自动寻轨小车

自动寻轨小车
自动寻轨小车

摘要:本设计采用AT89S52作为系统控制核心,采用光电传感器来检测信号,用两个步进电机分别驱动后轮,电机驱动采用功率放大管,通过单片机给定的控制信号进行换相,灵活方便地对步进电机的速度和转向进行控制,进而达到控制电动车在黑色轨迹上的运动。关键词:电动车;双步进电机;单片机;光电传感器

1 系统设计

1.1 设计任务和要求

1.1.1设计任务

设计并制作一个自动寻迹小车,小车从安全区域启动,按指定路线运行,自动区分直线轨道和弯路轨道,在指定弯路处拐弯,实现灵活前进、转弯、倒退等功能。

1.1.2 基本要求

在不加配重的情况下,电动车完成以下运动:

(1) 公交车从起始站点A出发,沿着黑色引导线,公交车从起始站点A出发,沿着黑色引导线,到达终点B;

(2) 小车按指定路线运行,自动区分直线轨道和弯路轨道,在指定弯路处拐弯,实现灵活前进、转弯、倒退等功能,在轨道上划出设定的地图;

(3) 到达指定的目的地后发出声光报警。

0.5米

C 墙壁

B

24厘米

0.375米

30厘米50厘米

30厘米

1.5米

0.375米

30厘米

24厘米

0.375 米 A

1.5米

1.1.3发挥部分

将配重固定在可调整范围内任一指定位置,电动车完成以下运动:

(1) 在小车的车头和车尾装上转向灯(黄灯)和停止提示(红灯);

(2) 可在小车车身装上LED显示小车的运行状况和语音提示等功能

(3) 其他。

1.2 总体设计方案

1.2.1系统总体设计思路

本系统实现电动车地板上沿黑色轨迹行驶并实时显示车运行状况。总体设计思路如图1所示。系统包括控制器模块、电源模块、信号检测模块、电机及其驱动模块、键盘模块等四部分。

系统工作时,单片机接收传感器的输出信号后输出控制信号,采用黑白线引导、反射式光电传感器检测,使小车在轨道上自动行驶。

1.2.2 方案论证与比较

(1)控制器模块的设计方案论证与选择

方案一:采用FPGA作为系统主控器。FPGA可实现各种复杂逻辑功能,规模大,集成度高,体积小,稳定性好,IO资源丰富、易于进行功能扩展,处理速度快,但适用于大规模实时性要求较高的系统,价格高,编程实现难度大。本系统只需完成信号检测和电机驱动的控制,逻辑功能简单,对控制器的数据处理能力要求不高,故不选择此方案。

方案二:采用嵌入式系统作为主控器。嵌入式系统工作频率较高,速度较快,控制功能很强,也有较强的数据处理能力。但同样价格高,编程实现难度大。

方案三:采用Atmel公司的AT89S52单片机作为主控制器。AT89S52是一个低功耗、高性能8位单片机,片内含8 KB Flash片内程序存储器,256 Bytes RAM,32个外部双向输入/输出(I/O)口,5个中断优先级,2层中断嵌套中断等。价格便宜,使用方便,编程实现难度低,适合用来实现本系统的控制功能。

综上分析,本设计选择方案三。

(2)电机控制模块的设计方案论证与选择

为实现电动车对行走路径的准确定位和精确测量,可考虑以下两种方案:

方案一:采用直流电机。直流电机转动力矩大,体积小,重量轻,装配简单,使用方便。主

要适合于高速电机系统,本系统要求控制精度较高,不易达到。

方案二:采用步进电机。步进电机是数字控制电机,控制也简单,具有瞬间启动和急速停止的优越性,比较适合本系统要求控制精度高的特点。

综上分析,本系统选择方案二。

(3)电机驱动模块的设计方案论证和选择

方案一:采用集成芯片L298N驱动步进电机。L298N是一个具有高电压大电流的全桥驱动芯片,响应频率较高,稳定性较好。但本系统两个电机时序不同,会出现需要不同延时程序的情况,系统处理负荷大,影响电机工作,同时价格相对较高。

方案二:用功率管(如TIP132,8A 70W)构成驱动电路来驱动电机。结构简单,价格低廉,

经测试完全可以驱动电机,完成控制功能。

综上分析,选择方案二。

(4)信号检测模块的设计方案论证和选择

方案一:用光敏电阻组成光敏探测器。光敏电阻原理简单,使用方便,价格低廉,但受光照强度影响很大,可靠性差。

方案二:采用角度传感器。使用角度传感器来测量车体水平方向和竖直方向的角度,感测到

的倾角信号经编码后传送给单片机,由单片机控制电动车的运行。角度传感器灵敏度合适,响应速度好,但是使用复杂,价格昂贵,且不易购买。

方案三:用光电传感器。光电传感器原理简单,实现方便,价格低廉,可集发射器和接收器于一体。使用这类光电传感器电路简单,工作性能稳定,能完成需要的信号检测功能。

综上分析,选择方案三。

2 硬件电路设计

2.1整机电路设计

系统整机电路如附录1所示。单片机系统作为控制核心,实时接收光电传感器的输出信号,经数据处理后送给各单元电路,控制各部分电路工作。

2.2各主要单元电路设计

2.2.1 主控器模块的设计

本系统主控制器如图2所示。单片机接收传感器检测到的输入信号,将此信号进行运算处理,然后以控制电流或控制电压的方式输出给被控制的单元电路,实现各项功能。

图2 主控制器模块

2.2.2 电机驱动模块的设计

电动车左右两轮用电机分别控制,便于控制车转向。电机采用功率放大管TIP132驱动,电机驱动电路如图3、图4所示。电机的A、B、C、D端接功率放大管的集电极,功率管基极经限流电阻分别接单片机的I/O端口,控制电机的转向和速度。

