水体中亚硝酸盐的来源与去除

水体中亚硝酸盐的来源与去除
水体中亚硝酸盐的来源与去除

Hans Journal of Food and Nutrition Science 食品与营养科学, 2017, 6(1), 37-42 Published Online February 2017 in Hans. https://www.360docs.net/doc/137250323.html,/journal/hjfns https://https://www.360docs.net/doc/137250323.html,/10.12677/hjfns.2017.61006

文章引用: 王树庆, 范维江, 张红平, 赵鑫, 柏永亭. 水体中亚硝酸盐的来源与去除[J]. 食品与营养科学, 2017, 6(1):

Origin and Removal of Nitrite in Water

Shuqing Wang 1,2*, Weijiang Fan 1, Hongping Zhang 2, Xin Zhao 2, Yongting Bo 2

1Shandong Institute of Commerce and Technology, Jinan Shandong 2

Shandong Tianfu Jinda Biotechnology Co. Ltd., Jinan Shandong

Received: Feb. 2nd

, 2017; accepted: Feb. 18th

, 2017; published: Feb. 22nd

, 2017

Abstract

Nitrite is an intermediate product of the nitrogen cycle in nature, which exists widely in water and has attracted more and more attention because of its strong biological toxicity. Origin, influencing

factors and removal technology are summarized in details in this paper. Some practical signific-

ances of solving nitrite in water are also proposed.

Keywords

Water, Nitrite, Origin, Removal

水体中亚硝酸盐的来源与去除

王树庆1,2*,范维江1,张红平2,赵 鑫2,柏永亭2

1

山东商业职业技术学院,山东 济南 2

山东天福晋大生物科技有限公司,山东 济南

收稿日期:2017年2月2日;录用日期:2017年2月18日;发布日期:2017年2月22日

摘 要

亚硝酸盐是自然界中氮循环的一个中间产物,广泛存在于水体中,其生物毒性越来越受到人们的关注。本文阐述了水体中亚硝酸盐的来源、影响因素以及去除技术,并指出了解决水体中亚硝酸盐的现实意义。

关键词

水体,亚硝酸盐,来源,去除

*

通讯作者。

王树庆 等

Copyright ? 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.360docs.net/doc/137250323.html,/licenses/by/4.0/

1. 引言

亚硝酸盐作为生态系统中氮循环的一个自然组成成分,广泛存在于天然水体中。水中亚硝酸盐对环境的污染及生物的影响已经得到人们的共识,不管是对人类本身,还是对动物、植物都能造成直接或间接的危害,它是环境中一种潜在危险物。水是人类摄食亚硝酸盐的主要来源之一,当含高浓度亚硝酸盐的地下水被人饮用后,可引起高铁血红蛋白症,长时间饮用甚至会导致肝癌和胃癌发病率升高[1]。

1984年WHO 的第一版《饮用水水质准则》[2]建议水体中亚硝酸盐氮水平应低于1 mg/L 。1993年的准则[3]的结论性意见中提出应该制订亚硝酸盐的准则值,暂定的亚硝酸盐准则值为3 mg/L 。1998年出版的准则补充本[4]认为由JECFA 综合关于亚硝酸盐对人的数据,支持现行暂行准则值3 mg/L 。此外,准则补充本还推导得出亚硝酸盐长期暴露的准则值为0.2 mg/L ,这是根据1995年JECFA 的ADI 推导得来的。然而,由于观察到对健康的有害影响的不确定性以及人比动物有更大易感性,此项准则值只作为暂行准则值。我国生活饮用水卫生标准(GB5749-2006) [5]中规定亚硝酸盐的限值为1 mg/L 。

2. 水中的亚硝酸盐来源

硝酸盐和亚硝酸盐都是天然存在的离子,是氮循环的一部分。亚硝酸根离子(2NO ?)是一个相对不稳定的氧化态氮,可以通过化学和生物反应分解为亚硝酸盐或氧化成硝酸盐。水中亚硝酸盐的产生途径主要有以下几种:

(1) 在水体缺氧条件下,水里的硝酸根离子转化为亚硝酸根离子。一般来讲,反硝化反应是指在缺氧条件下,反硝化菌将硝酸盐和亚硝酸盐还原为氮气的过程,在此过程中反硝化菌以各种有机底物(碳源)

作为电子供体,将3NO ?-N 还原成2NO ?

-N ,其反应式如下(以甲醇作为碳源):

332226NO 2CH OH 6NO 2CO 4H O ?

?+→++

(2) 由水中的某些微生物的代谢过程产生。硝化反应是在好氧条件下,将铵态氮转化为硝酸盐和亚硝酸盐的过程。亚硝化菌属以CO 2作为碳源,将氨氧化成亚硝酸盐,同时获得能量。在体外,有机物能够抑制亚硝化菌的氨氧化反应,而铵盐和碳酸盐能够促进亚硝化菌的氨氧化。除了硝化菌属的维氏硝化杆菌能够将氨氧化为亚硝酸盐(表1),Cutler 和Mukerji [6]分离出许多土壤微生物,其中大部分是革兰氏阳性,无芽孢,无鞭毛,严格好氧杆菌,能够在有机物下生长。与亚硝化单胞菌在碱性条件生长相比,Cutler 和Mukerji 分离的微生物能够在pH 4.8~7.3条件下生成亚硝酸盐。另外,Winogradsky [7]从土壤里分离两个氨氧化菌属,命名为亚硝化螺菌属和亚硝化囊菌属(后改为亚硝化球菌属)。Krummel 和Harms [8]研究了不同有机物对氨氧化酶活性的影响;他们发现,有机物抑制亚硝化球菌属的活性,而对亚硝化单胞菌属没有影响。

Suzuki [10]提出氨氧化反应的步骤:

32222NH O AH NH OH H O A ++→++ (1)

()()

322NH OH 2cyt.c Fe NOH 2H 2cyt.c Fe +++→+++ (2)

()()

23222cyt.c Fe O 2H 2cyt.c Fe H O +++++→+ (3)

222NOH A H O NO AH H +++→++ (4)

Open Access

王树庆等Table 1. The similarities and differences of nitrification bacteria

表1. 硝化菌的异同[9]

A B C D E F G H I

NH3-NO2----+++++

NO2-NO3++++-----

形状—杆状++--+----球状--+--+---

螺旋状---+--+--

其他-------++繁殖—二分裂-++++++++

芽孢生殖+--------

栖息地-土壤+--++++++污水+---+++--

水+---+++--

海水++++++---

A:硝化杆菌;B:硝化刺菌;C:硝化球菌;D:硝化螺旋菌;E:亚硝化单胞菌;F:亚硝化球菌;G:亚硝化螺旋菌;H:亚硝化叶菌;I:亚硝化弧菌(摘自Bcrgcy,1989)。

Hollocher等人研究表明[11],反应(1)的氧来自氧分子,而反应(4)氧的氧来自水。细胞色素C和p-460参与反应(2)~(4),是产生能量的步骤。有机化合物只对反应(1)有作用,而对后面的产能反应没有影响。

亚硝化单胞菌无处不在,广泛的存在于土壤中,与生活污水、动物粪便和土壤息息相关。如Sims和Collins [12]在澳大利亚的沙漠土壤中发现有亚硝化单胞菌。亚硝化叶菌存在于耕地或草场的土壤中,而森林土壤中没有发现该菌属,非常耐干燥和储存。越来越多的证据表明,亚硝化叶菌与亚硝化单胞菌不是同一类细菌,是耕种土壤的优势硝化菌。同时,亚硝化螺菌是孟加拉国茶园土壤(酸性)的优势菌。研究证明,有些异生生物如节杆菌属和某些真菌(如黑曲霉)可能是土壤中硝化作用的主要来源。

(3) 使用氯胺消毒控制不当,导致输水系统内亚硝酸盐浓度升高。氯胺消毒法会增加供水系统中亚硝酸盐的浓度,容易出现亚硝酸盐超标的现象。这主要是通过不完全的硝化作用增大了饮用水的亚硝酸盐浓度,一般在0.2~1.5 mg/L,最高可达3 mg/L。陈忠林等人[13]对南方某市氯胺消毒的供水管网进行了调查,发现管网中亚硝酸盐超标严重,但原水经过预处理后亚硝酸盐浓度会有较大幅度的降低。

(4) 雷电作用下空气中氧和氮化合生成氮氧化合物,遇雨后部分成为亚硝酸盐等。空气中氮的氧化反应广泛存在。雷电作用下空气中氧和氮化合生成氮氧化合物,此类化合物遇雨后溶解,进一步氧化为硝酸盐和亚硝酸盐,一般降雨中硝态氮不超过0.2 ppm,雨水通常含有更多的氨态氮。Davey的研究认为[14],饮用水总氮仅有2.5%来自雨水,但是这个比例随着社会和经济的发展变得越来越大。

3. 水中的亚硝酸盐产生的影响因素

3.1. 影响反硝化菌的主要因素

影响反硝化菌的因素很多,主要因素(1) 温度:温度对反硝化的影响比对其它废水生物处理过程要大些,30℃~60℃为其最适反应温度。反硝化反应在5℃~40℃都可以进行,但温度低于15℃时,反硝化速率明显下降。(2) pH值:反硝化过程的pH值控制在6.5~7.5。pH值高于8.0或者低于6.0时,反硝化反应迅速下降。(3) 溶解氧:氧对反硝化作用又抑制作用,反硝化反应发生时的溶解氧应控制在0.5 mg/L

