1200W双管正激变换器设计之一——变压器设计

1200W双管正激变换器设计之一——变压器设计
1200W双管正激变换器设计之一——变压器设计

1200W双管正激变换器设计之一——变压器设计

正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用.下面举例给大家分享下对正激变换器的设计方法:

规格:

输入电压Vin=400V(一般在输入端会有CCM A PFC将输入电压升压在稳定的DC400V左右)

输出电压Vout=12V

输出功率Pout=1200W

效率η=85%

开关频率Fs=68KHz

最大占空比Dmax=0.35

第一,

第一,选择磁芯的材质

选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材,其相关参数如下:

因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB

得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB 的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc 选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T

第二,确定磁芯规格

根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku)

其中:

Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数

对正激变换器,视在功率Ps=Pout/η+Pout

电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2

铜窗口占用系数Ku取0.2

ΔB=0.20T,J=600A/cm2,Ku=0.2

代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4

查磁芯规格书,选用磁芯ETD49,其相关参数如下:

第三,计算匝比、匝数

1. 根据公式N=Np/Ns=Vin/Vout=(Vin*Dmax)/(Vo+Vf)

其中Vf为输出二极管正向压降,取0.8V

得匝比N=(400*0.35)/(12+0.8)=10.9375,

取匝比N=11验算最大占空比Dmax,

最大占空比Dmax=N(Vout+Vf)/Vin=11*(12+0.8)/400=0.352

2. 根据公式Np=Vin*Ton/(ΔB*Ae)

导通时间Ton=Dmax*Ts,周期Ts=1/Fs*106

得初级匝数NP=[Vin*Dmax*(1/Fs*106)]/(Δ

B*Ae)={400*0.352*[1/(68*103)*106]}/(0.201*213)=48.36Ts,取49Ts

3. 次级匝数Ns=Np/N=49/11=

4.45Ts

4. 取次级匝数Ns=5Ts验算初级匝数Np,

初级匝数Np=Ns*N=5*11=55Ts

考虑到输入电压较高,采用双管正激比采用单管正激可以大幅减小MOS的电压应力,无需消磁绕组。

7. 再通过初级匝数Np来验算最大磁通变化量ΔB,

最大磁通变化量ΔB=(Vin*Dmax*Ts)

/(Np*Ae)={400*0.352*[1/(68*103)*106]}/(55*213)=0.1767T

根据ΔB+Br

8. 根据L=N2*Al得,

初级电感量最小值Lmin=Np2*[AL*(1-0.25)]=552*[4440*(1-0.25)]/106=10.0mH

第四,计算各绕组线径

1. 输入电流Ip=Pout/(Vin*Dmax*η)=1200/(400*0.352*0.85)=10.0A

初级线圈电流有效值Ip_rms=Ip*SQRT(Dmax)=10.0*SQRT(0.352)=5.9A

则,初级线圈截面积Swp=Ip_rms/J=5.9/600=0.0098cm2=0.98mm2

多股纱包线单根直径为0.1mm,其单根面积为Sw=3.14*(0.1/2)2=0.00785mm2

得,初级所需纱包线股数Nwp=Swp/Sw=0.98/0.00785=124.8PCS,约125PCS。

即,初级线圈采用125根单根直径0.1mm的纱包线。

2. 次级线圈电流有效值Is_rms=Iout*SQRT(Dmax)=100*SQRT(0.352)=59.3A

次级线圈截面积Sws=Is_rms/J=59.3/600=0.0988cm2=9.88mm2

次级所需纱包线股数Nws=Sws/Sw=9.88/0.00785=1258.6PCS,约1260PCS。

即,次级线圈采用1260根单根直径0.1mm的纱包线。

通常纱包线的电流密度可取范围较大,一般为400~1200A/CM2,结合常用规格,取:

初级线圈采用120根单根直径0.1mm的纱包线绕55Ts;

次级线圈采用1200根单根直径0.1mm的纱包线绕5Ts。

高效率双管正激变换器的研究 开题报告

高效率双管正激变换器的研究 一、课题来源、意义、目的、国内外概况与预测 如何提高电能的利用率一直是电力电子领域最为重要的研究方向,而且必将成为未来该领域研究热点,并在某种程度上决定电力电子技术未来的兴衰命运。 DC/DC 变换技术一直是开关电源技术的重点,也是开关电源技术发展的基础。DC/DC 变换是开关电源的基本单元,其他各种形式的变换电路都是DC/DC 变换电路的演变。DC/DC 变换技术的发展伴随着开关电源技术发展,也是发展最快的电源变换技术之一。所以,研究高效率DC/DC 变换器对电力电子技术的发展具有重要意义。 在各种隔离式DC/DC 变换器中,单管正激变换器由于具有电路结构简单、成本较低、输出电流大、工作可靠性高等优点而广泛应用于中小功率变换场合,更成为低压大电流功率变换器的首选拓扑结构。但由于主开关管电压应力较大而不适合输入电压高的场合。 传统双管正激变换电路使得正激电路的主开关电压应力减小了一半左右,但是受复位机制的限制,它的工作占空比只能小于0.5,不适合电压范围较宽的场合。且开关管工作在硬开关状态下,开关损耗大,在不断追求高频化的今天,显得不合时宜。 本着最大可能提高电路效率的原则,本文着重研究了一种高效率双管正激变换器。 目前,通常采用的磁复位方法主要有以下几种: (1) 采用辅助绕组复位; (2) 采用RCD 复位; (3) 采用LCD 复位; (4) 采用谐振复位; (5) 采用有源钳位复位。 1、辅助绕组复位正激变换器 V O V 图一所示的单端正激变换器的隔离变压器有三个绕组:一次绕组1N 、二次绕组2N 和去磁绕组3N 。在on T 时间内,T 导通,2D 导通,1D 、3D 截止,电源向负载传递能量,此时,磁通增量为11(/)(/)D on D S V N T V N DT ?Φ=?=?,输出电压为21/o D v N N V =?。