图3 左轮电机驱动电路图4 右轮电机驱动电路

2.2.3 信号检测模块的设计

本设计用光电传感器采集信号,四个分别固定在轮子下的反射式传感器用来引导电动车寻迹,使电动车沿着白色轨迹运行,在运动过程中,当车偏离运动轨迹(超出黑线)时,即红外光线照射到黑色线上,反射光较少,接收管集电极和发射极间的电阻增大,输出高电平,复合管导通,输出高电平给单片机,引起系统中断,控制两个电机正转或反转,使车重新回到轨迹上。车头和车尾的传感器用来检测小车前进时是否到达B点和倒退时是否到A点。另外两个固定在跷跷板支架上的U型槽传感器用来检测平衡位置,当传感器中心轴被指针遮挡住时,红外三极管接收不到红外光,输出就从低电平跳到高电平,送给单片机,单片机使车停下来,说明平衡位置找到了。两种传感器的工作原理实质相同,如图5所示。

图5 光电传感器检测信号原理

图8 系统主程序流程图

3 系统软件设计

本系统的软件设计采用C语言,利用Keil C完成单片机系统的开发,实现各项设计功能和技术指标要求。

3.1 理论计算和分析

本系统要达到设计指标,电动车在跷跷板上的运行速度是关键,电动车的速度有电机控制,本设计使用的步进电机齿数为50,步距角= ,Z为电机转子齿数,N为转子运行拍数。齿数一

定,步距角与转子运行拍数成反比。所以取单双八拍式,则电机步距角小,更利于精确定位。电机转一圈为800拍,转一圈的周长为188mm,所以每拍转过的长度为,每转过8拍后长度为0.47*8=3.76mm .

设计要求电动车从A端到平衡位置C时间小于30s,假设电动车到达C运行时间为25s,电机转过的拍数N=800mm/0.47mm=1702.127拍,近似取1702.2拍,则电机每拍要用时间t=25s/1702.2=14.686ms.取电机每拍所用的时间为14ms,则假设电动车从B端返回到A端所用时间为= ,满足设计要求。所以电机运转时序取单双八拍式正、反转。程序中严格控制电机运转频率达到控制电动车速度。

3.2 系统主程序流程图

系统主程序流程如图8所示,由于此系统实时性要求很高,大量数据信号要在尽量短的时间内完成,单片机将集中根据检测到的信号精确控制电机速度和转向,软件中定义电机控制时序缓存区,利用查寻法编程,单片机不断检测外部传感器信号,利用标志位查询电机时序,控制车的运动,输出显示。

4 系统测试分析

设计完成后,对系统关键部分进行了测试分析,如语音播放电路,光电检测电路、电机控制电路,并进行了模拟场地试运行测试。

第一阶段:车的未接入检测信号时的运动

?通过电动车上固定好两个步进电机作为两个后轮。

?后轮的驱动电路连接好

?将电源接上,观察小车是否会沿着直线运行,不断的调试,适当的修改程序,使小车正常运行。

第二阶段:检测装置测试

?将小车的检测电路连接好,用万用表测试小车遇到黑色物质时是否会出现高电平。

第三阶段:整机测试

?连接好各部分电路,观测小车是否会按设计要求一样运行。

5 特色与创新点讨论

硬件方面:采用双步进控制电动车,利于车转向,利用光电传感器与单片机之间的信号传输与转换,加上语音播放模块,实现电动车的智能化。

软件方面:传感器在检测到某物时,输出信号会发生变化,让单片机只对此规律的信号作出反应,减少了数据处理量,缩短了系统反应时间,并简化了程序,提高了系统的控制精度。整个运行过程中通过实时信息采集,利用端口查询,实现对信号的实时检测和处理。

6 结束语

本系统以单片机为核心部件,利用光电检测技术和一定的软件算法实现了电动车在黑色轨迹上自行运动,在设计过程中,力求线路简单,充分发挥软件的灵活性来满足系统设计的要求。但因时间有限,系统还存在一些误差和有待改进的地方。

参考文献

[1] 全国大学生电子设计竞赛组委会.第六届全国大学生电子设计竞赛获奖作品选编.北京:北京理工大学出版社,2005

[2] 黄智伟,王彦,陈文光等.全国大学生电子设计竞赛训练教程.北京:电子工业出版社,2005

[3] 胡汉才.单片机原理及接口技术.北京:清华大学出版社,2006

[4] 王为青,程国钢.单片机Keil Cx51应用开发技术.北京:人民邮电出版社,2007

附录1:整机电路原理图

附录2:实现程序

#include

#include

#define uchar unsigned char

#define uint unsigned int

//****************电机控制时序*******************************

//低四位为右轮,高四位为左轮

uchar code zz[8]={0x91,0x83,0xc2,0x46,0x64,0x2c,0x38,0x19}; //前进时序

uchar code left[8]= {0x11,0x33,0x22,0x66,0x44,0xcc,0x88,0x99}; //前进左拐(后退右拐)时序uchar code right[8]={0x99,0x88,0xcc,0x44,0x66,0x22,0x33,0x11}; //前进右拐(后退左拐)时序

/********** 方向灯定义**********/

sbit red =P1^0; //红灯

sbit yel_r =P1^1; //右黄灯

sbit yel_l =P1^2; //左黄灯

/*******************************************************************/

/* */

/* 延时函数*/

/* */

/*******************************************************************/

void delay(int ms)

{

while(ms--)

{

uchar i;

for(i=0;i<120;i++)

{;}

}

}

//*******************前进函数****************************

void qj()

{

uchar i;

for(i=0;i<8;i++)//八拍一个周期,转过3.76mm

{

P0=zz[i];

delay(5);//延时5ms

}

}

//********************前进左拐(后退右拐)函数****************************** void left1_turn()

{

uchar i;

yel_l=1;//左黄灯亮

for(i=0;i<8;i++)//八拍一个周期

{

P0=left[i];

delay(5);

}

yel_l=0;//左黄灯灭

}

//********************前进右拐(后退左拐)函数****************************** void right1_turn()

{

uchar i;

yel_r=1;//右黄灯亮

for(i=0;i<8;i++)//八拍一个周期

{

P0=right[i];

delay(5);

}

yel_r=0;//右黄灯灭

}

//**********************主函数*******************************

void main()

{

uchar Q;

P0=0xff;

P2=0xff;

Q=P2&0x0f;

//EA=1;

//EX0=1; //开外部中断0

//IT0=1; //下降沿触发

delay(10); //上电,等待稳定

while(1)