王树庆 等

以下。(4) 有机碳源 当水中有足够的有机碳源才能够确保反硝化反应的顺利进行。

3.2. 亚硝化菌的影响因素

影响亚硝化菌的因素有以下几个方面:(1) 温度:硝化反应的适宜温度为20℃~30℃,低于15℃时,反应速度迅速下降,5℃时反应几乎完全停止。(2) pH 值:硝化菌对pH 值的变化非常敏感,生长最适pH 值7.0~8.0。(3) BOD 5/TKN :BOD 5 (Biochemical Oxygen Demand)是指第5天好氧微生物氧化分解单位体积水中有机物所消耗的游离氧的数量。TKN (Total Kjeldahl Nitrogen)是以凯氏法测定的总氮含量,它包括了氨氮和在此条件下能被转化为铵盐的有机氨化合物。亚硝化菌是自养菌,若水中BOD 5值过高,将有助于异养菌的迅速繁殖,微生物中的亚消化菌比例下降,见表2。(4) 溶解氧:硝化反应对溶解氧有较高的要求,硝化反应发生时的溶解氧应保持在2 mg/L 以上。(5) 硝化菌的泥龄:硝化菌的生长世代周期较长,为了保证硝化作用的进行,泥龄应取大于硝化菌最小世代时间两倍以上。

4. 水体中的亚硝酸盐去除

欧美国家对亚硝酸盐污染问题重视较早,并开发出了一系列处理工艺。欧洲在80年代初期就建立了一些实用的饮用水脱硝厂,美国则关闭了一些污染严重的地下水源井。随着水资源的日益紧张,饮用水亚硝酸盐污染问题的研究越来越受到大家的关注。水中亚硝酸盐的处理工艺有化学法、生物法及物理法等几大类。化学法包括氧化法和还原法两种,物理法则包括膜分离法和离子交换法等[16]。

4.1. 氧化或还原法

氧化法处理水中亚硝酸盐的技术具有设备简单、处理费用低的优点,是目前国际上普遍采用的方法。其原理为:亚硝酸离子中的氮为中间价态,在一定条件下,能够被氧化和还原。当介质中的2NO ?遇氧化

剂时则会改变氮的价态,发生得失电子的变化而被氧化,最终2

NO ?

离子会转变为毒性较小甚至无毒的物质。2NO ?在酸性条件下具有氧化性而被还原的特点,考虑使用某种还原剂将2NO ?

还原降解为易挥发气体

而自动脱离反应体系,常采用的氧化剂有臭氧、双氧水、次氯酸钠等一些强氧化剂。

4.2. 膜分离法

膜分离法包括反渗透和电渗析两种。反渗透膜对硝酸根无选择性,但各种离子的脱除率与其价数成正比。常用的反渗透膜主要是醋酸酯膜,也可使用聚胺酯膜和其它复合膜。反渗透在除去亚硝酸盐的同时也将除去其它的无机盐,因此反渗透法将降低出水的矿化度。电渗析和反渗透的脱硝效率差不多,但电渗析脱硝法只适用于软水。膜分离法适用于小型供水设施,其缺点是费用高(尤其是电渗析法),产生浓缩废盐水,存在二次污染问题。

Table 2. The relationship between BOD5/TKN and the proportion of nitrite bacteria 表2. BOD 5/TKN 与亚硝化菌所占比例的关系[15]

BOD 5/TKN

亚硝化菌所占比例

BOD 5/TKN

亚硝化菌所占比例

0.5 0.35 5 0.054 1 0.21 6 0.043 2 0.12 7 0.037 3 0.083 8 0.033 4

0.064

9

0.029

王树庆 等

4.3. 离子交换法

离子交换法是一种借助于离子交换剂上的离子和水中的离子进行交换而除去水中有害离子的方法。在工业用水的处理中,它占有极重要的位置,用以制取软水或纯水,在工业废水处理中,主要用以回收贵金属离子,也用以放射性废水和有机废水的处理。采用离子交换法,具有去除率高、可浓缩回收有用物质、操作控制容易等优点。

4.4. 生化处理法

传统的生化处理方法主要分为好氧生物处理方法和厌氧生物处理方法两种,并早已在国内外得到广泛的应用,也是目前最有效的处理方法之一,特别是在废水处理方面正起着越来越重要的作用。

厌氧生物处理法,是在无氧的条件下由兼性厌氧菌和专性厌氧菌来降解污染物的方法,主要用来处理有机污染物,已有一百年的历史,但由于与好氧法相比,存在着处理时间长、出水水质差等缺点,从而使其应用受到限制,发展缓慢。

好氧生物处理法主要有活性污泥法和生物膜法两大类。活性污泥法是水体自净的人工强化方法,是一种依靠在曝气池内呈悬浮、流动状态的微生物群体的凝聚、吸附、氧化分解等作用来去除污水中有机物的方法。生物膜法则是土壤自净的人工强化方法,是一种使微生物群体附着于某些载体的表面上呈膜状,通过与污水接触,生物膜上的微生物摄取污水中的有机物作为营养并加以代谢,从而使污水得到净化的方法。

由于常规的活性污泥工艺过程硝化作用不完全,反硝化作用几乎不发生,总氮(TKN)的去除率约在10%~30%。因此,对于含氮工业废水或不合格饮用水,若采用常规的活性污泥法处理,出水中的有害物质含量很难达标。这就促使人们对传统的活性污泥工艺流程进行改造,以提高其效率。

荷兰Delft 技术大学开发了一种脱氮新工艺(Single Reactor for High Activity Ammonia Removal Over Nitrite),将氨氮氧化控制在亚硝化阶段,第一步是由亚硝化菌将氨氮转化为亚硝酸盐,亚硝化菌包括亚硝酸盐单胞菌属和亚硝酸盐球菌属。第二步是由硝化菌将亚硝酸盐转化为硝酸盐,硝化菌包括硝酸盐杆

菌属、螺旋菌属和球菌属。这类菌利用无机碳化物如23CO ?、3HCO ?和CO 2作碳源,从NH 3、4NH +或2

NO ?

的氧化反应中获得能量,两步反应均需在有氧条件下进行。生成的3NO ?由反硝化菌在缺氧条件下还原成

N 2或氮氧化合物。

1990年,该大学Kluyver 生物技术实验室开发出厌氧条件下的脱氮新工艺(Anaerobic Ammonium

Oxidation) [17],即在厌氧条件下,以3NO ?或2NO ?为电子受体,将氨转化为N 2。2NO ?是一个关键的电子

受体,由于该细菌是自养菌,因此不需要添加有机物来维持反硝化,发生的反应可能为:

43225NH 3NO 4N 9H O 2H +?++

+→+

4222NH NO N 2H O +?+

+→

近年来科学家也开发出了一些多种处理方法共用的新型水处理工艺,例如生物活性碳法,该方法已被世界上许多国家采用,尤其在西欧,应用更为广泛。应用实践证明,该工艺具有微生物和活性炭的叠加和协同作用,对于亚硝酸盐亦有较好的处理效果。除此之外的生物接触氧化法、投料活性污泥法,均兼有活性污泥法和生物膜法特点,由于它们具有许多优点,因此也受到人们的重视。

5. 结论

亚硝酸盐作为生态系统中氮循环的一个中间产物,广泛存在于水体中。开展对水体中亚硝酸盐污染的范围、程度与深度、污染物的来源、污染的原因、途径和机制的研究,尤其是研究水体中亚硝酸盐污

王树庆等

染的处理方法及防治措施,具有很大的实际意义。(1) 保护饮用水源,预防因亚硝酸盐污染而引起的各种疾病,如高铁血红蛋白症、癌症等[18]。(2) 保护农牧业用水源,预防牲畜类亚硝酸盐中毒,增加作物抗灾、抗虫能力,提高农作物、蔬菜、瓜果的质量与品级,保证人们的食用安全。

参考文献(References)

[1]Pintar, K.D.M. and Slawson, R.M. (2003) Effect of the Temperature and Disinfection Strategier on Ammonia-Oxidiz-

ing Bacteria in Abench-Scale Drinking Water Distribution System. Water Research, 37, 1805-1817.

[2]WHO (1993) Health Hazards for Nitrate in Drinking Water. World Health Organization, Geneva.

[3]WHO (1993) Guidelines for Drinking Water Quality. World Health Organization, Geneva.

[4]WHO (1998) Guidelines for Drinking Water Quality. World Health Organization, Geneva.

[5]中华人民共和国卫生部. GB/T 5749-2006. 生活饮用水卫生标准[S]. 北京: 中华人民共和国卫生部, 2006.

[6]Cutler, D.W. and Mukerji, B.J. (1931) Nitrite Formation by Soil Bacteria Other than Nitrosomonas. Proceedings of the

Royal Society B, 108, 384-394.https://https://www.360docs.net/doc/137250323.html,/10.1098/rspb.1931.0047

[7]Winogradsky, S. and Winogradsky, H. (1933) Nouvilles recherches sur les organisms de la nitrification. Annales de

l’Institut Pasteur, 50, 350-432.