正激变压器设计要点

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等 所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。 首先说说初次级匝数的选择: 以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。 无论是单管正激还是双管正激,都存在磁复位的问题。且,都可以看成是被动方式的复位。复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。 复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生 复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。 但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠, 大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik. 正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关 Vo=Vin*D Vo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了 在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5 正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容 易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加 气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的. 加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心. 复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好? 如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。 无论从EMC角度还是工艺角度来说,复位绕组放在最内层比较好 实际量产中这是这样绕的占多数 单管正激,如果是市电或有PFC输出电压作为输入的话,MOSFET 的最低耐压是2倍直

宽输入多路输出双管反激变换器的分析与制作

摘要本文对dc-dc变换器进行了分析、比较,结合高压、宽输入,小功率和多路输出的设计要求,并做了双管反激变换器的saber仿真分析及样机的制作。 【关键词】双管反激变换器 saber仿真 1 前言 世界对能源、环保问题的重视,人们对绿色能源的期望越来越高,从而促进了可再生能源,尤其是太阳能及风能的开发利用。在太阳能光伏发电系统中,光伏电池的特性随照射光的强度变化幅度比较大,所以系统逆变器的控制电源应具备大范围直流电压变化情况下的稳定工作能力,即应该有一个相当宽的工作电压范围,这样在太阳光线很弱的情况下仍能保证逆变器控制系统的正常工作。 2 线性稳压电源和开关稳压电源是现有的电源两种主要类型概述 开关电源是一种新型、高效的直流电源,因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代了传统的线性稳压电源。在本课题中多路输出开关电源需要在一个相当宽的工作电压范围内稳定输出,要保证开关电源能够在这么宽的输入电压范围内正常工作,如果用常规方法设计,首先要保证在最低电压时主功率管工作在最大的占空比,当电压上升到最高电压时,主功率管的占空比很小了,这样肯定会丢脉冲,系统会工作不稳定。为此本课题针对宽输入多路输出的关键问题讲进行研究。 隔离型dc-dc 变换器包括反激、正激、推挽、半桥以及全桥等。这类变压器适用于升降压范围宽,输入输出间需要电气隔离的场合。下面将结合电路要求,简要介绍这几种变换器的优缺点。 2.1 单端反激变换器 单端反激电路结构简单,成本低,易于多路输出。反激变换器相当于隔离的buck-boost 变换器,其中隔离变压器是个多绕组耦合电感,具有储能、变压和隔离的作用。变压器储能限制了变换器的输出功率,因此只适合于小功率应用场合。且变压器单向激磁,利用率低。 2.2 单端正激变换器 电路形式与反激式变换器相似,只是变压器的接法和作用不同。优点同样是是电路结构简单。但其变压器铁芯磁复位必须采取磁复位电路来实现,除有源箝位等少数几种磁复位方式外,其它多种复位方式拓扑一般存在以下缺陷:变压器铁芯单向磁化,利用率低,主功率管的占空比一般都不超过0.5,主功率管承受两倍左右的输入电压。 2.3 半桥变换器 铁芯双向磁化,利用率高。变压器铁芯不存在直流偏磁现象,功率管承受电源电压,流过两倍的输入电流,适合高压中功率场合。 2.4 双管反激小功率辅助电源 对于小功率应用场合,通常采用正激变换器和反激变换器这两种变换器。输入电压不高的场合,通常采取单端反激的设计方法,但在较高输入电压场合单端反激电路不适用,由于输入电压的变化范围、反激电压、输出轻载状况,单端反激变换器主开关电压应力较大。反激变换器中变压器磁芯处于直流偏磁状态,为防磁饱和要加入气隙,因此漏感较大。当功率管关断时,会产生很大的关断电压尖峰,从而进一步增加了主开关管的电压应力,使emi更为严重,有可能损坏功率管。因此本文采用双管反激的思路,将单管用两只开关管替代,同时导通、关断,并采用箝位二极管把开关管在反激过程中承受的峰值电压箝制在输入电源电压。由此双管反激电路每个开关管上的电压应力大大降低了,开关管的选择范围也更大,同时也具备了单端反激电路的优点。 双管反激变换器的saber仿真,仿真原理图如图1所示。 测试条件:

正激变换器及其控制电路的设计及仿真

正激变换器及其控制电路的设计及仿真 电气工程 张朋 13S053081

设计要求: 1、输入电压:100V(±20%); 2、输出电压:12V; 3、输出电流:1A; 4、电压纹波:<70mV(峰峰值); 5、效率:η>78%; 6、负载调整率:1%; 7、满载到半载,十分之一载到半载纹波<200mV。 第一章绪论 1.课题研究意义: 对于大部分DC/DC变换器电路结构,其共同特点是输入和输出之间存在直接电连接,然而许多应用场合要求输入、输出之间实现电隔离,这时就可以在基本DC/DC变换电路中加入变压器,从而得到输入输出之间电隔离的DC/DC变换器。而正激变化器就实现了这种功能。 2.课题研究内容: 1、本文首先介绍了正激变换器电路中变比、最大占空比和最小占空比、电容、电感参数的计算方法,并进行了计算。 2、正激变换器的控制方式主要通过闭环实现。其中闭环方式又分为PID控制和fuzzy控制。本文分别针对开环、PID控制,fuzzy控制建立正激变换器的Matlab仿真模型,并进行仿真分析了,最后对得出的结果进行比较。 第二章:正激电路的参数计算 本章首先给出正激变换器的等值电路图,然后列出了正激变换器的四个主要参数的计算方法,并进行了计算。 1、正激变换器的等值电路图 图1 正激变换器等值电路图 2、参数计算 (1)变比n 根据设计要求,取占空比D=0.4,根据输入电压和输出电压之间的关系得到变比:

n= D U U out in ?=4.012 100 ?=3.3 (2) 最大、最小占空比 最大占空比D max 定义为 D max = ()n U U U in d out 1 min ? +, 式中U in(min) =100-20=80V ,U out =12V ,n=3.3,,U d 为整流二极管压降, 所以D max =0.495。 最小占空比D min 定义为 D min = ()n U U U in d out 1 max ? +, 式中U in(max) =120V , 所以D min =0.333。 (3) 电容 电容的容量大小影响输出纹波电压和超调量的大小。取开关频率f=200KHZ ,则T=5×10-6 s , 根据公式: C=ripple ripple V f I ??81 , 式中取I ripple =0.2A ,V ripple =0.07mV , 所以C=1.79μF 。为稳定纹波电压,放大电容至50μF 。 (4) 电感 可使用下列方程组计算电感值: U out =L ×dt di , dt= f D m in 1-, 式中U out =12V ,di 取为0.2A ,D min =0.333, 所以L=0.334mH 。 第三章 正激变换器开环的Matlab 仿真 本章首先建立了正激变换器开环下的Matlab 仿真模型,然后对其进行了仿真分析。

双管正激变换器交错并联的方法比较

双管正激变换器交错并联的方法比较 摘要:从开关器件的电压应力来看,双管正激变换器较一般的正激变换器有更多的优点。本文提出了两种双正激变换器交错并联的方法,分析了两种电路的工作状态,比较了两种电路中输出滤波电感和电容中的电流脉动,对比了两种电路中各半导体器件的电流电压应力。最后通过仿真和实验证明了分析和比较的正 确性。 关键词:双管正激变换器移相并联开关应力 Comparison of Interleaving Methods of Two-transistor Forward Converter Abstract:Two methods of inte rleaving two-transistor forward converters are presented in this paper. Firstly, the operation stages are a nalyzed. Then the ripple currents in filter inductors and output capactiors in toth methods are discussed a nd compared. After that ,the current and voltage stresses of divices are investigated and compared as wel l.Finally, simulation and experiments are performed to verify the analysis and comparision. Keywords:Two -transistor forward converter Interleaving of converters Switching stress 1引言 双管正激变换器较单管正激变换器有很多优点,特别是在电压应力方面,因为变换器中每个功率器件只需承受电源电压,而在单管正激变换器中则要承受两倍的电源电压。而且同半桥或全桥变换器相比,它不存在桥臂直通的危险。因此双管正激变换器吸引了许多研究者的目光。在参考文献[1]中,作者提出了采用无损吸收的高效率双管正激变换器。在[2]和[3]中,两种零电压转换(ZVT)技术用于双管正激变换器。在[4]中,作者提出了一种可控变压器,用于增加双管正激变换器的效率。在[5]中,作者研究了多输出双管 正激变换反馈的模型。 为了增加变换器的输出功率,需要将两个双正激变换器并联运行。有两种方法实现两个双正激变换器的移相并联;一种是在输出电压侧并联(CPOC),另一种是在续流二极管侧并联(CPFD)。以前还没有 过关于两种方法比较的报道。 本文首先分析了两种并联方式的工作原理,然后分析和比较了两种方法中滤波电感和输出电容中的电流脉动,接着分析和比较了两种途径中各半导体器件的电流电压应力,最后用仿真和实验验证了前面的分 析和比较。 2工作状态分析 (1)两个双管正激变换器在输出电容侧并联 将两个双管正激变换器在输出电容侧并联如图1所示,其工作状态与单个双管正激变换器一样,图2 示出了这种并联方式的主要波形。 (2)两个双管正激变换器在续流二极管侧并联 两个双管正激变换器在续流二极管侧并联如图3所示。两变换器共用一个滤波电感和续流二极管,两 变换器在运行中移相180°。

单管正激变换器参数确定

第二章 方案的确定 2.1 变换器的设计指标 2.1.1 正激变换器的设计指标 输入电压:DC41V ~DC51V 输出电压:DC12V 输出电流:5A 效率: η≥80% 电压调整率:Su ≤1.5% 负载调整率:S I ≤1.5% 2.1.2 辅助电源(反激)的设计指标 输入电压:DC41V ~DC51V 输出电压:DC17V 输出电流:0.5A 效率: η≥87% 第三章 正激电路设计 这里UC3844的振荡器选择R T =R 8=12k Ω,C T =C 19=1000PF ,则 KHZ C R f T T osc 15010100010128.18.112 3=???==- (3-1) 所以6脚的输出频率(驱动频率)为: KHZ f f osc 752 1== (3-2) 3.3 主电路设计 主电路的设计主要包括变压器、电感和MOS 管的设计。 3.3.1 主电路中变压器的设计 变压器是利用互感应实现能量或信号传输的器件。在开关电源主电路中,变压器用于输入输出之间隔离及电压变换。开关电源中使用磁性元件比较多,这其中包括作为开关电源核心的高频功率变压器、驱动变压器、电流互感器、低压辅助电源变压器以及各种滤波电感等,通常把这些统称为电子变压器,他们是电力电子电路中储能、转换以及隔离所必备的元件。磁性元器件在整个的开关电源中所占的比重很大,对于开关电源的质量、体积、成本以及效率都有很显著的影响,特别是高频功率变压器,它对于整个开关电源的性能更是有着举足轻重的影响