{ P2=0xff; Q=P2&0x0f;

switch(Q)

{

// if(Q==0x01|Q==0x02) //前进左出轨

case(0x01) :;

case(0x02) : ;

case(0x03): delay(10);

right1_turn(); break; //右拐

// if(Q==0x04|Q==0x08) //前进右出轨

case(0x04):;

case(0x08):;

case(0x0c): delay(10);

left1_turn();break; //左拐

case(0x0a): P0=0x00;break;

default :qj(); //未出轨,继续前进// else goto qj1;

// goto qj1;

}

/* if(P2^0|P2^1)

right1_turn();

if(P2^2|P2^3)

left1_turn();

qj();*/

}

}

智能循迹小车详细制作过程

(穿山乙工作室)三天三十元做出智能车 基本设计思路: 1.基本车架(两个电机一体轮子+一 个万向轮) 2.单片机主控模块 3.电机驱动模块(内置5V电源输出) 4.黑白线循迹模块 0.准备所需基本元器件 1).基本二驱车体一台。(本课以穿山乙推出的基本车体为 例讲解) 2).5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红 色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40 个。 3).5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一 个;双孔接线柱三个、10u电解电容2个、排针12个、9110 驱动芯片2个。 4).5x7cm洞洞板、LM324比较器芯片各一个;红外对管三 对、4.7K电阻3个、330电阻三个、红色3mmLED三个。 一、组装车体

(图中显示的很清晰吧,照着上螺丝就行了) 二、制作单片机控制模块 材料:5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40个。 电路图如下,主要目的是把单片机的各个引脚用排针引出来,便于使用。我们也有焊接好的实物图供你参考。(如果你选用的是STC98系列的单片机在这里可以省掉复位电路不焊,仍能正常工作。我实物图中就没焊复位)

三、制作电机驱动模块 材料:5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一个;双孔接线柱三个、10u电解电容2个、排针12个、9110驱动芯片2个。 电路图如下,这里我们把电源模块与驱动模块含在了同一个电路板上。因为电机驱动模块所需的电压是+9V左右(6—15V 均可),而单片机主控和循迹模块所需电压均为+5V。 这里用了一个7805稳压芯片将+9V电压稳出+5V电压。

基于单片机的智能寻迹小车毕业设计

基于单片机的智能寻迹小车毕业设计 系统主要由红外避障模块、声控模块、光电寻迹、电机驱动及语音播报模块组成。 采用P89V51单片机作为智能小车控制核心。系统能实现对线路进行寻迹,小 车可以 前进或后退,遇到障碍物可以自行停止并可以实现反向运行,系统可以利用声 音控 制小车的启停。整个系统小巧紧凑,控制准确,性价比高,人机互动性好。 P89V51单片机;红外避障;线路寻迹;直流减速电机 ABSTRACT System is mainly by infrared obstacle avoidance module, voice module, opto-electronics and motor drive tracing module. Used as a single- chip smart car P89V51 control core. System can realize the tracing lines, cars can go forward or backward, encountered obstacles can stop and reverse operation can be achieved, the system can use voice to control the start and stop car. Compact the entire system to control the accurate, cost-effective, good human-computer interaction. KEYWORD: P89V51MCU;Infrared obstacle avoidance;Tracing;DC motor speed 1

基于单片机智能循迹小车

沈阳理工大学 课程名称:基于单片机智能循迹小车班级:1203070128 姓名:魏玉柱 指导教师:程磊催宁海

摘要 本文论述了基于单片机的智能循迹小车的控制过程。智能循迹是基于自动引导机器人系统,用以实现小车自动识别路线,以及选择正确的路线。智能循迹小车是一个运用传感器、单片机、电机驱动及自动控制等技术来实现按照预先设定的模式下,不受人为管理时能够自动实现循迹导航的高新科技。该技术已经应用于无人驾驶机动车,无人工厂,仓库,服务机器人等多种领域。 本设计采用STC89C52单片机作为小车的控制核心;采用TCRT5000红外反射式开关传感器作为小车的循迹模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被单片机识别的数字信号;采用驱动芯片L298N构成双H 桥控制直流电机,其中软件系统采用C程序,本设计的电路结构简单,容易实现,可靠性高。 关键词:STC89C52 智能循迹小车TCRT5000传感器电机驱动

目录 1引言 (4) 2 需求分析 (4) 2.1 智能循迹小车概述 (4) 2.2 循迹小车的发展历程回顾 (5) 2.3智能循迹小车的应用 (5) 2.4 智能循迹小车研究中的关键技术 (7) 3系统设计 (8) 4详细设计 (8) 4.1 硬件设计 (8) 4.1.1电路原理图 (8) 4.1.2 器件选择 (10) 4.1.2.1 智能循迹小车的主控芯片的选择 (10) 4.1.2.2 智能循迹小车电源模块的选择 (11) 4.1.2.3 智能循迹小车电机驱动电路的选择 (11) 4.1.2.4 智能小车循迹模块的选择 (11) 4.1.3 模块设计 (12) 4.1.3.1电机驱动模块电路 (12) 4.1.3.2光电传感器模块 (13) 4.2 软件设计 (15) 4.2.1程序流程图 (16) 4.2.2实现主要代码 (17) 5 实验结果 (18) 5.1设计实现 (18) 5.2出现的问题和解决的方法 (19) 5.3电路实物图展示: (19) 6 结束语 (20) 7.参考文献 (20)