[8]Krümmel, A. and Harms, H. (1982) Effect of Organic Matter on Growth and Cell Yield of Ammonia-Oxidizing Bacte-

ria. Archives of Microbiology, 133, 50-54.https://https://www.360docs.net/doc/137250323.html,/10.1007/BF00943769

[9]Hill, M., et al. (1996) Nitrates and Nitrites in Food and Water. Woodhead Publishing Ltd., Cambridge.

[10]Suzuki, I. (1974) Mechanisms of Inorganic Oxidation and Energy Coupling. Annual Review of Microbiology, 28, 85-

101.https://https://www.360docs.net/doc/137250323.html,/10.1146/annurev.mi.28.100174.000505

[11]Hollocher, T.C., Tate, M.E. and Nicholas, D.J. (1981) Oxidation of Ammonia by Nitrosomonas europaea. Definite

18O-Tracer Evidence That Hydroxylamine Formation Involves a Monooxygenase. Journal of Biological Chemistry,

256, 10834-10836.

[12]Sims, C.M. and Collins, F.M. (1959) Nitrite Production by Athermophilic Bacterium. Australian Journal of Agricul-

tural Research, 10, 832-838.https://https://www.360docs.net/doc/137250323.html,/10.1071/AR9590832

[13]陈忠林, 陈杰, 焦中志, 等. 高锰酸钾预氧化控制氯/氯胺消毒的卤乙酸生成量[J]. 环境科学学报, 2006, 26:

1082-1086.

[14]Davey, K.W. (1970) An Investigation into the Nitrate Pollution of the Chalk Borehole Water Supplies. North Lindsey

Water Board.

[15]贺延龄. 废水的厌氧生物处理[M]. 北京市: 中国轻工业出版社, 1998.

[16]周超, 高乃云, 楚文海, 等. 水体中亚硝酸盐生物毒性和去除的研究进展[J]. 给水排水, 2011, 37: 104108.

[17]Strous, M., Gerven, E.V., Zheng, P., et al. (1997) Ammonium Removal from Concentrated Waste Streams with the

Anaerobic Ammonium Oxidation (Anammox) Process in Different Reactor Configurations. Water Research, 31, 1955-

1962.https://https://www.360docs.net/doc/137250323.html,/10.1016/S0043-1354(97)00055-9

[18]王树庆, 范维江. 饮食中硝酸盐, 亚硝酸盐与人类健康[J]. 食品与营养科学, 2016, 5(3): 98-104.

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.360docs.net/doc/137250323.html,/Submission.aspx 期刊邮箱:hjfns@https://www.360docs.net/doc/137250323.html,

硝酸盐与亚硝酸盐的危害

仅供参考[整理] 安全管理文书 硝酸盐与亚硝酸盐的危害 日期:__________________ 单位:__________________ 第1 页共4 页

硝酸盐与亚硝酸盐的危害 硝酸盐(NO3)与亚硝酸盐(NO2)分别是硝酸(HNO3)和亚硝酸(HNO2)的酸根,它们作为环境污染物而广泛地存在于自然界中,尤其是在气态水、地表水和地下水中以及动植物体与食品内。 环境中硝酸盐与亚硝酸盐的污染来源很多,如:1.人工化肥:有硝酸铵、硝酸钙、硝酸钾、硝酸钠和尿素等;2.生活污水、生活垃圾与人畜粪便,据测试1升生活污水在自然降解过程中,可产生110毫克硝酸盐;1公斤垃圾粪便堆肥在自然条件下经淋滤分解后,可产生492毫克硝酸盐;3.食品、燃料、炼油等工厂排出大量的含氨废弃物,经过生物、化学转换后均形成硝酸盐进入环境中;4.汽车、火车、轮船、飞机、锅炉、民用炉等燃烧石油类燃料、煤炭、天然气,可产生大量氮氧化物,平均燃烧1吨煤、1千升油和1万立方米天然气可分别产生二氧化氮气体9、13与63公斤,这些二氧化氮气体经降水淋溶后可形成硝酸盐降落到地面和水体中;5.食品防腐与保鲜:硝酸盐与亚硝酸盐被广泛用在肉品和鱼的防腐和保存上,以使肉制品呈现红色和香味,在每公斤肉食品中加入亚硝酸盐(一般为亚硝酸钠)5毫克以下,在一定时间内肉色观感良好;加入20毫克以上,可呈现商业上需要的稳定色彩;加入50毫克则有特殊气味。 环境中化肥施用、污水灌溉、垃圾粪便、工业含氮废弃物、燃料燃烧排放的含氮废气等在自然条件下,经降水淋溶分解后形成硝酸盐,流入河、湖并渗入地下,从而造成地表水和地下水的硝酸盐污染。如污水下渗、污灌和滥施化肥可使地下水硝酸盐含量由数毫克/升剧增至400毫克/升以上(国家生活饮用水硝酸盐含量卫生标准小于88.6毫克/升,以氮计小于20毫克/升);滥施化肥、污灌、用硝酸盐污染的水源灌溉 第 2 页共 4 页

食品中亚硝酸盐测定实验

实验4 食品中亚硝酸盐测定(盐酸萘乙二胺法) 一、实验原理 制品中加入的亚硝酸盐产生的亚硝基与肌红蛋白反应,生产色泽鲜红的亚硝基肌红蛋白,使肉制品有美观的颜色。同时亚硝酸盐也是一种防腐剂,可抑制微生物的增殖。由于蛋白质代谢产物中仲胺基与亚硝酸反应能够生成具有很强毒性和致癌性的亚硝胺,因此,亚硝酸盐的使用量及在制品中的残留量均应按标准执行。亚硝酸盐的测定方法主要是重氮偶合比色法,此外可与荧光胺偶合,测定其荧光吸收强度,或衍生后用气相色谱法测定。 自样品中抽提分离出亚硝酸盐,亚硝酸盐在酸性条件下,与对氨基苯磺酸发生重氮化反应生成重氮盐,此重氮盐再与盐酸2—萘乙二胺试剂发生偶合反应,生成紫红色偶氮化合物。其颜色的深度与样品种亚硝酸含量成正比,故可比色测定。 二、试剂和器材 ①饱和硼砂溶液:5g硼酸钠溶于100mL热的重蒸水中,冷却备用。 ②亚铁氰化钾溶液:称取106g亚铁氰化钾溶于水,并稀释至1000mL。 ③乙酸锌溶液:称取220g乙酸锌,加30mL冰醋酸溶于水,并稀释至1000mL。 ④果蔬抽提液:溶解50g氯化汞和50g氯化钡于1000mL重蒸水中,用浓盐酸调整到pH值为1。 ⑤氢氧化铝乳液:溶解125g硫酸铝于1000mL重蒸水中,滴加氨水使氢氧化铝全部沉淀。用蒸馏水反 复洗涤,真空抽滤,直至洗液分别用氯化钡溶液检验不发生浑浊。取下沉淀物,加适量重蒸水使之呈薄糨糊状,捣拌均匀备用。 ⑥%对氨基苯磺酸溶液:称取对氨基苯磺酸,溶于100mL20%的盐酸溶液中,闭关保存。 ⑦%盐酸萘乙二胺溶液:称取盐酸萘乙二胺,溶于100mL重蒸水中。 ⑧亚硝酸钠标准溶液(5微克每毫升):精确称取亚硝酸铵,以重蒸水定容到500mL。再吸取此溶液25mL, 以重蒸水定容到1000mL,此工作液每毫升含亚硝酸钠5微克。 分光光度计,组织捣碎机。 三、试验步骤 1、样品处理 果蔬类样品用组织捣碎机打浆。称取适量浆液(视式样中硝酸盐含量而定,如青刀豆取10g,桃子、菠萝取30g),置于500mL容量瓶中。加200mL水,摇匀,再加100mL果蔬抽提液。震荡1h,加L氢氧化钠溶液40mL,用重蒸水定容后立即过滤。然后取60mL滤液于100mL容量瓶中,加氢氧化铝液至刻度。用滤纸过滤,滤液应为无色透明。

水体亚硝酸盐超标怎么办

水体亚硝酸盐超标怎么办? 亚硝酸盐是广泛存在于水体的一种物质,是水体氮循环的产物之一。养殖水体中利用目前的水质分析盒一般不得检出,能检出的浓度对鱼虾都会产生影响。 亚硝酸盐要在水体中完全不存在是不可能的,只是在养殖过程中要严格控制其危害浓度。近几年,亚硝酸盐中毒一直是养殖过程中碰到的比较棘手的问题,当前还没有能降解亚硝酸盐的特效药,但实践中,可以选择各种措施来缓解和降低亚硝酸盐带来的危害。 一、亚硝酸盐对水产养殖的影响 亚硝酸盐能促使血液中的血红蛋白转化为高铁血红蛋白,高铁血红蛋白不能与氧结合,造成血液输送氧气能力的下降。高铁血红蛋白使血液呈现褐色,称之为“褐血病”。 水体中低浓度的亚硝酸盐就能使鱼虾中毒。亚硝酸盐中毒后,血液的携带氧的能力减弱,即使含氧丰富的水体,鱼类也容易形成类似缺氧的症状。处于应激状态的鱼类,易交叉感染细菌性块状烂鳃病,不久出现大批死亡。 亚硝酸盐中毒分为两种: 1、慢性中毒:症状不明显,一般肉眼很难看出,但严重影响鱼类的生长和生活。中毒较深的摄食量减少,活动能力减弱,鱼体消瘦,体表无光泽,这为池塘的整体症状,只要细心观察,同样可以发现,见人回避反应缓慢。只要水体转好,该症状会逐步消失,但如果不及时调节水质,就会严重影响成活率,特别是恶劣天气或病毒侵害时,会造成极大损失。 2、急性中毒:一般发生在清晨,肉眼观察似缺氧浮头,且往往伴随缺氧症状同时发生,有时难以区分,但仍然还是可以区别的,缺氧浮头,鱼大多可以集群,但亚硝酸盐中毒就不同,鱼在整个池塘中不均匀分布,到处都是,即使注水解救,在短时间内也不会出现游向水口的情况,太阳出来后,症状也不会很快消失,甚至随着时间的推移会越来越严重,晴天中午都不会解除,只有在下午有点缓解,第二天更严重,甚至造成大批死亡,其死亡率可达90%以上,损失十分严重。 二、预防及解救 预防措施:

亚硝酸盐的危害

如对您有帮助,可购买打赏,谢谢 亚硝酸盐的危害 导语:很多人在3 15晚会上都听过亚硝酸盐这种东西,但是也只是听过而已,并没有真正的去关注过这种东西。甚至对于网上一些关于亚硝酸盐危害的帖子 很多人在3.15晚会上都听过亚硝酸盐这种东西,但是也只是听过而已,并没有真正的去关注过这种东西。甚至对于网上一些关于亚硝酸盐危害的帖子人云亦云,造成大家的恐慌。却没真正查过相关的知识,这样的做法都是不负责任的,也不明智的。那么亚硝酸盐究竟是一种什么东西呢?有哪些食物中含有这些东西呢?亚硝酸盐吃进身体中会有哪些危害呢?是一定会致癌吗?很多人都对亚硝酸盐有着误解,下面作出具体介绍。 酸菜、泡菜、咸菜、咸鱼、火腿、香肠等食品,均含硝酸盐和亚硝酸盐。硝酸盐可还原成亚硝酸盐。亚硝酸盐被吃到胃里后,在胃酸作用下与蛋白质分解产物二级胺反应生成亚硝胺。胃内还有一类细菌叫硝酸还原菌,也能使亚硝酸盐与胺类结合成亚硝胺。 胃酸缺乏时,此类细菌生长旺盛。故不论胃酸多少均有利于亚硝胺的产生。亚硝胺具有强烈的致癌作用,主要引起食管癌、胃癌、肝癌和大肠癌等。即使我们吃了亚硝胺类物质也不一定发生癌瘤。癌瘤的发生与亚硝胺的种类,数量有密切的关系,况且亚硝胺只不过是肇事的外因,外因必须通过内因起作用。 只要我们注意饮食营养,多吃含维生素C丰富的食品,增强体质,机体抗癌的战斗力就会增强,亚硝胺也就不可能兴风作浪。 通过上述内容的介绍可以了解到亚硝酸盐常见于酸菜、泡菜、咸菜、咸鱼、火腿这些食物中,在一定程度上具有致癌作用,但是并不是吃一定会致癌。只是不能过量食用,只要注意营养平衡,多吃维C丰富的产品,体质增强了就不会轻易患病了。 生活知识分享

水体中亚硝酸盐的来源与去除

Hans Journal of Food and Nutrition Science 食品与营养科学, 2017, 6(1), 37-42 Published Online February 2017 in Hans. https://www.360docs.net/doc/137250323.html,/journal/hjfns https://https://www.360docs.net/doc/137250323.html,/10.12677/hjfns.2017.61006 文章引用: 王树庆, 范维江, 张红平, 赵鑫, 柏永亭. 水体中亚硝酸盐的来源与去除[J]. 食品与营养科学, 2017, 6(1): Origin and Removal of Nitrite in Water Shuqing Wang 1,2*, Weijiang Fan 1, Hongping Zhang 2, Xin Zhao 2, Yongting Bo 2 1Shandong Institute of Commerce and Technology, Jinan Shandong 2 Shandong Tianfu Jinda Biotechnology Co. Ltd., Jinan Shandong Received: Feb. 2nd , 2017; accepted: Feb. 18th , 2017; published: Feb. 22nd , 2017 Abstract Nitrite is an intermediate product of the nitrogen cycle in nature, which exists widely in water and has attracted more and more attention because of its strong biological toxicity. Origin, influencing factors and removal technology are summarized in details in this paper. Some practical signific- ances of solving nitrite in water are also proposed. Keywords Water, Nitrite, Origin, Removal 水体中亚硝酸盐的来源与去除 王树庆1,2*,范维江1,张红平2,赵 鑫2,柏永亭2 1 山东商业职业技术学院,山东 济南 2 山东天福晋大生物科技有限公司,山东 济南 收稿日期:2017年2月2日;录用日期:2017年2月18日;发布日期:2017年2月22日 摘 要 亚硝酸盐是自然界中氮循环的一个中间产物,广泛存在于水体中,其生物毒性越来越受到人们的关注。本文阐述了水体中亚硝酸盐的来源、影响因素以及去除技术,并指出了解决水体中亚硝酸盐的现实意义。 关键词 水体,亚硝酸盐,来源,去除 * 通讯作者。

实验八 食品中亚硝酸盐的测定 16090211

实验十三食品中亚硝酸盐的测定(盐酸奈乙二胺法) 16090211 李亚东 一、实验原理 样品经沉淀蛋白质、除去脂肪后,在弱酸条件下亚硝酸盐与对氨基苯磺酸重氮化以后,再与盐酸奈乙二胺偶合形成紫红色染料,其最大的吸收波长为538nm,因此可以通过测定样品液反应后的吸光度并与标准比较定量。 二、实验试剂 1、氯化铵缓冲液:在1L玻璃烧杯中,加入500mL水,准确加入20.0mL盐酸,混匀,准确加入50mL氨水,必要时用稀盐酸和稀氨水调试至PH9.6-9.7。 2、硫酸锌溶液(0.42mol/L):称取120g硫酸锌(ZnSO 47H 2 O)用水溶解并稀 释至1000mL。 3、氢氧化钠溶液(20mol/L):称取20g氢氧化钠用水溶解,稀释至1000mL。 4、对氨基苯磺酸溶液:称取1g对氨基苯磺酸,溶于70mL水和30mL冰乙酸中,置棕色瓶中混匀,室温保存。 5、N–1-萘基乙二胺溶液:称取0.1g N-1-萘基乙二胺,加60%乙酸溶液,并稀释至100mL,混匀后,置棕色瓶中,在冰箱中保存,一周内稳定。 6、显色剂:临用前将N-1-萘基乙二胺溶液和氨基苯磺酸溶液等体积混合。 7、亚硝酸钠标准溶液:准确称取0.2500g于硅胶干燥器中干燥24h的亚硝酸钠,加水溶解移入500mL容量瓶中,加100mL氯化铵缓冲液,加水稀释至刻度,混匀,在4℃避光保存。此溶液每毫升相当于500ug的亚硝酸钠,作储备液。 8、亚硝酸钠标准使用液:临用前,吸取亚硝酸钠标准溶液1.0mL置于100mL 容量瓶中,加水稀释至刻度,此溶液每毫升相当于5.0ug亚硝酸钠。 三、实验仪器 分光光度计 四、实验步骤 1、称取10g左右的火腿于研钵中,用量筒量取70mL的水,加入一部分于研钵中,将其研成肉糜状。 2、将肉糜状的火腿转移至烧杯中,用剩下的水冲洗研钵,一同倒入烧杯中。加入12mL氢氧化钠溶液,用玻璃棒搅拌均匀。 3、测量液体的pH值,若其大于8,则将烧杯中所有物质转移至250mL容量瓶中;若小于8,则再加氢氧化钠直至大于8为止。 4、加入10mL硫酸锌溶液,混匀,容量瓶中出现为乳白色的乳浊液。 5、放入60℃的水浴锅中加热10min。 6、取出,用流水冷却,加水定容。然后静置30min。 7、出去容量瓶中的上层脂肪,然后用漏斗过滤,弃去初始的20mL滤液。但

养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施

酸碱度(即pH值) 对鱼的影响 池水是鱼类的生活环境,其酸碱度(即pH值)是鱼池水质的主要指标,它对鱼的生长、发育和繁殖等,有着直接或者间接的影响。 鱼类最适宜在中性或微碱性的水体中生长,其pH值为7.8~8.5。但在pH 值6~9时,仍属于安全范围。不过,如果pH值低于6或高于9,就会对鱼类造成不良影响。 鱼类在养殖过程中,如果pH过高或过低,不仅会引起水中一些化学物质的含量发生变化,甚至会使化学物质转变成有毒物质,对鱼类的生长和浮游生物的繁殖不利,还会抑制光合作用,影响水中的溶氧状况,妨碍鱼类呼吸。如果pH 值过高,鱼类生活在酸性环境中,水体中磷酸盐溶解度受到影响,有机物分解率减慢,物质循环强度降低,使细菌、藻类、浮游生物的繁殖受到影响,而且鱼鳃会受到腐蚀,使鱼的血液酸性增强,降低耗氧能力,尽管水体中的含氧量较高,但鱼会浮头,造成缺氧症,还会使鱼不爱活动,新陈代谢急剧减慢,摄食量减少,消化能力差,不利于鱼的生长发育。同时,偏酸性水体会引发鱼病,导致由原生动物引起的鱼病大量发生,如鞭毛虫病、根足虫病、孢子虫病、纤毛虫病、吸管虫病等。如果pH值过低,在5~6.5之间,又极易导致甲藻大量繁殖,对鱼的危害也较大。 pH值对鱼类繁殖也有影响。pH值不适宜,亲鱼性腺发育不良,妨碍胚胎发育。若pH值在6.4以下或9.4以上,则不能孵出鱼苗。若pH值过低,可使鱼卵卵膜软化,卵球扁塌,失去弹性,在孵化时极易提前破膜。若pH值在5~6.5之间,又遇适宜的温度条件(22℃~32℃),饲养的鱼种还极易得“打粉病”。 由于池水酸碱度对鱼类的生长、发育和繁殖都有密切关系,所以,要经常对