[16]。 高频变压器具有电压变化、电气隔离和能量传输三项主要功能,是开关电源 的核心部件,它的设计和计算也是最复杂的。在能量传输方面,高频变压器有两种方式:一是变压器传输方式,即加在一次绕组上的电压,在磁心中产生了磁通变化,使二次绕组产生感应电压,从而达到使能量从变压器的一次侧传输到二次侧的目的;另一种是电感器传输方式,即在一次绕组上施加电压,会产生励磁电流并且使磁心磁化,并将电能转变成磁能存储起来,而后通过去磁可以使二次绕组产生感应电压,从而达到将磁能变换为电能释放给负载的效果,下面就是变压器设计的过程[17]。 1.铁芯材料的选取 在设计高频变压器的时候,应当首先从选择磁心开始,然后再确定绕组的匝 数。在设计的过程中,需要了解与磁心相关的多种特性以及参数,并且需要进行多种参数的计算和校验。不同工作频率的变压器,可以选择不同磁性材料的铁芯和不同的铁芯规格。选择铁芯的材料和规格,除了根据变压器的工作频率和功率容量以外,还要考虑铁芯的损耗和温升,并在合理控制变压器体积的基础上,尽量降低其成本。目前广泛应用的磁性材料主要有硅钢片、铁氧体、非晶态合金、微晶合金和铁粉芯等。 铁氧体的电阻率可以做得很高,因此高频损耗小,工作频率高。另外铁氧体 工艺性能好,价格便宜,性价比高。比较适应十中小功率的脉冲变压器的设计。本次设计选用的是磁性材料是PC40,其Bs=0.39T ,Br=0.055T ,所以取T B B B r s 335.025.0=-<=?,满足条件。 2.AP 公式 在开关电源中,高频变压器的磁心尺寸的选择与其工作频率、输出功率、电 路结构以及绕组匝数等许多的因素都有关系,是整个高频变压器设计工作的难点。而在设计高频变压器的时候,面积乘积法是最为常用的方法,通常也简称AP 法。 由电磁感应定律得: dt NAedB dt d N dt d d di L E Vin t L =Φ====? (3-3) B Ae VinDT AedB Vindt Np ?== (3-4) 另外从窗口能否够用得: KpKuAw Np J I prms = (3-5) 其中J 为电流密度,prms I 为电流有效值,10<

3843控制的反激变换器

看到一篇文章,220+-20%输入整流后为240-360 单端反激式电源中产生的反向电动势e=170v 则脉冲信号的最大占空比为170/(170+240)=41.5% 我记得反激最大占空比不是可以达到100%吗?可是如果用上面的式子是绝对小于1的 请高手指教 双管反激占空比可以大于50%,CCM下可以大于50%但是需要补偿. 常规我们说的反激最大也就在47%左右,不大于50%. Dmax=V or/(V or+VDCmin-Vds(ON)) 其中,V or为反射电压,80~135V,常规下取默认值110V,至于为什么,请看书.自己推导一下变知. VDCmin指的是母线上最低直流电压,这个只与你的输入交流值有关. Vds(ON)指的是开关管导通时开关管DS两端压降,在10V以下.与MOSFET的Rds以及你的负载有关,负载大的时候,这个压降会大一些,轻载的时候小一些. 所以,占空比怎么达到100%呢? 占空比还与选择开关管的耐压有关,有一些早期的反激电源使用比较低耐压开关管,如600V或650V作为交流220V 输入电源的开关管,也许与当时生产工艺有关,高耐压管子,不易制造,或者低耐压管子有更合理的导通损耗及开关特性,像这种线路反射电压不能太高,否则为使开关管工作在安全范围内,吸收电路损耗的功率也是相当可观的.实践证明600V管子反射电压不要大于100V,650V管子反射电压不要大于120V,把漏感尖峰电压值钳位在50V时管子还有50V的工作余量.现在由于MOS管制造工艺水平的提高,一般反激电源都采用700V或750V甚至800-900V 的开关管.像这种电路,抗过压的能力强一些开关变压器反射电压也可以做得比较高一些,最大反射电压在150V比较合适,能够获得较好的综合性能.PI公司的TOP芯片推荐为135V采用瞬变电压抑制二极管钳位.但他的评估板一般反射电压都要低于这个数值在110V左右.这两种类型各有优缺点: 第一类:缺点抗过压能力弱,占空比小,变压器初级脉冲电流大.优点:变压器漏感小,电磁辐射低,纹波指标高,开关管损耗小,转换效率不一定比第二类低. 第二类:缺点开关管损耗大一些,变压器漏感大一些,纹波差一些.优点:抗过压能力强一些,占空比大,变压器损耗低一些,效率高一些. 反激电源的反射电压还与一个参数有关,那就是输出电压,输出电压越低则变压器匝数比越大,变压器漏感越大,开关管承受电压越高,有可能击穿开关管、吸收电路消耗功率越大,有可能使吸收回路功率器件永久失效(特别是采用瞬变电压抑制二极管的电路).在设计低压输出小功率反激电源的优化过程中必须小心处理,其处理方法有几个: 1、采用大一个功率等级的磁芯降低漏感,这样可提高低压反激电源的转换效率,降低损耗,减小输出纹波,提高多路输出电源的交差调整率,一般常见于家电用开关电源,如光碟机、DVB机顶盒等. 2、如果条件不允许加大磁芯,只能降低反射电压,减小占空比.降低反射电压可减小漏感但有可能使电源转换效率降低,这两者是一个矛盾,必须要有一个替代过程才能找到一个合适的点,在变压器替代实验过程中,可以检测变压器原边的反峰电压,尽量降低反峰电压脉冲的宽度,和幅度,可增加变换器的工作安全裕度.一般反射电压在110V时比较合适. 3、增强耦合,降低损耗,采用新的技术,和绕线工艺,变压器为满足安全规范会在原边和副边间采取绝缘措施,如垫绝缘胶带、加绝缘端空胶带.这些将影响变压器漏感性能,现实生产中可采用初级