智能循迹小车程序

#include #define uchar unsigned char #define uint unsigned int //D0-D7:f,b,a,e,d,h,c,g 共阴依次编码 //74LS04反相器驱动数码管 uchar code table[10] = {0x5F,0x42,0x9E,0xD6,0xC3,0xD5,0xDD,0x46,0xDF,0xD7}; uchar i = 0; //用于0-3数码管轮流显示 uint j = 0; //计时的次数 uint time=0; //计时 uint pwm=16; //占空比 uint speed; //调制PWM波的当前的值 sbit R=P3^2; //右边传感器P3^2 sbit L=P3^3; //左边传感器P3^3 //电机驱动口定义 sbit E NB=P1^0; //前轮电机停止控制使能 sbit E NA=P1^1; //后轮控制调速控制端口 sbit I N1=P1^2; //前轮 sbit I N2=P1^3; //前轮 sbit I N3=P1^4; //后轮 sbit I N4=P1^5; //后轮 void Init() { TMOD = 0x12; //定时器0用方式2,定时器1用方式1 TH0=(256-200)/256; //pwm TL0=(256-200)/256; TH1 = 0x0F8; //定时2ms TL1 = 0x30; EA = 1; ET0 = 1; ET1 = 1; TR0 = 1; TR1 = 1; } void tim0(void) interrupt 1 //产生PWM { speed ++; if(speed <= pwm) //pwm 就相当于占100的比例 { ENA = 1; } else if(speed < 100) { ENA = 0; }

智能小车寻迹模块设计方案

智能小车寻迹模块设计方案 本文设计方案以MSP430单片机为系统的控制核心,采用反射式光电传感器模块寻迹,实现智能小车的自动寻迹行驶。在实验中采用与白色相差很大的黑色引导线作为智能小车的既定路线,系统驱动采用控制方式为PWM 的直流电机。 详细介绍了反射式光电传感器寻迹模块的工作原理,寻迹模块的电路图以及在以MSP430单片机为控制核心的基础上如何实现智能寻迹小车的自动寻迹行驶。并简要介绍了系统的电路图。该技术可用于无人生产线、服务机器人、仓库等领域。 0 引言 智能小车又称轮式移动机器人,能够按预设模式在特定环境中自动移动,无需人工干预,可用于科学勘测、现代物流等方面。针对路面采用黑色标记线条作为路径引导线的应用场合,反射式光电传感器是常用的路径识别传感器。反射式光电传感器因信号处理方式和物理结构简单的特点而被广泛应用于结构化环境 和低成本产品中,虽然存在检测距离近、预测性差的弱点,但通过合理设计和选择反射式光电传感器并结合合适的信息处理软件能够满足上述简单环境场合应用。随着汽车ECU 电子控制的发展,在汽车上配备远程信息处理器,传感器和 接收器,通过这些器件的协调控制可以实现汽车的无人驾驶。本文提出基于 MSP430单片机的控制装置,通过反射式光电传感器寻迹,MSP430单片机处理反射式光电传感器检测到的信号,从而控制智能车的转向,实现智能小车的自动寻迹。 1 系统总体设计方案 在小车车体的前端贴近地面的地方安装有4 组寻迹模块,如图1所示,单 片机通过判断4个寻迹模块发送来的信号进行自动循迹。寻迹模块在遇到黑线时发送低电平信号,遇到空白的地方发送高电平信号,单片机通过判断高低电平即可作出相应的操作。通过4组寻迹模块发送的信号组合,可将小车行驶状态分成如表1所示7种状态。

