to represent and simulate each transient process of the plant. The developed model may enable a control system designer or a plant operator to carry out accurate, economical, convenient study for the static stability and transient stability of the hydropower station under a wide range of operational modes and nonlinear process conditions, and to design the suitable control strategy, so as to improve stability of hydro-generator units. The literature review carried out in this work finds some published research works. In [3], a new kind of start-up rule is proposed, by using this rule the contradiction between fast start-up and smooth start-up is eliminated; In [4], it analyses the adjusting mode of power adjustment in digital electric-hydraulic governor, and how to realize power adjustment; In [5], the transient performance index of hydro-generator unit in a full load rejection are studied. owever, in the aforementioned published research works, the effect of hydraulic turbine characteristics and the elasticity of conduit walls on the transient process are neglected . In addition, a whole nonlinear dynamical model that can simulate each transient process of the plant isn’t developed in predecessors’ research works. In china, some large-scale hydropower stations often use the complex arrangement nowadays, moreover, the hydraulic conduits are getting longer, and its nonlinearity is very obvious. Therefore, it is very important and necessary to develop a whole nonlinear dynamical model for the complex hydropower system. II.M ATHEMATICAL M ODELS For developing the whole nonlinear mathematical model, the hydropower plant system is decomposed into decoupled dynamical modules as illustrated in Fig. 1, and a mathematical model for each module is developed. 978-1-4244-2487-0/09/$25.00 ?2009 IEEE

齿轮机械传动动力学研究文献综述完整版

基于齿轮传动的机械动力学研究文献综述 摘要:本文结合相关文献对机械动力学中齿轮传动动力学部分的研究进行了综述。综合文献对齿轮传动动力学研究现状和发展趋势有了整体把握。 关键词:动力学;齿轮传动;综述; The Literature Review of Mechanical Dynamics based on gear transmission Abstract:In this paper, the studies of mechanical dynamics of gear transmission were reviewed. On the whole, we grasp the studies status and development trend of gear transmission. Keywords: Dynamics;Gear transmission;Review 1.前言 随着机械向高效、高速、精密、多功能方向发展,对传动机械的功能和性能的要求也越来越高,机械的工作性能、使用寿命、能源消耗、振动噪声等在很大程度上取决于传动系统的性能。因此必须重视对传动系统的研究。机械系统中的传动主要分为机械传动、流体传动(液压传动、液力传动、气压传动、液体粘性传动和高等优点机械传动的形式也有多种,如各种齿轮传动、带(链)传动、摩擦传动等。 齿轮传动是机械传动中的主要形式之一。在机械传动中占有主导地位。由于它具有速比范围大、功率范围广、结构紧凑可靠等优点,已广泛应用于各种机械设备和仪器仪表中。成为现有机械产品中所占比重最大的一种传动。齿轮从发明到现在经历了无数次更新换代,主要向高速、重载、平稳性、体积小、低噪等方向发展。 2. 齿轮动力学的发展概述 齿轮的发展要追溯到公元前,迄今已有3000年的历史。虽然自古代人们就使用了齿轮传动,但由于动力限制了机器的速度。因此齿轮传动的研究迟迟未发展到动力学研究的阶段。 第一次工业革命推动了机器速度的提高,Euler提出的渐开线齿廓被广泛运用,这属于从齿轮机构的几何设计角度来适应速度的提高。

齿轮传动系统的动力学仿真分析

齿轮传动系统的动力学仿真分析 摘要:本文对建立好的整体机械系统的虚拟样机模型进行运动学和动力学的仿真分析,通过仿真分析,可以方便地得出齿轮传动系统在特定负载和特定工况下的转矩,速度,加速度,接触力等,仿真分析后,可以确定各个齿轮之间传递的力和力矩,为零件的有限元分析提供基础。 关键词:传动系统动力学仿真 adams 虚拟样机 中图分类号:th132 文献标识码:a 文章编号: 1007-9416(2011)12-0207-01 随着计算机图形学技术的迅速发展,系统仿真方法论和计算机仿真软件设计技术在交互性、生动性、直观性等方面取得了较大进展,它是以计算机和仿真系统软件为工具,对现实系统或未来系统进行动态实验仿真研究的理论和方法。 运动学仿真就是对已经添加了拓扑关系的运动系统,定义其驱动方式和驱动参数的数值,分析其系统其他零部件在驱动条件下的运动参数,如速度,加速度,角速度,角加速度等。对仿真结果进行分析的基础上,验证所建立模型的正确性,并得出结论。 本文中所用的动力学仿真软件是adams软件。adams软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。adams