池水作pH值检测,并根据检测的结果,采取必要的相应措施,以保证池水的pH 值正常。 水的硬度对养鱼的影响 硬度作为一项水质指标对水草的生长有很重要的影响,但总是弄不明白什么是软水和硬水?什么是GH和KH?硬度是如何分级的?对水草有何影响? 水怎么会有软硬之分呢?这裡所说的软硬并不是物理性能上的软硬,而是根据水中所溶解的矿物质多寡来划分的,多了水就“硬”,少了水就“软”,硬水有许多缺点,使用时有不少麻烦。例如,在烧开水时易产生锅垢,又如硬水用来洗涤衣服时,消耗肥皂会比较多等。 因此,硬度可以用来描述水的软硬程度,其定义是指能使肥皂沉淀之量。这是因为肥皂是硬脂酸的钠或钾盐,遇到水中的钙、镁离子,易生成不溶性的硬脂酸钙和硬脂酸镁,使肥皂失去洗涤衣服的作用。除了钙、镁离子外,肥皂还能被铁、锰、铜…离子所沉淀,所以在化学上定义︰凡是水体存在能被肥皂产生沉淀的矿物质离子,都称为「硬度离子」,这裡指金属阳离子而言,主要包括钙、镁、铁、锰、铜离子等,而象钠、钾离子都不属于。但在一般的自然水(包括自来水)中,除了钙、镁离子外,其馀硬度离子存量很少,它们的总含量可能不到3%,因此水的硬度可以说主要表现为钙和镁离子,又称为“钙硬度”或“镁硬度”两者之和,称为“总硬度”,简称“硬度”,这其中钙硬度平均约占85%,镁硬度约占15%。 硬水又依加热之后是否可以发生矿物质沉淀,而分为“暂时硬水”和“永久硬水”两种。其中的部分金属离子可因加热而析出,故称为暂时硬水,主要是指那些含有酸式碳酸盐(例如,碳酸氢钙、碳酸氢镁、碳酸氢锰…等);所谓永久

亚硝酸盐超标怎么回事

如对您有帮助,可购买打赏,谢谢 亚硝酸盐超标怎么回事 导语:据新闻报道,近百吨的进口奶粉亚硝酸盐超标,由于食品中亚硝酸盐含量超标对人体健康有极大的危害,所以妈妈们购买奶粉时一定要多加留意。奶 据新闻报道,近百吨的进口奶粉亚硝酸盐超标,由于食品中亚硝酸盐含量超标对人体健康有极大的危害,所以妈妈们购买奶粉时一定要多加留意。奶粉的安全关乎孩子的健康成长,那么亚硝酸盐的危害有哪些呢?亚硝酸盐超标的原因是什么?下面一起来看看 奶粉中亚硝酸盐超标的原因 1.环境因素。首先是自然环境的选择。必须做好环境评价,避免在高度污染的环境中设立饲养场;其次是牛舍的选择。如果牛舍狭小,通风不畅,牛的排泄物不及时清理,在天热的时候极易变质,产生大量氨气,蒸发的氨气被牛吸入,在微生物的作用下容易转化为亚硝酸盐。因此奶牛的饲养应根据牛的数量确定牛舍的大小,加强通风,及时清除排泄物,这样可避免环境不良对生物本身造成的污染。 2.饲喂因素。首先是饮水。若饮水中亚硝酸盐高时,很容易造成代谢产物中亚硝酸盐含量高,因此在确定饮水源时,必须对水源进行检验,即可避免此现象的发生。其次是饲料。特别是各种配合饲料,由于生产厂家繁多,较难控制,主要是饲料生产商使用一些禁用品,如工业用氯化钠,各类含亚硝酸盐的添加剂,导致牛奶中亚硝酸盐含量超标。所以,各养殖户在选择饲料时最好检验亚硝酸盐含量,确定没有问题后再使用,在选择饲料供应商时,应相对固定,以免对饲料供应失去监控。 3.收购单位把关不严。牛奶收购单位要严格把好收购质量关,加强质量检验,每一批次都不能放过,这样才能杜绝亚硝酸盐含量超标的 预防疾病常识分享,对您有帮助可购买打赏

亚硝酸盐的危害

亚硝酸盐的危害 硝酸盐(NO3—)与亚硝酸盐(NO2—)分别是硝酸(HNO3)和亚硝酸(HNO2)的酸根,它们作为环境污染物而广泛地存在于自然界中,尤其是在气态水、地表水和地下水中以及动植物体与食品内。环境中硝酸盐与亚硝酸盐的污染来源很多,如:1.人工化肥:有硝酸铵、硝酸钙、硝酸钾、硝酸钠和尿素等;2.生活污水、生活垃圾与人畜粪便,据测试1升生活污水在自然降解过程中,可产生110毫克硝酸盐;1公斤垃圾粪便堆肥在自然条件下经淋滤分解后,可产生492毫克硝酸盐;3.食品、燃料、炼油等工厂排出大量的含氨废弃物,经过生物、化学转换后均形成硝酸盐进入环境中;4.汽车、火车、轮船、飞机、锅炉、民用炉等燃烧石油类燃料、煤炭、天然气,可产生大量氮氧化物,平均燃烧1吨煤、1千升油和1万立方米天然气可分别产生二氧化氮气体9、13与63公斤,这些二氧化氮气体经降水淋溶后可形成硝酸盐降落到地面和水体中;5.食品防腐与保鲜:硝酸盐与亚硝酸盐被广泛用在肉品和鱼的防腐和保存上,以使肉制品呈现红色和香味,在每公斤肉食品中加入亚硝酸盐(一般为亚硝酸钠)5毫克以下,在一定时间内肉色观感良好;加入20毫克以上,可呈现商业上需要的稳定色彩;加入50毫克则有特殊气味。 环境中化肥施用、污水灌溉、垃圾粪便、工业含氮废弃物、燃料燃烧排放的含氮废气等在自然条件下,经降水淋溶分解后形成硝酸盐,流入河、湖并渗入地下,从而造成地表水和地下水的硝酸盐污染。如污水下渗、污灌和滥施化肥可使地下水硝酸盐含量由数毫克/升剧增至400毫克/升以上(国家生活饮用水硝酸盐含量卫生标准小于88.6毫克/升,以氮计小于20毫克/升);滥施化肥、污灌、用硝酸盐污染的水源灌溉也使农作物吸收了大量的硝酸盐类,如过分施肥所产的菠菜中每公斤干重可含亚硝酸盐达3600毫克。还有腌制的渍酸菜、经过长途运输和长期贮存的蔬菜以及隔夜的熟蔬菜不仅硝酸盐含量大量增加,而且在硝酸盐还原菌的作用下,硝酸盐被还原为亚硝酸盐。 上述含有大量硝酸盐与亚硝酸盐的饮水、蔬菜、粮食、鱼、肉制品、渍酸菜、隔夜炒菜等经人食用后,大量亚硝酸盐可使人直接中毒,而且硝酸盐在人体内也可被还原为亚硝酸盐。亚硝酸盐与人体血液作用,形成高铁血红蛋白,从而使血液失去携氧功能,使人缺氧中毒,轻者头昏、心悸、呕吐、口唇青紫,重者神志不清、抽搐、呼吸急促,抢救不及时可危及生命。不仅如此,亚硝酸盐在人体内外与仲胺类作用形成亚硝胺类,它在人体内达到一定剂量时是致癌、致畸、致突变的物质,可严重危害人体健康。为了防止硝酸盐与亚硝酸盐的危害,除了要科学合理地施用化肥、禁止使用污水灌溉、实行污水、垃圾与粪便无害化处理等环保措施以保护地表水与地下水源不遭受硝酸盐和亚硝酸盐污染外,还应尽量少吃腌制、熏制、腊制的鱼、肉类、香肠、腊肉、火腿、罐头食品、渍酸菜、盐腌不久的菜;不买存放过久、隔日或发蔫的蔬菜;当日买的菜当日吃完;不吃隔夜的熟蔬菜;不可将剩饭菜长久存放;不可将工业用亚硝酸盐(如亚硝酸钠)当做食盐误食。 疏菜中的含量 硝酸盐测定仪 目前各类蔬菜中不仅农药残留超标现象仍然存在,而且硝酸盐超标的问题也比较突出,对人们身体健康构成了威胁。人体摄入的硝酸盐大部分来自蔬菜,约占80%。硝酸盐在细菌作用下可还原成亚硝酸盐。亚硝酸盐可使血液中毒,致使人体十现头昏缺氧症状;同时亚硝酸盐可与人体摄入的其他食品、药品、残留农药中的次级胺反应,在胃腔中形成强致癌物--亚硝胺,这是消化系统癌变的罪魁恶首。目前各地已经开始实行市场准人制,控制硝酸盐不超标将是取得市场"准入证" 的重要条件之一。尤其要注意对叶菜类、根茎菜类采取控硝措施。不同类型的蔬菜积累硝酸盐的敏感性不同,叶菜类为极敏感型,根茎菜类为敏感型.花菜类为不太敏感型,果菜类为不敏感型。对于菠菜、苋菜、空心菜、白菜、芹菜等叶菜类,以及胡萝卜、萝卜等根茎菜类,尤其要采取控硝措施。 以施用有机肥和生物肥料为主。施肥种类不同,同一种蔬菜中硝酸盐含量会有较大差别。以施用生物菌肥和高温堆肥的蔬菜含硝酸盐最少,其次为当地沤肥,以施用化肥的硝酸盐含量最高,其中尤以氮素化肥为甚。不同类型肥料施用对0~60厘米土层硝酸盐含量也表现出同样的趋势。土壤中硝酸盐含量不仅影响蔬菜对硝态氮的吸收,而且对地下水硝态氮含量高低也有较大影响。为了保护生态环境和防止蔬菜十硝酸盐的积累,应提倡以施用有机肥和生物肥料为主,尽可能少施化肥,特别是氮素化肥的施用,开切实做到氮磷钾配合施用:要求无机氮与有机氮的比例应少于1:1:氮磷钾三要素的比例,1 00天以内的短季蔬菜为1:0.2:0.5,长季蔬菜1:0.5:0.6。 选择适宜的氮肥种类、形态和用量。完全不施用氮肥目前恐怕还做不到,但要注意氮肥品种、氮素形态不同,蔬菜中硝酸盐的累积也不同。如施用铵态氮肥(氯化铵、硫酸铵等),会明显降低蔬菜中硝酸盐含量。因此,施用氮肥宜以尿素和铵态氮为主,或铵态氮与硝态氮配合使用,并控制比例7:3左右。短季节蔬菜施肥量全生育期推荐施纯氮10千克/667平方米,折合氯化铵21千克,厩肥1200千克或土杂肥1500千克:

食品中亚硝酸盐的检测方法

食品中亚硝酸盐的检测方法 方法一:亚硝酸盐快速检测管使用说明: 方法原理:按照国标GB/T 做成的速测管,与标准色卡比较定量。 操作方法: 1. 食盐中亚硝酸盐的快速检测及食盐与亚硝酸盐的快速鉴别:用袋内附带小勺取食盐1平勺,加入到检测管中,加入蒸馏水或纯净水至1ml刻度处,盖上盖,将固体部分摇溶,10分钟后与标准色板对比,该色板上的数值乘上10即为食盐中亚硝酸盐的含量mg/ kg,(国标规定食盐(精盐)中亚硝酸盐的限量卫生标准应≤2 mg/kg)。当样品出现血红色且有沉淀产生或很快退色变成黄色时,可判定亚硝酸盐含量相当高,或样品本身就是亚硝酸盐。 2. 液体样品检测:直接取澄清液体样品1ml加入到检测管中,盖上盖,将试剂摇溶,10分钟后与标准色板对比,找出与检测管中溶液颜色相同的色阶,该色阶上的数值即为样品中亚硝酸盐的含量mg/L(以NaNO2计)。(牛乳及豆浆也可直接检测,结果不得超过L ,有颜色的液体样品可加入一些活性炭脱色过滤后测定)。 3. 固体或半固体样品检测:取粉碎均匀的样品或至10ml比色管中,加蒸馏水或去离子水(纯净水)至刻度,充分震摇后放置,取上清液(或过滤或离心得到的上清液)加入到检测管中,盖上盖,将试剂摇溶,10分钟后与标准色板对比,该色板上的数值乘上10即为样品中亚硝酸盐的含量mg/ kg,L(以NaNO2计)。如果测试结果超出色板上的最高值,可定量稀释后测定,并在计算结果时乘上稀释倍数(如从10ml比色管中取出转入另一支10ml比色管中,加水至刻度,从中取加入到检测管中测定,测试结果乘上100(倍稀释)即为样品中亚硝酸盐的含量。 方法二:通过镀铜镉粒将硝酸盐还原为亚硝酸盐,并测其吸光度来计算牛奶中硝酸盐与亚硝酸盐含量的方法,可以检测市售牛乳中硝酸盐和亚硝酸盐。 方法三:检测硝酸盐有试纸条法,检测亚硝酸盐可应用硝酸根与无水对氨基苯磺酸重氮化再与奈胺偶合呈紫红色染料,根据颜色深浅来判定牛奶中亚硝酸盐的含量。但是两种方法准确度低,因而该方法还不够完善。 方法四:光度法 测定亚硝酸盐占据了重要的地位目前,光度法测定亚硝酸盐的方法除经典的格里斯试剂比色法及其改良法外,又有一些报道如催化(褪色)光度法流动注射系统-分光光度法顺序注射系统-分光光度法导数光度法等分光光度法主要有3种:可见分光光度法、紫外分光光度法、红外分光光度法。 方法五:示波极谱法 示波极谱分析法是指在特殊条件下进行电解分析以测定电解过程中所得到的电流- 电压曲线来做定量定性分析的电化学方法示波极谱法是新的极谱技术之一,该方法的优点是灵敏度高适用范围广检出限低和测量误差小等优点示波极谱法的原理是将样品经沉淀蛋白质去除脂肪后,在弱酸条件下亚硝酸盐与对氨基苯磺酸重氮化后,在弱碱性条件下再与8-羟基喹啉偶合成染料,该偶合染料在汞电极上还原产生电流,电流与亚硝酸盐浓度成线性关系,可与标准曲线定量在示波极谱仪上采用三电极体系,即以滴汞电极为工作电极,饱和甘汞电极为参比电极,铂电极为辅助电极进行测定测定时要注意显色条件的严格控制8- 羟基喹啉

浅谈亚硝酸盐

浅谈亚硝酸盐 摘要:参考相关文献,对亚硝酸盐的危害、限量、检测方法、抑制和去除方法以及研究现状等作一综述。 关键词:危害国家限量检测方法抑制和去除方法 亚硝酸盐,俗称“硝盐”,亚硝酸盐类食物中毒又称肠原性青紫病、紫绀症、乌嘴病,主要指亚硝酸钠和亚硝酸钾,为白色或微黄色结晶或颗粒状粉末,无臭,味微咸涩,易潮解,易溶于水,与食盐极为相似,因此被成为工业食盐。亚硝酸盐在工业、建筑业有广泛的用途,在食品中也常被用作为发色剂、防腐剂而限量使用。在水产品中,亚硝酸盐在防腐、保鲜方面有着不可替代的重要作用,而在生产过程中,很容易引起亚硝酸盐的过量。而亚硝酸盐对人体的危害是巨大的,在很多食品中,亚硝酸盐被检测出含量超标。一直以来,对亚硝酸盐的研究从未停止,也成为食品界急待解决的问题之一。 1危害 亚硝酸盐对人体的危害主要表现在以下几个方面: 1.1中毒 现在的科学研究结果一般认为硝酸盐本身是无毒的。而亚硝酸盐是强氧化剂,进入人体血液后与血红蛋白结合,使氧合血红蛋白变成高铁血红蛋白,导致“高铁血红蛋白症”,使血液失去携带氧的能力,导致组织缺氧,出现青紫而中毒,并对周围血管有扩张作用,严重的可能危及生命。 参考文献: 1.廖京勇.水体中硝酸盐和亚硝酸盐检测方法综述【J】.广东化工,2010,5. 2.冯枫,邹丽丽,郑娇,邱培梅.催化动力学光度法测定痕量亚硝酸盐.中国公共卫生,2002,11. 3.华煜等.仿生型信号分子对烟草硝酸盐、亚硝酸盐的抑制作用【J】.烟草农学,2010,7. 4.梅行等.大蒜与胃癌Ⅱ——大蒜对胃液硝酸盐还原菌生长及产生亚硝酸盐的抑制作用【J】.营养学报,1985,9. 5.王红霞,张稳婵.樱桃汁消除亚硝酸盐的研究【J】.安徽农业科学,2009,37(5).