智能探测寻轨小车

万方数据

万方数据

智能探测寻轨小车 作者:李雪峰, 周一兵 作者单位:李雪峰(江苏城市职业学院,江苏,南京,210036), 周一兵(江苏南通广播电视大学,江苏,南通,226006) 刊名: 硅谷 英文刊名:SILICON VALLEY 年,卷(期):2009,(21) 引用次数:0次 参考文献(5条) 1.何宏,单片机原理及接口技术[M].国防工业出版社,2008.4. 2.Data sheet ATMEL ATmega8. 3.Bibliography AREXX,JAMA:AUSRO"Roboterbaustaz-Baund Bedienungsanleitung". 4.https://www.360docs.net/doc/1611019597.html,. 5.c program file. 相似文献(10条) 1.期刊论文褚渊博.高文中.程林章.康志一基于PLC的自动寻迹运输车控制系统设计-工程机械2009,40(9) 对自动寻迹运输车的控制方式和运行轨迹进行分析研究,提出系统总体设计方案.采用三菱公司的FX-2N可编程控制器为控制核心,以触摸屏为人机对话窗口,利用光电传感器检测行驶路线、运行速度和障碍物等信息,通过PLC编程控制,实现无人驾驶、自动寻迹、自动避障、自动变轨等功能.介绍系统硬件设计和软件设计.研制样机经实验室模拟调试和运行测试证明,操作简便,运行平稳,性能可靠.可应用于大型生产线、现代化工厂车间的物料运输. 2.期刊论文朱俊.ZHU Jun智能小车的自动化控制-常州信息职业技术学院学报2006,5(4) 介绍了以单片机为核心,采用红外反射式传感器作为其视觉系统,直流电机为执行机构的智能化小车的设计与实现.系统核心采用AT89C51单片机,系统驱动采用控制方式为双向PWM的直流电机.该技术可以广泛应用于无人驾驶机动车、无人工厂、仓库、服务机器人等领域. 3.期刊论文石晓艳.祝龙记基于多传感器的自动寻迹轮式机器人设计-科技信息2009(15) 本文介绍了一种基于嵌入式微处理器S3C2410和融合多种传感器控制的轮式移动机器人.具体分析了各个模块的设计,实现了机器人的自动避障测距、寻迹、显示等功能.实验证明,该机器人控制系统具有模块化、易扩展、硬件体积小、功耗低及可靠性高等优点. 4.期刊论文赵广宇.方千山基于凌阳16位单片机的智能车设计-电子设计应用2009(9) 本文设计实现了一个基于凌阳16位SPCE061A处理器的智能小车运动控制硬件电路,详细介绍了利用红外传感器实现智能小车的避障和循迹,并给出了实际的运行结果. 5.期刊论文尹志强.杨鹏宇.陈波.伍红梅.YIN Zhi-qiang.YANG Peng-yu.CHEN Bo.WU Hong-mei基于SPCE061A的AGV控制系统研制-机械与电子2008(4) 介绍了基于SPCE061A单片机开发的AGV控制系统各模块硬件组成,并给出相关软件设计.借助该控制系统,AGV实现了寻迹行走、自动转向避障、语音识别及发音等功能.实践表明,小车运行平稳、可靠. 6.学位论文陈波基于SPCE061A的AGV控制系统的研制2007 本课题来源于合肥工业大学工业培训中心实验教学项目,本着经济、可靠、易于教学的原则,提出了基于凌阳SPCE061A单片机的总体方案,采用模块化设计思想,设计了各模块的硬件接口电路,主要包括电源稳压模块、键盘输入模块、传感器信号检测识别模块、红外线收发模块、无刷直流伺服电动机驱动模块等,并制作了PCB。同时针对光电传感器阵列,配合适当的软件算法,完成了AGV寻迹、转弯、避障、语音识别和播放等基本功能。为提高系统运行的可靠性,在软硬件方面都采取了抗干扰措施。所设计的AGV现己能够沿着设定的路线行驶。 7.期刊论文杨济豪.张自友红外反射式传感器在AGV中的应用-黑龙江科技信息2007(23) AGV(Auto-Guided Vehicle,自动导引小车)被广泛应用于各个领域,其核心技术是小车的自动导航.这里介绍了基于红外反射式传感器实现小车自动寻迹导航以及避障系统的设计与实现.该技术可以应用于现代物流、无人驾驶汽车、无人工厂、服务机器人等领域. 8.期刊论文刘燕.刘志基于单片机控制的自主寻迹电动小车的设计-自动化与仪器仪表2007(3) 针对小车在行驶过程中的寻迹要求,设计了以AT89C51单片机为核心的控制电路,采用模块化的设计方案,运用色标传感器、金属探测传感器、超声波传感器、霍尔传感器组成不同的检测电路,实现小车在行驶中轨迹、探测预埋金属铁片、躲避障碍物、测量车速等问题检测,并对设计的电路进行了理论分析和实际测试.结果表明,该智能小车具有很好的识别与检测的能力,具有定位精度、运行稳定可靠的特点. 9.学位论文郝君勇智能空间中基于顶棚投影器的机器人辅助导航2009 由于家庭环境的非确定性,如何使机器人在复杂的家庭环境下实现快速导航,是家庭服务机器人面临的一个关键问题。本文以家庭环境为背景,研究如何通过基于顶棚投影器的辅助导航系统实现家庭服务机器人的快速导航。 @@ 本文设计了基于顶棚投影器的辅助导航系统,研究了投影器的路径规划、无线通讯和运动控制算法。最后使用AS-RⅡ机器人进行了相关实验,实现了基于辅助导航系统的寻迹导航。论文主要工作如下: @@ (1)研究了顶棚投影器辅助导航系统的工作原理和工作步骤,根据系统所要实现的功能提出了系统的设计原则,并对系统所需的部分硬件做了选型。@@ (2)研究了基于粒子群优化算法的路径规划问题。首先利用室内环境的栅格地图得到它的危险度地图。然后分别采用粒子均匀分布和非均匀分布的PSO路径规划算法做了相关实验,实验证明粒子非均匀分布时,能得到更为平滑、安全的路径。得到安全路径后,利用坐标变换将图像平面内的路径坐标转换为世界坐标系的路径坐标,并存储到智能空间中的服务器。 @@ (3)研究了投影器的无线通讯和运动控制算法。首先建立投影器的运动学模型,将服务器中路径的坐标信息转换为投影器的角位移,然后利用智能空间中搭建的ZigBee无线网络,将其作为控制输入传给投影器,最终控制投影器投射出可供机器人导航用的引导轨迹。 @@ (4)寻迹导航。首先机器人通过采用彩色阈值分割和快速定位的方法识别出投影器投射到地面的激光点,然后控制机器人跟踪激光点运动,同时在机器人的运行过程中,采用红外和超声进行实时避障,以保证机器人的运行安全。最后,根据实验结果总结

智能循迹小车

目录 1.第一章绪论 1.1循迹小车的发展现状 1.2 选题意义 1.3本设计的工作 1.3.1设计要求 1.3.2设计思路 2.第二章硬件部分简介 2.1 具体方案论证与设计 2.2 主控芯片的简介 2.2.1 光电反射式传感器(ST178) 2.2.2低功率低失调双比较器LM393 3.第三章光电循迹小车的原理 3.1原理 3.2 传感器电路 3.2.1红外反射式光电传感器原理 3.2.2黑线检测电路

3.3核心控制电路 3.3.1模数转换电路(比较器电路) 3.3.2数字逻辑电路 3.4驱动电路 3.5 拓展功能“防撞” 3.6PCB制板 3.7作品展示 3.8原件清单 4.第四章结论 5.参考文献 6.课程设计心得

绪论 1.1循迹小车发展现状与趋势 智能汽车作为一种智能化的交通工具,体现了车辆工程、人工智能、自动控制、计算机等多个学科领域理论技术的交叉和综合,是未来汽车发展的趋势。寻迹小车可以看作是缩小化的智能汽车,它实现的基本功能是沿着指定轨道自动寻迹行驶。就目前智能小车发展趋势而言:相比价格昂贵、体积大、数据处理复杂

的传感器CCD反射式光电传感器以其价格适中、体积小、数据处理方便等更具有发展优势。 1.2 选题意义 汽车电子迅猛发展,智能车产生和不断探索并服务于人类的趋势将不可阻挡。智能车的研究将会给汽车这个产生了一百多年的交通工具带来巨大的科技变革。人们在行驶汽车时,不再只在乎它的速度和效率,更多是注重驾驶时的安全性,舒适性,环保节能性和智能性等。各国科学家和汽车工作人员以及汽车爱好者都在致力于智能车的研究,研究的成果有很多都已应用于人们的日常生活生产之中,例如在2005年1月美国发射的“勇气”号和“机遇”号火星探测器实质上都是装备先进的智能车辆。因此,研究智能车的实际意义和取得的价值都非常重大。本课题利用传感器识别路径,将赛道信息进行识别处理,利用主控芯片控制小车的行进进而完成循迹。 1.3本设计的工作 1.3.1设计要求 要求:设计并制作一个简易光电智能循迹电动车,其行驶路线示意图如图1-1:(其中粗黑些为光电寻迹线)要求智能循迹小车从起点出发,沿粗黑色引导线到达终点后立即停车但行驶全程行驶时间不能大于90s。