正激变换器工作原理

正激变换器 实际应用中,由于电压等级变换、安全、系统串并联等原因,开关电源的输入输出往往需要电气隔离。在基本的非隔离DC DC-变换器中加入变压器,就可以派生出带隔离变压器的DC DC-变换器。例如,单端正激变换器就是有BUCK变换器派生出来的。 一工作原理 1 单管正激变换器 单端正激变换器是由BUCK变换器派生而来的。图(a1)为BUCK 变换器的原理图,将开关管右边插入一个隔离变压器,就可以得到图(a2)的单端正激变换器 图(a1)BUCK变换器

图(a2)单端正激变换器 BUCK 变换器工作原理: 电路进入平恒以后,由电感单个周期内充放电量相等, 由电感周期内充放电平恒可以得到: ?==T dt L u T L U 001

即: 可得: 单端正激变换器的工作原理和和BUCK 相似。 其工作状态如图如图(a3)所示: 图(a3)单端正激变换器工作状态 开关管Q 闭合。如图所示,当开关管Q 闭合时的工作状态如图a4所示, ? ? =- -ON ON t T t o o i dt U dt U U 0 )(i i ON o o o i OFF o ON o i DU U T t U T D U DT U U t U t U U == -=-=-)1()()(

图(a4) 根据图中同名端所示,可以知道变压器副边也流过电流,D1导通,D2截止,电感电压为正,变压器副边的电流线性上升。在此期间,电感电压为: O I L U U N N u -= 1 2 开关管Q 截止。开关管截止时,变压器副边没有电流流过,副边电流经反并联二极管D2续流,在此期间,电感电压为负,电流线性下降: O L U U -= 在稳定时,和BUCK 电路一样,电感电压在一个周期内积分为零,因此: ()S O S I T D U DT U U N N ?-?=??? ? ??-1120 得: I O DU N N U 1 2= 由此可见,单端正激变换器电压增益与开关导通占空比成正比,

基于UC3844的多路输出双管正激电源设计

第十七届全国电源技术年会论文集 基于UC3844的多路输出双管正激电源设计 石晓丽张代润黄念慈郑越四川大学电气信息学院(成都610065) 摘要:介绍了一种基于UC3844集成芯片实现双管正激多路输出的电路,分析了电路的工作原理,并介绍了电路启动和控制设计方法,该控制方法简单,成本低,工作频率高,实用性强,同时设计了两种输出方案来满足不同需要,与一般的双管正激相比有较高的实用价值,实验证明效果良好。 叙词:双管正激多路输出开关电源 1引言 在中等容量的开关电源中,双管正激变换器有比较明显的 优势,它克服了单管正激变换器开关管电压应力过高的缺点,而 且不需要特殊变压器磁复位电路。更重要的是,与全桥变换器 和半桥变换器相比,其在结构上有抗桥臂直通的优点,因此已成 为应用最为普遍的电路拓扑结构。本文设计了一种采用 UC3844控制的多路输出双管正激开关电源。UC3844是一种电 流调制的PWM控制器,实现电压电流双闭环控制,芯片内阻较 大(30k),启动电流小(小于lmA),因此在高压输入时仍然可以 使用大电阻分压来进行启动,直接采用变压器输出端反馈,控制 电路简单,电路输出采用LM350调整电压精度。 2变换器工作原理 本文设计的变换器输出功率200W,工作频率50kHz,工作范围400V~600V,输出4路分别为24V、±12V和5V。 图l是变换器的原理图,主电路是双管正激变换器,开关管Q1和Q2同时导通,能量通过高频变压器传输到输出侧,经整流输出给负载;开关管关断时,变压器能量通过续流二极管D。和D2回馈到输入端,变压器磁芯复位。 Q和Q采用功率M喽;H『r作为功率开关管。开关管与瞬态电压抑制器(TVS)并联,可靠保护开关管。R3、G、b构成高频变压器原边缓冲电路,用以限制开关管漏极因高频变压器的漏感而可能产生的尖峰电压,岛选用超快恢复二极管,恢复时间为75ns。变压器原边的直流输入电压、原边绕组的感应电压以及由变压器的漏感而产生的尖峰电压,三者叠加在一起,其值可能超过M哽;既丌的额定电压,所以必须在开关管的DS极增加钳位电路和吸收电路,用以保护功率M瞪;H『r不被损坏。R。、Rz、C1、聩与R、R5、c3、D4构成了两个开关管的缓冲电路,D3和D4选用超快恢复管,其最大反向耐压值为700V,恢复时间为30ns。 输出部分采用半波加续流二极管整流,二极管选用超快恢复MUR820,额定值为8A/200V,恢复时间为30ns。 3控制电路的设计 UC3844电流PWM模式集成控制芯片广泛用于中小功率的13(3-13(3开关电源,UC3844内部主要由5.0V基准电压源、振荡器、降压器、电流检测比较器、PWM锁存器、高增益E/A误差放大器和用于驱动功率MOSFET的大电流推挽输出电路等 图1由UC3844控制的多路输出双管正激开关电源 构成,启动/关闭电压阀值为16v/10V,输出最大占空比为50%,工作频率0~500kHz,驱动能力达士1A。 R2 R4 图2UC3844的典型外部接线图 UC3844典型外围电路如图2所示。UC3844的内阻大约30k,它的启动电压可以由主电路输入电压经过Rt、Rz、R。、R(芯片内阻)分压而得到,由图2可以知道,A点电压的计算公式为: UA2i孺Rl‰ UC3844的启动电压为16V,式中R一30k,R2—20k,R4—4.7k,可计算出,当R-一300k时,%一400V电路开始工作。UC3844启动时电流不到lmA,启动过程中电阻R-所消耗的功率大约为: Pea=r×R1一(10-3)2×300×103—0.3W在双管正激变换器中,两开关管是同步的,因此采用变压器分两路来同时给开关管驱动信号,接线如图3所示。UC3844正 ?189?