腌制类食品主要危害

腌制类食品主要危害 1、导致高血压,肾负担过重,导致; 2、影响粘膜系统(对肠胃有害); 3、易得溃疡和发炎。 腌制食物是传统食品,很多家庭都有的习惯。但腌制食品多吃、偏吃对人的身体则不利。这是因为:蔬菜腌制后,其所含的维生素损失较多,维生素C几乎全部损失;腌制的中含有较多的草酸和钙,由于高,食后容易在肠道吸收,经肾脏排泄时,结晶极易沉积在形成结石。 腌制食物在腌制过程中,常被微生物污染,如果加入食盐量小于15%,蔬菜中的可被微生物还原成,人若进食了含有的腌制品后,会引起中毒。其症状为呈青紫色,口唇和指甲床发青,重者还会伴有头晕、头痛、心率加快等症状,甚至昏迷。 在人体内遇到胺类物质时,可生成。是一种,故常食腌制品容易致癌。 所以,腌制品营养受损且有害,不是人们的理想食品,以少吃为宜。 腌制食品的危害 含的食物。可导致食道癌和,它存在于腌制食品中。、咸肉、等都含有,所以,腌制的食品应少吃为宜。 发生中毒的另一原因是蔬菜:①进食存放过久的熟菜如夜菜,室温越高,放得越久,亚的含量越高; 现在市场上有大量硝酸盐与亚硝酸盐的饮水、蔬菜、粮食、鱼、肉制品、渍酸菜、隔夜炒菜等经人食用后,大量亚硝酸盐可使人直接中毒,而且硝酸盐在人体内也可被还原为亚硝酸盐。亚硝酸盐与人体血液作用,形成高铁血红蛋白,从而使血液失去携氧功能,使人缺氧中毒,轻者头昏、心悸、呕吐、

害人体健康。 尽量少吃腌制、熏制、腊制的鱼、肉类、香肠、腊肉、火腿、罐头食品、渍酸菜、盐腌不久的菜;不买存放过久、隔日或发蔫的蔬菜;当日买的菜当日吃完;不吃隔夜的熟蔬菜;不可将剩饭菜长久存放;不可将工业用亚硝酸盐(如亚硝酸钠)当做食盐误食。 亚硝酸盐的危害和预防 亚硝酸盐主要指亚硝酸钠,亚硝酸钠为白色至淡黄色粉末或颗粒,味微咸,易溶于水。外观及滋味都与食盐相似,并在工业、建筑业中广为使用,肉类制品中也允许作为发色剂限量使用。 由亚硝酸盐引起食物中毒的机率较高。食入~克的亚硝酸盐即可引起中毒甚至死亡。亚硝酸盐中毒是指由于食用硝酸盐或亚硝酸盐含量较高的腌制肉制品、泡菜及变质的蔬菜,或者误将工业用亚硝酸钠作为食盐食用均可引起亚硝酸盐中毒。也可见于饮用含有硝酸盐或亚硝酸盐苦井水、蒸锅水后,亚硝酸盐能使血液中正常携氧的低铁血红蛋白氧化成高铁血红蛋白,因而失去携氧能力而引起组织缺氧。 二、毒性机理及主要表现 亚硝酸盐中毒发病急速,一般潜伏期1-3小时,中毒的主要特点是由于组织缺氧引起的紫绀现象,如口唇、舌尖、指尖青紫,重者眼结膜、面部及全身皮肤青紫。头晕、头疼、乏力、心跳加速嗜睡或烦躁、呼吸困难、恶心、呕吐、腹痛、腹泻、严重者昏迷、惊厥、大小便失禁,可因呼吸衰竭而死亡。 食物中的亚硝酸盐多由硝酸盐转化还原生成。硝酸盐是自然界广泛存在的一种无机盐,人类的食物与饮水中中均含有一定量的硝酸盐,一般情况下硝酸盐含量甚微,不至于使人中毒,但在某些情况下,食物 中的硝酸盐含量激增,极易引起人体中毒。存在於食物中的过量硝酸盐,在一系列细菌的硝基还原酶的作用下,可被还原成亚硝酸盐,食物中过量的亚硝酸盐,是引起人体中毒、致癌、死亡的重要原因之一。硝酸盐在食物中过量存在的问题,已引起了广大科学界的关注,同时也引起了我们食品卫生监督人员的高度重视。

亚硝酸的作用机理

亚硝酸盐的作用机理 亚硝酸盐的来源 1食品中常用的亚硝酸盐 ①.亚硝酸钠 亚硝酸钠为白色或微黄色结晶或颗粒状粉末,无臭,味微咸,易吸潮,易溶于水,微溶于乙醇,在空气中可吸收氧而逐渐变为硝酸钠。 本品是食品添加剂中急性毒性较强的物质之一,是一种剧药(在药物学中,根据毒性试 验结果,把毒性较强的物质称为剧药,如亚硝酸钠、氢氧化钠等;把毒性更强的称为毒药,如三氯化二砷等)。过量的亚硝酸盐进入血液后,可使正常的血红蛋白(二价铁)变成高铁血红蛋白(三价铁),失去携氧的功能,导致组织缺氧。潜伏期仅为0.5?1小时,症状为 头晕、恶心、呕吐、全身无力、皮肤发紫,严重者会因呼吸衰竭而死。ADI (每日允许摄入量)为0 ?0.2mg/kg。 我国规定:本品可用于肉类罐头和肉制品,最大使用量为0.15mg/kg。残留量以亚硝酸 钠计,肉类罐头不得超过0.05mg/kg,肉制品不得超过0.03mg/kg。此外,还规定亚硝酸盐可用于盐水火腿,但应控制其残留量为70ppm。 ②?硝酸钠 硝酸钠的毒性作用主要是因为它在食物中、水或胃肠道,尤其是在婴幼儿的胃肠道中,易被还原为亚硝酸盐所致,其ADI为0?5mg/kg。我国规定:本品可用于肉制品,最大使 用量为0.5g/kg,其残留量控制同亚硝酸钠。 ③.亚硝酸钾 亚硝酸钾的毒性作用参照亚硝酸钠,其ADI为0?0.2 mg/kg。④.硝酸钾 硝酸钾的毒性作用参照硝酸钠,在硝酸盐中,本品毒性较强,其ADI为0?5 mg/kg。本 品可代替硝酸钠,用于肉类腌制,其最大用量同硝酸钠。 ⑤?抗坏血酸和烟酰胺 用亚硝酸盐作为肉类的发色剂时,同时加入适量的L—抗坏血酸及其钠盐、烟酰胺作为发色助剂使用。抗坏血酸的使用量一般为原料肉的0.02%?0.05%,烟酰胺的用量为0.01%?0.02%,在腌制或斩拌时添加,也可把原料肉浸渍在这些物质的0.02 %的水溶液中。 2亚硝酸盐其他来源 蔬菜中含有较多的硝酸盐。 蔬菜也能从土壤中浓集更多的硝酸盐(如芹菜、韭菜、大白菜、萝卜、菠菜等);大量 施用含有硝酸盐的化肥或土壤缺钼时,可增加植物的蓄积作用。 在温度、水份、PH、渗透压等利于硝酸盐还原菌繁殖 可确进硝酸盐还原成亚硝酸盐(蔬菜存放在较高的温度下亚硝酸盐明显增高。食盐浓度5%时,温度愈高37C,产生的亚硝酸盐愈多;食盐浓度10%时次之;食盐浓度15%时,不论温度高低均无明显变化。腌制蔬菜的头2-4天亚硝酸盐有所增加,7-8天最高,9天后趋于下降)。饮用亚硝酸盐含量高的饮用水也可引起中毒。 亚硝酸盐亦可在体内形成。当胃肠功能紊乱、贫血、患肠寄生虫病、胃酸浓度下降时,硝酸盐还原成亚硝酸盐大量繁殖,如再大量食用硝酸盐含量高的蔬菜,使亚硝酸盐在肠内形成 过快,如机体不能及时将亚硝酸盐分解为氨,可引起中毒(称肠原性青紫症)。儿童最易出现。 亚硝酸盐危害 亚硝酸盐对人体的危害

实验六 食品中亚硝酸盐含量测定

实验食品中亚硝酸盐含量测定 (格里斯试剂比色法) (—)目的 熟悉食品中亚硝酸盐的卫生标准,掌握食品中亚硝酸盐含量测定的基本方法。 (二)原理 样品经沉淀蛋白质、除去脂肪后,在弱酸性条件下亚硝酸盐与对氨基苯磺酸重氮化后,在与N-1-萘基乙二胺偶合形成紫红色染料后,与标准比较定量。(三)试剂 实验用水为蒸馏水,试剂不加说明者,均为分析纯试剂。 1.氯化胺缓冲液lL容量瓶中加入500ml水,准确加人20.0ml盐酸,振荡混匀,准确加入50ml氢氧化铵,用水稀释至刻度。必要时用稀盐酸和稀氢氧化铵调试至pH9.6~9.7。 2.0.42mol/L硫酸锌溶液称取120g硫酸锌(ZnSO4·7H20),用水溶解并稀释至1000ml。 3. 20g/L氢氧化钠溶液称取20g氢氧化钠用水溶解,稀释至1L。 4. 对氨基苯磺酸溶液称取10g对氨基苯磺酸,溶于700ml水和300ml冰乙酸中,置棕色瓶中混匀,室温保存。 5. 0.1%N-1-萘基乙二胺溶液称取0.lg N-1-荼基乙二胺,加60%乙酸溶解并稀释至100ml,混匀后,置棕色瓶中,在冰箱中保存,一周内稳定。 6. 显色剂临用前将0.1%N-1-萘基乙二胺溶液和对氨基苯磺酸溶液等体积混合。 7. 亚硝酸钠标准溶液准确称取250.0mg于硅胶干燥器中干燥24h的亚硝酸钠,加水溶解移入500ml容量瓶中,加100ml氯化胺缓冲液,加水稀释至刻度,混匀,在4℃避光保存。此溶液每毫升相当于500ug的亚硝酸钠。 8.亚硝酸钠标准使用液临用前,吸取亚硝酸钠标淮溶液1.00ml,置于100ml容量瓶中,加水稀释至刻度,此溶液每毫升相当于5.0ug亚硝酸钠。(四)仪器 1.小型粉碎机