智能寻迹小车以及程序

寻迹小车 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单,如图2所示:

图2 ST168检测电路 ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。 R1限制发射二极管的电流,发射管的电流和发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻R2可限制接收电路的电流,一方面保护接收红外管;另一方面可调节检测电路的灵敏度。因为传感器输出端得到的是模拟电压信号,所以在输出端增加了比较器,先将ST168输出电压与2.5V进行比较,再送给单片机处理和控制。 传感器的安装 正确选择检测方法和传感器件是决定循迹效果的重要因素,而且正确的器件安装方法也是循迹电路好坏的一个重要因素。从简单、方便、可靠等角度出发,同时在底盘装设4个红外探测头,进行两级方向纠正控制,将大大提高其循迹的可靠性,具体位置分布如图3所示。

基于Arduino智能寻迹小车开题报告

云南农业大学 本科生毕业设计开题报告 设计题目:基于Arduino的智能寻迹小车控制系统设计毕业设计起止时间: 年月日~月日(共 17 周) 专业:电气工程及其自动化 姓名: 学号: 指导教师: 报告时间: 云南农业大学教务处制 200 年月日

1. 本课题所涉及的问题在国内(外)的研究现状综述 国外智能车辆的研究历史较长,始于上世纪50年代。它的发展历程大体可以分成三个阶段: 第一阶:20世纪50年代是智能车辆研究的初始阶段。1954年美国Barrett Electronic 公司研究开发了世界上第一台自主引导车系统,该系统只是一个运行在固定路线上的拖车式运货平台,但它却具有了智能车辆最基本的特征即无人驾驶。 第二阶段:从80年代中后期开始,世界主要发达国家对智能车辆开展了卓有成效的研究。在欧洲,普罗米修斯项目开始在这个领域的探索。在美洲,美国成立了国家自动高速公路系统联盟(NAHSC)。在亚洲,日本成立了高速公路先进巡航/辅助驾驶研究会。 第三阶段:从90年代开始,智能车辆进入了深入、系统、大规模研究阶段。最为突出的是,美国卡内基.梅隆大学(Carnegie Mellon University)机器人研究所一共完成了Navlab系列的10台自主车(Navlab1—Navlab10)的研究,取得了显著的成就。 相比于国外,我国开展智能车辆技术方面的研究起步较晚,开始于20世纪80年代。而且大多数研究处在于针对某个单项技术研究的阶段。虽然我国在智能车辆技术方面的研究总体上落后于发达国家,并且存在一定得技术差距,但是我们也取得了一系列的成果,主要有: (1)中国第一汽车集团公司和国防科技大学机电工程与自动化学院与2003年研制成功我国第一辆自主驾驶轿车。 (2)南京理工大学、北京理工大学、浙江大学、国防科技大学、清华大学等多所院校联合研制了7B.8军用室外自主车,该车装有彩色摄像机、激光雷达、陀螺惯导定位等传感器。 可以预计,我国飞速发展的经济实力将为智能车辆的研究提供一个更加广阔的前景。因此,对智能小车进行深入细致的研究,不但能加深课堂上学到的理论知识,更能将理论转化为实际运用,为将来打下坚实的基础。 2.本人对课题提出的任务要求及实现预期目标的可行性分析

自动寻轨小车

摘要:本设计采用AT89S52作为系统控制核心,采用光电传感器来检测信号,用两个步进电机分别驱动后轮,电机驱动采用功率放大管,通过单片机给定的控制信号进行换相,灵活方便地对步进电机的速度和转向进行控制,进而达到控制电动车在黑色轨迹上的运动。关键词:电动车;双步进电机;单片机;光电传感器 1 系统设计 1.1 设计任务和要求 1.1.1设计任务 设计并制作一个自动寻迹小车,小车从安全区域启动,按指定路线运行,自动区分直线轨道和弯路轨道,在指定弯路处拐弯,实现灵活前进、转弯、倒退等功能。 1.1.2 基本要求 在不加配重的情况下,电动车完成以下运动: (1) 公交车从起始站点A出发,沿着黑色引导线,公交车从起始站点A出发,沿着黑色引导线,到达终点B; (2) 小车按指定路线运行,自动区分直线轨道和弯路轨道,在指定弯路处拐弯,实现灵活前进、转弯、倒退等功能,在轨道上划出设定的地图; (3) 到达指定的目的地后发出声光报警。 0.5米 C 墙壁 B 24厘米 0.375米 30厘米50厘米 30厘米 1.5米 0.375米 30厘米 24厘米 0.375 米 A 1.5米 1.1.3发挥部分

将配重固定在可调整范围内任一指定位置,电动车完成以下运动: (1) 在小车的车头和车尾装上转向灯(黄灯)和停止提示(红灯); (2) 可在小车车身装上LED显示小车的运行状况和语音提示等功能 (3) 其他。 1.2 总体设计方案 1.2.1系统总体设计思路 本系统实现电动车地板上沿黑色轨迹行驶并实时显示车运行状况。总体设计思路如图1所示。系统包括控制器模块、电源模块、信号检测模块、电机及其驱动模块、键盘模块等四部分。 系统工作时,单片机接收传感器的输出信号后输出控制信号,采用黑白线引导、反射式光电传感器检测,使小车在轨道上自动行驶。 1.2.2 方案论证与比较 (1)控制器模块的设计方案论证与选择 方案一:采用FPGA作为系统主控器。FPGA可实现各种复杂逻辑功能,规模大,集成度高,体积小,稳定性好,IO资源丰富、易于进行功能扩展,处理速度快,但适用于大规模实时性要求较高的系统,价格高,编程实现难度大。本系统只需完成信号检测和电机驱动的控制,逻辑功能简单,对控制器的数据处理能力要求不高,故不选择此方案。 方案二:采用嵌入式系统作为主控器。嵌入式系统工作频率较高,速度较快,控制功能很强,也有较强的数据处理能力。但同样价格高,编程实现难度大。 方案三:采用Atmel公司的AT89S52单片机作为主控制器。AT89S52是一个低功耗、高性能8位单片机,片内含8 KB Flash片内程序存储器,256 Bytes RAM,32个外部双向输入/输出(I/O)口,5个中断优先级,2层中断嵌套中断等。价格便宜,使用方便,编程实现难度低,适合用来实现本系统的控制功能。 综上分析,本设计选择方案三。 (2)电机控制模块的设计方案论证与选择 为实现电动车对行走路径的准确定位和精确测量,可考虑以下两种方案: 方案一:采用直流电机。直流电机转动力矩大,体积小,重量轻,装配简单,使用方便。主 要适合于高速电机系统,本系统要求控制精度较高,不易达到。 方案二:采用步进电机。步进电机是数字控制电机,控制也简单,具有瞬间启动和急速停止的优越性,比较适合本系统要求控制精度高的特点。 综上分析,本系统选择方案二。 (3)电机驱动模块的设计方案论证和选择 方案一:采用集成芯片L298N驱动步进电机。L298N是一个具有高电压大电流的全桥驱动芯片,响应频率较高,稳定性较好。但本系统两个电机时序不同,会出现需要不同延时程序的情况,系统处理负荷大,影响电机工作,同时价格相对较高。 方案二:用功率管(如TIP132,8A 70W)构成驱动电路来驱动电机。结构简单,价格低廉, 经测试完全可以驱动电机,完成控制功能。 综上分析,选择方案二。 (4)信号检测模块的设计方案论证和选择 方案一:用光敏电阻组成光敏探测器。光敏电阻原理简单,使用方便,价格低廉,但受光照强度影响很大,可靠性差。 方案二:采用角度传感器。使用角度传感器来测量车体水平方向和竖直方向的角度,感测到