正激变压器设计

单端正激变压器的设计 开关电源变压器是高频开关电源的核心元件。其作用为:磁能转换、电压变换和绝缘隔离。开关变压器性能的好坏不仅影响变压器本身的发热和效率,而且还会影响到高频开关电源的技术性能和可靠性。高频开关变压器的设计主要包括两部分:绕组设计及磁芯设计。本文将对应用在高频下的单端正激变压器的设计方法及磁芯的选择给出较为详细的论述。 1 单端正激变压器原理单端正激变压器的原理图如图1所示。 单端正激变压器又称"buck"转换器。因其在原边绕组接通电源Vi的同时把能量传递到输出端而得名。正激式变压器的转换功率通常在50~500 W之间。输出电压Vo由匝比n、占空比D 和输入电压Vi确定。 当PWM控制器输出正脉冲,功率开关导通,变压器的初级绕组通过电流,此电流由两部分组成,一部分为磁化电流即流经等效开环电感上的电流,另一部分足与输出电流等效的初级电流,他和初次级匝比成正比,和输出电流成正比。储存在电感上的能量必须在功率开关关断后下一次开启前泄放掉,以便使磁通复位。N3为去磁绕组 2 变压器磁芯的选用原则 高频开关电源中的变压器从性能价格比考虑,MnZn功率铁氧体材料是最佳的选择。应用于高频开关电源变压器中的铁氧体应具有以下磁特性:高饱和磁通密度或高的振幅磁导率,在工作频率范围有低的磁芯总损耗,较低的温度系数,较高的居里温度。 磁芯损耗Pc主要由磁滞损耗Ph和涡流损耗Pe(包括剩余损耗Pr)组成,即: 磁滞损耗Ph正比于直流磁滞回线的面积,并与频率成正比关系。即: 对于工作频率在100kHz以下的功率铁氧体磁芯,降低磁滞损耗是最重要的,为降低损耗,即要降低矫顽力Hc、剩余磁感应强度。要达到此目的,须从两方面着手,一是从配方成分方面,

1200W双管正激变换器设计之一——变压器设计

1200W双管正激变换器设计之一——变压器设计 正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用.下面举例给大家分享下对正激变换器的设计方法: 规格: 输入电压Vin=400V(一般在输入端会有CCM A PFC将输入电压升压在稳定的DC400V左右) 输出电压Vout=12V 输出功率Pout=1200W 效率η=85% 开关频率Fs=68KHz 最大占空比Dmax=0.35 第一, 第一,选择磁芯的材质 选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材,其相关参数如下: 因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB

得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB 的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc 选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T 第二,确定磁芯规格 根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku) 其中: Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数 对正激变换器,视在功率Ps=Pout/η+Pout 电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2 铜窗口占用系数Ku取0.2 ΔB=0.20T,J=600A/cm2,Ku=0.2 代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4 查磁芯规格书,选用磁芯ETD49,其相关参数如下: 第三,计算匝比、匝数 1. 根据公式N=Np/Ns=Vin/Vout=(Vin*Dmax)/(Vo+Vf) 其中Vf为输出二极管正向压降,取0.8V 得匝比N=(400*0.35)/(12+0.8)=10.9375, 取匝比N=11验算最大占空比Dmax, 最大占空比Dmax=N(Vout+Vf)/Vin=11*(12+0.8)/400=0.352 2. 根据公式Np=Vin*Ton/(ΔB*Ae)

双管正激同步整流变换器

本科毕业设计(论文) 双管正激同步整流变换器 *** 燕山大学 2012年6月

本科毕业设计(论文) 双管正激同步整流变换器 学院(系):里仁学院 专业:08应电2班 学生姓名:*** 学号:*** 指导教师:*** 答辩日期:2012/6/17

燕山大学毕业设计(论文)任务书学院:系级教学单位: 学号*** 学生 姓名 *** 专业 班级 08应电2班 题目题目名称推挽正激式DC-DC变换器的设计 题目性质 1.理工类:工程设计(√ );工程技术实验研究型(); 理论研究型();计算机软件型();综合型() 2.管理类(); 3.外语类(); 4.艺术类() 题目类型 1.毕业设计(√ ) 2.论文() 题目来源科研课题()生产实际()自选题目(√) 主要内容随着电源技术的发展,低电压、大电流的变换器因其技术含量高,应用广,越来越受到人们重视。在开关电源中,正激式和反激式有电路拓扑结构简单,输入输出电气隔离等优点,广泛应用于中小功率电源变换场合。与正、反激式相比,推挽式变换器变压器利用率高,输出功率较大,基本不存在励磁不平衡的现象。因此,一般认为推挽式变换器适用于低压,大电流,功率较大的场合。应用SG3525设计一套用于正激电路的低压大电流变换器及其控制系统,并通过Pspice仿真验证其闭环控制性能。 基本要求1. 了解正激变换器的基本原理,建立推挽正激式低压大电流DC-DC变换器的Pspice仿真模型; 2. 基于SG3525的特性设计PI控制闭环系统,给出控制参数的设计过程; 3. 仿真验证控制系统的性能。 参考资料1. 基于SG3525控制的双管正激变换器 2. SG2525A-REGULA TING PULSE WIDTH MODULA TORS 3. 脉宽调制电路SG3525AN原理与应用 4. SG3525在开关电源中的应用 周次第~周第~周第~周第~周第~周 应完成的内容查阅资料、 分析原理 建立正激式 DC-DC变换器的 Pspice仿真模型 闭环控制参 数的设计与 整定; 仿真验证;撰写论文 准备答辩 指导教师: 职称:年月日系级教学单位审批: 年月日