亚硝酸盐的来源及危害

结课论文 论文题目 学号: 姓名: 专业:化学工程与工艺系别:化学工程系指导教师: 二○一四年十一月

摘要 水和食物是人类维持生命必不可缺少的物质,也是人类生存最基本的需求,但同时也是传播疾病的重要媒介。随着人们生活水平的提高,食品安全越来越被人们重视。然而,食物中毒事件屡见不鲜。亚硝酸盐作为一种化学性污染物,与人们的饮食、健康有密切的关系。硝酸盐和亚硝酸盐是广泛存在于自然环境中的化学物质,特别是在食物中,如粮食、蔬菜、肉类和鱼类都含有一定量的硝酸盐和亚硝酸盐。它是一种允许使用的食品添加剂,只要控制在安全范围内使用,不会对人体造成危害,但是,使用不当则会对人造成严重的后果,甚至造成生命安全。本文从亚硝酸盐的来源、危害和控制以及发展等几个方面论述,通过对亚硝酸盐相关知识的介绍加强人们对其危害的认识,并提出采取科学有效的预防控制措施,尽量减少可能带来的危害,保证食品安全。 关键词:食品添加剂;亚硝酸盐;来源;危害;

1绪论 品名限量标准mg/kg 食盐(精盐)、牛乳粉≤2 香肠(腊肠)香肚、酱腌菜、广式腊肉≤20 鲜肉类、鲜鱼类、粮食≤3 肉制品、火腿肠、灌肠类≤30 蔬菜≤4 其他肉类罐头、其他腌制罐头≤50 婴儿配方乳粉、鲜蛋粉≤5 西式蒸煮、烟熏火腿及罐头、西式火腿罐头≤70

2亚硝酸盐的来源 2.1蔬菜中亚硝酸盐 2.1.1过量施用硝态氮肥 蔬菜施用过多硝酸铵和其它硝态氮肥后,未被蔬菜吸收利用的过剩硝态氮则 以硝酸盐的形式储藏在蔬菜中。硝酸盐在植物体内的含量是不均衡的,蔬菜品种 不同硝酸盐含量变化很大。不同种类蔬菜的新鲜可食部分中硝酸盐含量按其均值 大小排列为:根菜类>薯类>绿叶菜类>白菜>葱蒜类>豆类>茄果类。如根茎 类蔬菜中的甜菜根、萝卜等,叶菜类中菠菜、芹菜、灰菜、荠菜等都含有较高的 硝酸盐。其中甜菜根、莴苣和波菜硝酸盐含量多数高于2500mg/kg。凡有利于某些 还原菌,例如大肠杆菌、产气杆菌和革兰氏阳性球菌等生长和繁殖的各种因素(温度、水分、pH和渗透压等)都可促进硝酸盐还原为亚硝酸盐。因此新鲜蔬菜在贮 存过程中,腐烂蔬菜及放置过久的煮熟蔬菜,亚硝酸盐的含量明显增高。 2.1.2熟菜等腌制食品 生、鲜白菜等蔬菜中通常含有一定量的硝酸盐,在长期贮藏尤其是腌渍加工过 程中,由于硝酸还原菌的作用,硝酸盐被还原成亚硝酸盐,随后自然分解。以居 民家庭腌制酸菜为例,随着发酵时间的延长,酸菜中亚硝酸盐含量不断上升,第 6d时升至最高,随后会逐渐下降,20d后基本彻底分解。因此,腌渍菜具有一定的安全食用期。 2.1.3隔夜熟菜、霉变蔬菜 烹调熟化的白菜等蔬菜,其营养成分易被微生物吸收利用。随着存放时间的延长,菜肴中亚硝酸盐细菌含量增多,硝酸盐就会并逐渐被还原成亚硝酸盐。同理,霉变蔬菜的亚硝酸盐含量一般也较高。 2.2食品中的发色剂和防腐剂 肉制品、肉类罐头等肉类食品,在其加工过程中加入一定量的硝酸盐、亚硝 酸盐即可改善风味,稳定色泽,抑制肉毒梭菌的生长和繁殖,而且至今没有发现

实验二食品中亚硝酸盐含量的测定

实验二 肉质品中亚硝酸盐含量的测定(比色法) 一、 原理和目的 (一)原理: 样品经沉淀蛋白质,除去脂肪后,在弱酸条件下,亚硝酸盐与对氨基苯磺酸重氮化,再与盐酸萘乙二胺偶合形成紫红色染料,其最大吸收波长为550 nm ,可测定吸光度并与标准比较定量。反应式如下 (二)目的: 我国是农业大国,化肥的大量使用主要造成了食品中硝酸盐的污染。硝酸盐进入人体,产生直接毒害和慢性毒害,因此硝酸盐的检测具有特别重要的意义。此试验是应用比色发来进行硝酸盐的检测。 二、试剂 (1) 氯化铵缓冲溶液,pH9.6~9.7:1L 容量瓶中加入500ml 水,准确 加入20.0ml 盐酸溶液,摇匀。准确加入50ml 氢氧化铵,用水稀释 至刻度,必要时用稀盐酸和稀氢氧化铵调pH 至所需范围。 (2) 0.42mol/l 硫酸锌溶液:称取120g 硫酸锌(ZnSO4·7H2O ),用水 溶解,稀释至1L 。 (3) 20g/l 氢氧化钠溶液:称取20g 氢氧化钠,用水溶解,稀释至1L 。 (4) 对氨基苯磺酸溶液:称取10g 对氨基苯磺酸,溶于700ml 水和300ml 冰乙酸中,置棕色试剂瓶中混匀,室温贮存。 (5) 1g/L 盐酸萘乙二胺溶液:称取0.1g 盐酸萘乙二胺,加100ml60%乙 酸溶解混匀后,置棕色试剂瓶中,在冰箱贮存,一周内稳定。 (6) 显色剂:临用前将1g/L 盐酸萘乙二胺和对氨基苯磺酸溶液等体积 混合,临用现配,仅供一次使用。 (7) 亚硝酸钠标准贮备液:精密称取250.0mg 于硅胶干燥器干燥24h 的 亚硝酸钠,加水溶解移入500ml 容量瓶中,加100ml 氯化铵缓冲溶 液,加水稀释至刻度,混匀,在4℃避光贮存。此溶液每毫升相当 于500μg 的亚硝酸钠。 (8) 亚硝酸钠标准使用液:准确吸取亚硝酸钠标准贮备液,稀释100倍, 临用现配,此溶液每毫升相当于5μg 的亚硝酸钠。 三、仪器:小型铰肉机,分光光度计,组织捣碎机,恒温水浴 四、操作步骤 (1)样品处理:准确称取10.0g 经铰碎混匀的样品,置于组织捣碎机中,加70ml 水和12ml20g/L 氢氧化钠溶液,打碎,混匀,测试样品溶液的pH ,转移至200ml 容量瓶中,加10ml 硫酸锌溶液,混匀,在60℃水浴中加热10min 。取出,冷至室温,稀释至刻度,混匀,过滤,弃去初滤液20ml ,收集滤液待测。 NO 22H +SO 3H H 2N N N +SO 3H NHCH 2CH 2NH 22.H Cl -2HCl SO 3H N N NHCH 2CH 2NH 2-H 2O +++紫红色染料

硝酸盐超标治理方法

硝酸盐超标治理方法 The Standardization Office was revised on the afternoon of December 13, 2020

4 水中亚硝酸盐国内外处理方法概况国外对亚硝酸盐污染问题重视较早,并开发出了一系列处理工艺.欧洲在80年代初期就建立了一些实用的饮用水脱硝厂,美国则关闭了一些污染严重的地下水源井.随着水资源的日益紧张,目前国外对饮用水亚硝酸盐污染问题的研究再次趋热.在我国的不少地区,亚硝酸盐的污染问题已相当严重,但有关研究才刚刚开始. 综合国内外的研究现状,用于水中亚硝酸盐的处理工艺有化学法、生物法及物理法等几大类.化学法包括氧化法和还原法两种,物理法则包括膜分离法和离子交换法等.411 氧化法氧化法处理水中亚硝酸盐的技术具有设备简单、处理费用低的优点,是目前国际上普遍采用的方法.其原理为:亚硝酸离子中的氮为中间价态,具有被氧化的特性.当介质中的NO2-遇氧化剂时则会改变氮的价态,发生得失电子的变化而被氧化,最终NO2-离子会转变为毒性较小甚至无毒的物质.常采用的氧化剂有臭氧、双氧水、次氯酸钠 3 01第4期杨家澍等水中亚硝酸盐净化处理研究进展 ? 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. 等一些强氧化剂,用强氧化剂来氧化NO2-离子使其成为NO3-离子的优越之处在于反应速度快、氧化效率高. 宋成盈[12]等人采用臭氧氧化法对地下水中亚硝酸盐进行了处理研究,结果发现,对于含量较低、处理量较少的地下深井水中亚硝酸的处理,该工艺具有设备简单、处理费用低、无

相关文档
最新文档