智能寻迹小车以及程序

智能寻迹小车以及程序

寻迹小车 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时

发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单,如图2所示: 图2 ST168检测电路 ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。

智能循迹小车分析方案

智能循迹小车设计 专业:自动化 班级:0804班 姓名: 指导老师: 2018年8月——2018年10月 摘要:

本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89S52 单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车<特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛

智能寻迹小车

智能寻迹小车 作者:李毅卢仁义吴甜解放军炮兵学院(安徽合肥230031) 时间:2008-06-18 来源:电子产品世界 浏览评论推荐给好友我有问题个性化定制 关键词:51单片机智能小车光电对管寻迹脉冲宽度调制 摘要:本文介绍了一种基于51单片机的小车寻迹系统。该系统采用两组高灵敏度的光电对管,对路面黑色轨迹进行检测,并利用单片机产生PWM波,控制小车速度。测试结果表明,该系统能够平稳跟踪给定的路径。 关键词:智能小车;光电对管;寻迹;脉冲宽度调制 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理

该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单,如图2所示: 图2 ST168检测电路

开题报告(智能小车)

CHAHGZH0U 開TfRIE OF ENGINEERWG TECHNOLOGY 毕业设计(论文)开题报告 现状: 智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实 现循迹、避障、检测贴片寻光入库、避崖等基本功能,这几届的电子设计大赛 智能小车又在向声控系统发展。比较出名的飞思卡尔智能小车更是走在前列。 我此次的设计主要实现循迹避障这两个功能。 智能车辆也叫无人车辆,是一个集环境感知、规划决策和多等级辅助驾驶 等功能于一体的综合系统。它具有道路障碍自动识别、自动报警、自动制动、 自动保持安全距离、车速和巡航控制等功能。智能车辆的主要特点是在复杂的 道路情况下,能自动的操纵和驾驶车辆绕开障碍物并沿着预订的道路进行。智 能小车主要运用领域包括军事侦察与环境检测、探测危险与排除险情、安全检 测受损评估、智能家居。 发展趋势: 智能循迹小车可广泛应用于军事侦察、勘探、矿产开采等不便于人员实地 堪察 的环境。稍加改造,可应用于军事反恐、警察维和等领域,从而达到最大 限度的避免人员伤亡,保存战斗实力的目的。因此,具有重要的军事和经济意 义。 随着汽车工业的,其与电子信息产业的融合速度也显着提高,汽车开始向 电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具 有交通、娱乐、办公和通讯等多种功能。智能小车是一个集环境感知、规划决 策,自动行驶等功能与异地的综合系统,它集中的运用了计算机、传感、信息、 通信、导航及自动控制等技术,是典型的高新技术综合体。 、基本信息 学生姓名 倪小玉 班级 电子0911 学号 2009238108 系名称 自动化技术系 专业 应用电子 毕业设计(论文)题目 智能循迹小车的设计 指导教师 李玮 二、开题意义 课题 的现状与 发展趋势

智能循迹小车设计

智能循迹/避障小车研究 工作报告 一、智能循迹小车程序结构框图 二、Proteus仿真图 三、软件程序设计

一、智能循迹小车程序结构框图 经过几天在网上的查找,对智能循迹/避障小车有了大致的了 解, 一般有三个模块: 1、最基本的小车驱动模块,使用两个二相四线步进电机对小车的两个后轮分别进行驱动,前轮最好用万向轮,能使小车更好地转弯; 2、小车循迹模块,在小车底部有三个并排安装的红外对管,对黑色与白色的反射信号不同,经单片机处理后对小车进行相应处理; 3、避障模块,我写的程序中对于避障模块是用中断来处理的(即安装在小车车头的红外对管检测到有障碍物后,就会向单片机的P3_2口输出一个高电平或是低电平,这时中断程序将对小车进行预先设定好的避障处理),但是在程序结构框图中,我不太会表示中断处理方式,所以就用查询的方式画了。

N Y N Y 二、Proteus 仿真图 我用Proteus 大概地仿真了小车的运行状态。图中的两个二相四线步进电机就代表小车的左右轮(假定步进电机顺时针转动方向为小车前进方向),网上有很多种驱动芯片,在仿真时我只使用L298N 芯

片来驱动步进电机。用三个单刀双制开关模拟用于小车循迹的三个红外对管的输出信号,经一个与门与三极管开关连接到P3_3口,中断程序对P1_0, P1_1, P1_2三个口进行检测,并做出相应处理。同时因为避障模块的优先级高于循迹模块,所以将外部中断0用于避障,外部中断1用于循迹。P1_3口则用于检测小车是否到达终点。 1、小车驱动模块: 使用一片298芯片驱动一个二相四线步进电机,电机的电压为12V。