正激变换器和反激变换器的特性

正激变换器和反激变换器 正激变换器磁性元件的设计 正激变换器磁性元件除了变压器外,还有一个电感器,即扼流圈(输出电感)。一般的资料上都是从变压器开始算起的,但本人认为应该从电感器开始算起比较好,这样比较明了,思维可以比较清楚。因为正激变换器起源于BUCK变换器,而BUCK变换器,其功率的心脏是储能电感,因此,正激变换器的功率心脏是扼流圈,而不是变压器,变压器只有负责变电压,并没有其它的功能,功率传输靠得是电感。当然一般书上从变压器算起,也未尝不可,但这样算,思路不是很明确,也不容易让读者理解。 双管正激变换器工作特点 a、在任何工作条件下,为使两个调整管所承受的电压不会超过Vs+Vd(Vs:输入电 压;Vd:D1、D2的正向压降,),D1、D2必须是快恢复管(当然用恢复时间越短越好,我在实际设计和调试中多使用MUR460)。 b、在与单端正激变换器相比,无需复位电路,有利于简化电路和变压器设计;功率器件可选择较低的耐压值;功率等级也会很大,据我所知现在很多大功率等级的通信电源及电力操作电源都选用了这种电路。 c、两个调整管工作状态一致,同时处通态或断态。我个人建议在大功率等级电源中选用此种电路,主要是调整管好选,比如IRFP460、IRFP460A等调整管即可。 正激变换器输出电感计算 单端正激、双管正激、半桥、推挽、全桥、BUCK等电路设计方法相同。我实际设计和调试中一般仅以公式计算值作参考,适当的可以调整匝数以达到最佳状态(我个人认为)。 单端反激变换器设计 1、反激变换器电路拓扑图 图单端反激变换器

2、反激变换器电路原理 其变压器T1起隔离和传递储存能量的作用,即在开关管Q开通时Np储存能量,开关管Q 关断时Np向Ns释放能量。在输出端要加由电感器Lo和两Co电容组成一个低通滤波器(没有也可以),变压器初级需有Cr、Rr和Dr组成的RCD漏感尖峰吸收电路。输出回路需有一个整流二极管D1。由于其变压器使用有气隙的磁芯,故其铜损较大,变压器温相对较高。并且其输出的纹波电压比较大。但其优点就是电路结构简单,适用于200W以下的电源且多路输出交调特性相对较好。 正激变换器和反激变换器的区别 正激式变换器不蓄积能量,只担负耦合传输,反激式变换器需把开通过程中的能量蓄积在本身,关断过程中再释放:正激式绕组同相位,反激式绕组反相;正激式变换器不用调节电感值,反激式需调节.正激式工作存在剩磁为防饱和需消磁电路,本身不蓄能。需要蓄能线圈和续流二极管.反激式不用..因为成本和它们的特性,一般反激式电源在100瓦以下,正激式100瓦以上,并不是它们不能互换做功率.

正激式高频变压器的设计

电子报/2007年/8月/5日/第012版 资料 正激式高频变压器的设计 成都立新 由于高频变压器在开关电源中已被广泛的使用,所以,高频变压器的设计是一重要课题。 按照高频变压器的工作方式,可分为正激式和反激式两种。高频变压器工作时是利用一电子开关的高速通断,从而使变压器进行能量传输。当电子开关导通时,变压器进行能量传输,称为正激式;反之,即电子开关截止时,变压器进行能量传输,称为反激式。 这里,笔者介绍正激式高频变压器的设计方法,如图1所示。该变压器一般设计的使用功率为50~500W。图1中已标明变压器T各绕组安装时规定的同名端,以便以下分析。 当功率开关管M1接通时(给M1栅极上外加脉冲开关信号,在变压器T的主绕组N1中有电流通过),其自感电动势a点为+,b点为-,这样在变压器的N1中就储存了磁能。该能量传输到次级绕组N2上(e点为+,f点为-),使二极管D2正向偏置,有电流通过D2、电感L和负载RL。而此时D3是处于反向偏置,所以无电流通过D3。 当功率开关M1截止时(M1栅极开关信号为“0”电平),变压器T所有绕组以及L的感应电压都反向,D2也处于反向偏置状态。由于电感器L的电流不能突变,D3(是续流管)导通,负载RL仍有电流通过。此时,次级绕组中无电流通过。由此可见,变压器T从初级到次级的能量传输是在开关M1导通时完成的,这一过程通常称为正激式变换(反之,若上述的能量传输是在M1截止时完成,称为反激式变换,这里不讨论)。 在上述的变压器T正激式变换中,为了避免变压器T或电感器L产生饱和,要求开关管M1导通时的电压与时间的乘积(U×T)应等于M1截止时的反向电压与时间的乘积。为此,设定M1时间为T ON,T初级绕组电压设为Uin (初级绕组电流由N1的a流到b),由此时的电压×时间:Uin×Ton……(1)。 然而,当电子开关M1截止时,没有电流流过变压器T,结果是电压与时间的乘积就会不平衡,这种不平衡将导致变压器T饱和。为了解决变压器可能饱和的问题,在变压器T中增加了第三绕组N3和一只快恢复二极管D1。抗饱和的工作原理是当M1瞬时截止时,第三绕组N3的感应电压。c~d反向,此时c点为正,d点为负,且其感应电压高于Uin,因此D1开始导通,这就平衡了铁芯的电压和时间的乘积,这一过程称为铁芯的去磁或复位。 设N1、N2、N3分别是初级绕组、次级绕组和第三绕组的匝数,再设M1导通时,次级绕组的感应电压为:

正激变压器的设计

正激变压器的设计 本文以一个13.8V 20A的汽车铅酸电池充电器变压器计算过程为例,来说明正激变压器的计算过程 1、相關規格参数(SPEC): INPUT: AC 180V~260V 50Hz OUTPUT: DC 13.8V (Uomax=14.7V) 20A Pout: 274W (Pomax=294W) η≧80%, fs: 60KHZ; 主电路拓扑采用单管正激自冷散热 2、選擇core材質.決定△B 选择PC40材质Core,考虑到是自冷散热的方式,取ΔB=0.20T 3、確定core AP值.決定core規格型號. AP=AW×Ae=(Ps×104)/(2×ΔB×fs×J×Ku) Ps : 變壓器傳遞視在功率 ( W) Ps=Po/η+Po (正激式) Ps=294/0.8+294=661.5W J : 電流密度 ( A) .取400 A/cm2 Ku: 銅窗占用系數. 取0.2 AP=(661.5×104)/(2×0.20×60×103×400×0.2)≈3.4453 cm2 選用CORE ER42/15 PC40.其參數為: AP=4.3262cm4 Ae=194 mm2 Aw=223mm2Ve=19163mm3

AL=4690±25% Pt=433W (100KHz 25℃) 4、計算Np Ns. (1). 計算匝比 n = Np /Ns 設 Dmax= 0.4 n = Np / Ns = Vi / Vo = [Vin(min) ×Dmax]/ (Vo+Vf) Vf :二极管正向壓降取1V Vin(min)=180×0.9×√2-20=209 VDC Vin(max)=260×√2=370VDC n=(209*0.4)/(13.8+0.7)=5.766 取5.5 CHECK Dmax Dmax=n(Vo+Vf)/Vin(min)= 5.5 (13.8+1)/209=0.3868≈0.387 Dmin=n(Vo+Vf)/Vin(max)= 5.5 (13.8+1) /370=0.218 (2). 計算Np Np=Vin(min) ×ton/(ΔB×Ae) Ton:MOS管导通时间ton= Dmax/ fs=0.387/60×103=6.33uS Np = (209×6.33)/( 0.20×194)=34.1 取34TS (3). 計算Ns Ns = Np / n = 34÷5.5=6.18 取整为6 TS (4). CHECK Np (以Ns驗算Np) Np = Ns×n = 6×5 .5=33TS 取 Np = 33TS

正激、反激、双管反激、推挽开关电路小结

开关电源电路学习小结 1.正激(Forward)电路 正激电路的原理图如图1所示: 图1、单管正激电路 1.1电路原理图说明 单管正极电路由输入Uin、滤波电容C1、C2、C3,变压器Trans、开关管VT1、二极管VD1、电感L1组成。 其中变压器中的N1、N2、N3三个线圈是绕在同一个铁芯上的,N1、N2的绕线方向一致,N3的绕线方向与前两者相反。 1.2电路工作原理说明 开关管VT1以一定的频率通断,从而实现电压输出。当VT1吸合时,输入电压Uin被加在变压器线圈N1的两边,同时通过变压器的传输作用,变压器线圈N2两边产生上正下负的电压,VD1正向导通。Uin的能量通过变压器Tran传输到负载。 由于N3的绕线方向与N1的相反,VT1导通时,N3的电压极性为上负下正。 当VT1关断时,N1中的电流突然变为0,但铁芯中的磁场不可能突变,N1产生反电动势,方向上负下正;N3则产生上正下负的反向电动势,多出的能量将被回馈到Uin。 通过上述内容可以看到W3的作用,就是为了能使磁场连续而留出的电流通路,采用

这种接线方式后,VT1断开器件,磁场的磁能被转换为电能送回电源。 如果没有N3,那么VT1关断瞬间要事磁场保持连续,唯有两个电流通路:一是击穿开关;二是N2电流倒流使二极管反向击穿。击穿开关或二极管,都需要很高电压,使击穿后电流以较高的变化率下降到零;而很高的电流变化率(磁通变化率)自然会产生很高的感生电动势来形成击穿电压。 由此可见,如果没有N3,则电感反向时的磁能将无法回收到电源;并且还会击穿开关和二极管。 1.3小结 1)正激电路使用变压器作为通道进行能量传输; 2)正激电路中,开关管导通时,能量传输到变压器副边,同时存储在电感中;开关管 关断时,将由副边回路中的电感续流带载; 3)正激电路的副边向负载提供功率输出,并且输出电压的幅度基本是稳定的。正激输 出电压的瞬态特性相对较好; 4)为了吸收线圈在开关管关断时时的反电动势,需要在变压器中增加一个反电动势吸 收绕组,因此正激电路的变压器要比反激电路的体积大; 5)由于正激电路控制开关的占空比都取0.5左右,而反激电路的占空比都较小,所以 正激电路的反激电动势更高。

相关文档
最新文档