软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。虚拟样机就是在adams软件中建的样机模型。 1、运动参数的设置 先在造型软件ug中将齿轮传动系统造型好,如下图所示。在已经设置好运动副的齿轮传动系统的第一级齿轮轴上绕地的旋转副上 给传动系统添加一个角速度驱动。然后进行仿真。在进行仿真的过程中,单位时间内仿真步数越多,步长越短,越能真实反映系统的真实结果,但缺点是仿真时间也随之变长,占用的系统空间也就越大。所以应该在兼顾仿真真实性与所需物理资源和仿真时间的基础上,选择一个合适的仿真时间和仿真的步长。 在仿真之前先设置系统所用到的物理量的单位,在工程实际中,角速度一般使用的单位是r/min,所以在系统的基本单位中把时间的单位设为min,角度的单位设成rad,而在adams中转速单位为 rad/min。本过程仿真的运动过程为:系统从加速运动到额定转速,平稳运动一段时间后,再减速运动直到停止。运动过程用函数来模拟,输入的角速度驱动的函数表达式为: step( time ,0 ,0 ,2.5 ,9168.8)+ step(time ,7.5 ,0 ,10 ,-9168.8),此函数表达式的含义为:系统从开始加速运动一直到2.5s时达到了系统的额定转速 9168.8rad/min(1460r/min),从2.5s到7.5s的时间段内,系统以额定转速运动,在7.5s到10s的时间段内,系统从额定转速减速

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

(完整版)系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

系统动力学模型

第10 章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1 节系统动力学概述 1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室” ; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算 机仿真语言DYNAMIC勺支持,如:PD PLUS VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计

算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTERI出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980 年,后来,陆续做了大量的工作,主要表现如下: 1 )人才培养 自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。 2 )编译编写专著

流体力学和双星形成的非线性动力学模型

流体力学和双星形成的非线性动力学模型 张一方 云南大学物理系,昆明(650091) E-mail :yifangch@https://www.360docs.net/doc/111879087.html, 摘 要:基于星云的流体力学和磁流体动力学,用非线性方程的定性分析理论讨论了双星的形成。非线性相互作用和旋转取到非常关键的作用。此外,Lorenz 模型可以由流体力学方程导出,模型中的双翼正好形成双星。而线性方程仅仅形成单星。 关键词:双星,非线性动力学,流体力学,Lorenz 模型,磁流体动力学 1. 引言 近年来,双星系统的普遍存在和解释成为天文学中一个令人关注的问题[1-7]。Itoh 等讨论了具有强场的相对论性紧密双星的运动方程[8]。Taniguchi 等讨论了广义相对论中同步的无转动双中子星的准平衡序列[9]。Büning 等用物理模型计算了在闭合双星中质量转移的数值稳定性[10]。Pittard 等推广了正在碰撞缠绕双星(colliding-wind binaries, CWBs )的幅射模型[11]。Rensbergen 等重新分析了一类相互作用双星的演化[12]。云南天文台黄润乾院士对双星系统进行了长期研究,并且1999年对大质量双星系统的非守恒演化作了系统总结 [13]。 基于星云的旋转吸积盘的基本方程,我们应用非线性方程的定性分析理论得到了双星形成的非线性动力学模型[14]。在一定条件下,一对奇点作为演化结果相应于双星。而在其它条件下这些方程给出单个中心点,就相应于单星。这一模型和著名的Boss 等计算机模拟的结果是一致的[15,16]。但是,计算机模拟的定量过程仍然是一个问题。进而我们定性指出用Lorenz 方程可以形成双星,其中具有两“翼”的Lorenz 吸引子相应于双星[14]。Steinitz 和Farbiash 确定了双星中自旋(旋转速度)间的相互关系,并显示出自旋关系度与组成的分离是无关的。这一结果可以作为例子联系于星云形成的双星Zhang’s 非线性模型[17]。本文我们应用星云早期状态的流体动力学和别的非线性理论论证双星的形成,并证明非线性相互作用是其形成的必要条件。 2. 双星形成的非线性流体力学模型 基于早期星云的流体力学方程和磁流体动力学方程,非线性相互作用将在二维平面形成某些奇点。当Jeans 不等式λπρ>(/)/v G s 12成立时,引力不稳定,并且原始星云将塌缩。我们模型的基础是恒星起源于星云,而主要由氢和氦等离子体组成的星云服从非线性的磁流体动力学方程。它们的一般形式是著名的Alfver 方程[18]: graddivV V gradp B V c e F V V t V dt dV 3])([ημ??ρρ+?+?×+=?+=. (1) 这是具有磁力项的Navier-Stokes 方程。在二维星云的吸积盘中,方程变为 ),(3)()(2222y v x u x u y x x p v B c e F u y v x u t u z x ??????η????μρ??????ρ++++???+++?= (2) )(3)()(2222y v x u y v y x y p u B c e F v y v x u t v z y ??????η????μρ??????ρ++++????++?=. (3) 旋转作用显出后,方程可以重新写为[19]:

齿轮动力学

(一) 直齿圆柱齿轮传动的扭转振动模型 若忽略传动轴的扭转变形,只考虑齿轮副处的变形,则得到最简单的扭转振动模型,如图1所示。其中r b1、r b2为主从动齿轮的基圆直径,k v 为齿轮副的综合啮合刚度,并且考虑齿轮副的啮合阻尼系数c v 以及齿廓误差e 的作用,主动轮上作用与转动方向相同的驱动力矩T 1,从动轮上作用与转动方向相反的阻力矩T 2 图1 齿轮副的扭转振动模型 啮合线上的综合变形δi 可写为: 1122i b b i r r e δθθ=-- (1) 设重合度小于2,啮合齿对为i ,法向啮合力可以表示为: ()()() 11221122i vi i vi i vi b b i vi b b i i i i F F k c k r r e c r r e δδθθθθ??==+=--+--??∑∑∑&&&& (2) 式中:i 为参与啮合的齿对序号,i =1,2;k vi 、c vi 为齿对i 在啮合点位置的综合啮合刚度和阻尼系数。 主、从动齿轮的力矩平衡方程为: 12111222 b b J T r F J T r F θθ=-=-&&&& (3) 将(2)带入(1)中得到: ()() ()() 111112211221222112211222 b vi b b i vi b b i i b vi b b i vi b b i i J r k r r e c r r e T J r k r r e c r r e T θθθθθθθθθθ??+--+--=????---+--=-??∑∑&&&&&&&&&& (4)

由此式可看出,即使主动齿轮转速以及传动载荷恒定,由于时变综合刚度k v 的变化,也会使从动轮的转动出现波动,即造成齿轮的圆周振动。为了方便讨论时变综合刚度k v 对振动方程(4)的影响,定义啮合线上两齿轮的相对位移x 为: 1122b b x r r θθ=- (5) 不考虑齿轮传动的效率,齿轮的静态啮合力为: 12 01 2 b b T T F r r = = (6) 将式(5)、(6)带入方程(4)中,则可将其简化为一元微分方程: e v v d m x c x k x F ++=&&& (7) 式中,m e 称为系统的当量质量: 12 22 2112 e b b J J m J r J r = + (8) 激振力为: 0d vi i vi i i i F F c e k e =++∑∑& (9) 根据方程(9)可以将一对齿轮的振动视为单自由度系统的振动,如图2所示。可以看出时变综合刚度k v 和齿廓误差e i 都是随时间变化的量,也即是齿轮系统的刚度激励和误差激励。 图2 齿轮传动的单自由度模型 与方程(7)对应的系统的固有频率可以表示为: n f = = (10) (二) 直齿圆柱齿轮副啮合耦合型振动分析 在不考虑齿面摩擦的情况下,典型的直齿圆柱齿轮副的啮合耦合型动力学模型如图4所示。