智能寻迹小车设计报告

~ 目录 1.项目设计目的 (1) 2.项目设计正文 (3) .项目分析及方案制定 (3) .设计步骤及流程图 (4) 寻迹设计步骤 (4) 流程图 (4) ( .主要模块介绍 (4) LM393的主要特点 (4) LM393引脚图及内部框图 (5) LM393 功能简介 (5) 89C2051 (5) 89C2051简介 (5) 89C2051 主要性能参数 (5) 89C2051 功能特性概述 (6) 。 .电路设计及PCB绘制 (6) 电源电路 (6) 红外收发电路 (6) 电机驱动电路 (7) 单片机最小系统 (7) 整体电路 (8)

PCB板的绘制 (8) . 成品展示 (9) \ 3.项目设计总结 (9) 4.参考文献 (10) 智能寻迹小车 ——CDIO三级项目 王君杰 (电子信息工程 1501 6) 一、项目设计目的 在科技飞速发展的今天,智能化的概念已经渗入到各行各业,自动控制系统也出现在生活的方方面面,早到工厂的机械化生产,近到目前的自动驾驶。越来越多的领域涉及到电控制技术。特别是使用单片机一类的MCU的控制,在生活中越来越常见。因此,基于单片机控制的电路的学习和时间对于我们来说就显得尤为重要。同时,对于单片机作为软件主控单元,结合模电数电的硬件电路支持的综合项目开发,也是作为大学生需要了解并且熟练运用的基础。掌握了这些知识,对于我们以后的职业发展也有着莫大的帮助。 二、? 三、项目设计正文 、项目分析及方案制定 首先对于“智能寻迹小车”这个标题而言,我们可以分为两个部分:小车和智能寻迹。“小车”决定了硬件电路的大致构成:电源、电容、电阻、开关、电机、LED。而“智能”则决定了一些高级电路的选用:MCU、传感器、电机驱动、电位器及一些IC。 其次,假如去掉“智能”两字,仅关注如何做成一个能够行驶的小车,那么电路的搭建将会变得尤为简单。假如做一个“上电即跑”的小车,那么连开关都不需要,仅需要电源(干电池即可),两个电机 (3V/100mA)和两个限流电阻按图一方式连接即可。当然,这样的 小车只能实现向一个方向前进,无法实现跑道的自动识别和转向。 不过,这个电路也是所有行驶工具的基础,所有的行驶工具,都是 在这个电路的基础上按照想要实现的功能进行拓展开发。 接着让我们来到“智能”的环节。所谓智能,也就是需要小车 有人的思想,正如同课题所述——寻迹。智能的小车需要具备自动识别跑道的能力。同时,在采集到跑道信息后要做出相应的处理。在我们这个课题中,也就是需要及时并

智能循迹避障声控小车设计__毕业设计

智能循迹避障声控小车设计 摘要 系统主要由红外避障模块、声控模块、光电寻迹、电机驱动及语音播报模块组成。采用P89V51单片机作为智能小车控制核心。系统能实现对线路进行寻迹,小车可以前进或后退,遇到障碍物可以自行停止并可以实现反向运行,系统可以利用声音控制小车的启停。整个系统小巧紧凑,控制准确,性价比高,人机互动性好。 关键词:P89V51单片机;红外避障;线路寻迹;直流减速电机 ABSTRACT System is mainly by infrared obstacle avoidance module, voice module, opto-electronics and motor drive tracing module. Used as a single-chip smart car P89V51 control core. System can realize the tracing lines, cars can go forward or backward, encountered obstacles can stop and reverse operation can be achieved, the system can use voice to control the start and stop car. Compact the entire system to control the accurate, cost-effective, good human-computer interaction. KEYWORD:P89V51MCU;Infrared obstacle avoidance;Tracing;DC motor speed

智能寻迹小车实验报告

DIY 达人赛 基于STC89C52 单片机智能寻迹小车 实 验 报 告 参赛队伍: 队员: 2014 年 4 月

一、引言 我们所处的这个时代是信息革命的时代,各种新技术、新思想层出不穷,纵观世界范围内智能汽车技术的发展,每一次新的进步无不是受新技术新思想的推动。随着汽车工业的迅速发展,传统的汽车的发展逐渐趋于饱和。伴随着电子技术和嵌入式技术的迅猛发展,这使得汽车日渐走向智能化。智能汽车由原先的驾驶更加简单更加安全更加舒适,逐渐的向智能驾驶系统方向发展。智能驾驶系统相当于智能机器人,能代替人驾驶汽车。它主要是通过安装在前后保险杠及两侧的红外线摄像机,对汽车前后左右一定区域进行不停地扫描和监视。计算机、电子地图和光化学传感器等对红外线摄像机传来的信号进行分析计算,并根据道路交通信息管理系统传来的交通信息,代替人的大脑发出指令,指挥执行系统操作汽车。 1、来源汽车的智能化是21 世纪汽车产业的核心竞争力之一。汽车的智能化是以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科交叉的科技。 2、智能汽车国外发展情况 从20 世纪70 年代开始,美国、英国、德国等发达国家开始进行无人驾驶汽车的研究,目前在可行性和实用化方面都取得了突破性的进展。目前日本、欧美已有企业取得实用化成果。与国外相比,国内在智能车辆方面的研究起步较晚,规模较小,开展这方面研究工作的单位主要是一些大学和研究所,如国防科技大学、清华大学、吉林大学、北京理工大学、长安大学、沈阳自动化所等。我国从20 世纪80 年代开始进行无人驾驶汽车的研究,国防科技大学在1992 年成功研制出我国第一辆真正意义上的无人驾驶汽车。先后研制出四代无人驾驶汽车。第四代全自主无人驾驶汽车于2000 年 6 月在长沙市绕城高速公路上进行了全自主无人驾驶试验,试验最高时速达到75.6Km/h。 3、我们的小车 我们做的是基于STC 8 9 C52单片机开发,主要是研究3轮小车的路径识别及其遥 控运动。

相关文档
最新文档