齿轮动力学国内外研究现状

1.2.1 齿轮系统动力学研究 从齿轮动力学的研究发展来看,先后进行了基于解析方法的非线性齿轮动力学研究、基于数值方法的齿轮非线性动力学研究、基于实验方法的齿轮系统的非线性动力学研究和考虑齿面摩擦及齿轮故障的齿轮系统的非线性动力学研究。其中,解析方法包括谐波平衡法、分段技术法和增量谐波平衡法等;数值方法则不胜枚举,包括Ritz法、Parametric Continuation Technique方法等。[1]齿轮系统间隙非线性动力学的研究起始于1967年K.Nakamura的研究。[2]在1987年,H. Nevzat ?zgüven等人对齿轮系统动力学的数学建模方法进行了详细的总结。他分别从简化的动力学因子模型、轮齿柔性模型、齿轮动力学模型、扭转振动模型等几个方面分类,详细总述了齿轮动力学的发展进程。[3]1990年,A. Kaharman等人分析了一对含间隙直齿轮副的非线性动态特性,考虑了啮合刚度、齿侧间隙和静态传递误差等内部激励的影响,考察了啮合刚度与齿侧间隙对动力学的共同影响。[4] 1997年,Kaharaman和Blankenship对具有时变啮合刚度、齿侧间隙和外部激励的齿轮系统进行了实验研究,利用时域图、频域图、相位图和彭家莱曲线等揭示了齿轮系统的各种非线性现象。[5]同年,M. Amabili和A. Rivola研究了低重合度单自由度的直齿轮系统的稳态响应及其系统的稳定性。 [6]2004年,A. Al-shyyab等人用集中质量参数法建立了含齿侧间隙的直齿齿轮副的非线性动力学模型,利用谐波平衡阀求解了方程组的稳态响应,并研究了啮合刚度、啮合阻尼、静态力矩和啮合频率对齿轮系统振动的影响。[7]2008年,Lassaad Walha等人建立了两级齿轮系统的非线性动力学模型,考虑了时变刚度、齿侧间隙和轴承刚度对动力学的影响。对非线性系统分段线性化并用Newmark迭代法进行求解,研究了齿轮脱啮造成的齿轮运动的不连续性。[8]2010年,T. Osman 和Ph. Velex在齿轮轻微磨损的情况下,建立了动力学模型,通过数值模拟揭示了齿轮磨损的非对称性。[9]2011年,Marcello Faggioni等人通过分析直齿轮的非线性动力学特性及其响应,建立了以齿轮振动幅值的目标函数,利用Random–Simplex优化算法优化了齿廓形状。[10]2013年,Omar D. Mohammed等人对时变啮合刚度的齿轮系统动力学进行了研究,对于裂纹过长所带来的有限元误差问题,提出了一种新的时变啮合刚度模型。通过时域方面的故障诊断数据和FEM结果对比,证明了新模型能够更好地解长裂纹问题。[11] 国内研究齿轮系统动力学也进行了大量的研究。2001年,李润芳等人建立了具有误差激励和时变刚度激励的齿轮系统非线性微分方程,利用有限元法求得齿轮的时变啮合刚度和啮合冲击力,研究了齿轮系统在激励作用下的动态响应。 [12]2006年,杨绍普等人研究了考虑时变刚度、齿轮侧隙、啮合阻尼和静态传递误差影响下的直齿轮副的非线性动力学特性,利用增量谐波平衡法对系统方程进行了求解,研究了系统的分岔特性以及阻尼比和外激励大小对系统幅频曲线的影响。[13]2010年,刘国华等人建立了考虑齿轮轴的弹性、齿侧间隙、油膜挤压刚度和时变啮合刚度等因素的多体弹性非线性动力学模型,研究了齿廓修形和轴的扭转刚度对动力学特性的影响。[14] 2013年,王晓笋,巫世晶等人建立了含有非线性齿侧间隙、内部误差激励和含磨损故障的时变啮合刚度的三自由度齿轮传动系统平移—扭转耦合动力学方程。采用变步长Gill积分、GRAM—SCHMIDT方法,得到了系统对应的分岔图和李雅普诺夫指数谱,研究发现了系统内部丰富的非线性现象,而系统进入混沌运动的途径也是多样的。[15]

相关文档
最新文档