TFZh型铁路防灾安全监控系统维护手册

TFZh型铁路防灾安全监控系统维护手册
TFZh型铁路防灾安全监控系统维护手册

目录

1 系统整体结构 (1)

2 监测设备(现场层设备) (2)

2.1 气象监测设备 (2)

2.2 异物现场监测设备 (12)

3 基站监控单元设备 (17)

3.1 监控主机 (19)

3.2 UPS (23)

3.3 UPS切换器 (28)

3.4 继电器及电源组合 (30)

3.5 长线收发器 (33)

3.6 监控单元供电 (34)

3.7 监控单元防雷 (38)

4 问题处理 (40)

4.1 网络中断 (40)

4.2 气象数据异常或无数据 (41)

4.3 异物网黄色(或红色)报警 (42)

4.4 电源故障 (46)

4.5 防雷器故障 (55)

4.6 监控主机故障 (56)

5 日常维护 (57)

5.1 远程试验 (59)

5.2 现场试验 (60)

5.3 巡检 (62)

6 TFZH型铁路防灾安全监控系统工程信息表(见第二册) (66)

1系统整体结构

TFZh型铁路防灾安全监控系统(以下简称“防灾系统”)总体结构由现场层设备、基站层设备、中心设备与应用设备四层组成:

◆现场层设备:用于现场灾害信息采集,主要由各种灾害信息采集

传感器(风速、雨量)和异物监测设备组成。

◆基站层设备:用于现场采集设备的处理,主要由监控单元组成。

◆中心层设备:用于对实时数据进行存储、分析、转发等工作,主

要由应用服务器、数据库服务器等组成。

◆应用层设备:用于对灾害数据的显示与统计工作,是人机界面的

接口,主要由各种应用终端组成。

系统整体结构图如下:

2监测设备(现场层设备)

防灾监控系统监测设备包括:风雨传感器、数据远程传输单元、双电网传感器、轨旁控制器及传输电缆。

2.1气象监测设备

2.1.1风雨传感器及数据远程传输单元的安装

风雨现场监测设备是由风速风向传感器、数据远程传输单元和传输线缆组成。风速风向传感器使用专用托架,使用M16的螺栓和螺母安装在接触网支柱上,如下图所示:

铁路综合监控系统解决方案

铁路综合监控系统解决方案 导读:ZXRIS中兴铁路运营综合监控系统(以下简称:ZXRIS系统)充分考虑了目前中国铁路监控的现状和建设、升级和维护的费用,遵循统一规划、合理布局、互联互通、资源共享的原则,同时考虑调度、车务、货运、客运、机务、工务、车辆、公安、护路监控、防灾监控、牵引供电和电路、救援抢险、应急管理等多种需求。 系统简介 ZXRIS中兴铁路运营综合监控系统(以下简称:ZXRIS系统)充分考虑了目前中国铁路监控的现状和建设、升级和维护的费用,遵循统一规划、合理布局、互联互通、资源共享的原则,同时考虑调度、车务、货运、客运、机务、工务、车辆、公安、护路监控、防灾监控、牵引供电和电路、救援抢险、应急管理等多种需求。ZXRIS系统结合铁路管理人员的配置情况以及铁路管理人员的实际操作习惯,设计出了界面友好、软件人性化的综合管理平台,提供了清晰、简洁、友好的中文人机交互界面,操作简便、灵活、易学易用,便于维护。 ZXRIS系统利用最新信息技术,构建了一个由核心节点监控中心、区域节点监控中心、接入节点监控中心三级中心联网的计算机智能化监控平台。ZXRIS系统实现了各级监控中心的互联互通互动,形成了由监控采集现场等一线的监视报警控制到节点、监控中心的协防布控管理,再到区域监控中心或者核心监控中心的统一指挥决策的一体化全方位监控网络平台。 系统架构 ZXRIS系统采用全数字化设计方案,充分考虑监控信息的实时性和视频效果,在现场监控点、接入节点、区域节点和各监控中心用户终端之间通过监控系统承载网(支持有线或无线等传输方式)进行系统信息交互,实现媒体流和信令流的传输。 在监控现场,安装摄像机、拾音器、传感器等设备,采集现场模拟视频信号、模拟声音信号和环境告警信息,在多媒体接入单元进行编码压缩,转换为数字信号,存储在多媒体接入单元的硬盘上,同时通过监控系统承载网,监控信息传输至接入接点。 在接入接点和区域节点,实现就近存储和分发辖区范围内的媒体信息,实现分散存储,降低网络压力和信息存储风险。在局、站段监控中心,具有权限的值班人员可以实时浏览辖区内的媒体信息,控制管理辖区内的系统资源。 ZXRIS系统支持接入节点按照不同场景进行划分。视频接入节点可根据视频采集点设置的区域进行划分接入。采集点设置根据监视对象不同,按线路沿线、车站、机房内外及周边环境视频监视进行划分。 ZXRIS系统支持跨区域访问。一般情况下,每个节点只能调用本辖区内的视频,不允许节点间进行视频调用。特殊情况下,经授权,同一个视频节点的下级节点间可以相互调用视频。两个区域节点间调用视频需通过视频核心节点进行转发;同一个区域节点下的两个接入节点间调用视频需通过视频区域节点进行转发。

TFZh型铁路防灾安全监控系统考试试题及答案

TFZh型铁路防灾安全监控系统考试试题及答案 一.填空题 1. FZh型铁路防灾安全监控系统是一套架构于传输网络之上的集成系统,合武防灾系统中监测内容是:风监测、雨监测、异物监测。 2. FZh型铁路防灾安全监控系统设备主要由室外风速风向计、雨量计、异物侵限等监测设备,通信基站内的监控单元,中心的监控数据处理设备,以及防灾调度终端、工务终端、维护终端等组成。 3. 因自然环境或突发事件造成异物侵限,经过排除障碍,不影响行车时,行车调度人员可用进行临时行车的控制功能,在这个基础上,如果监测设备得到修复,调度人员可进行调度复原。 4. 在异物轨旁控制器里有电网故障、上行临时行车、下行临时行车、现场恢复、四个指示灯,正常情况下指示灯状态是全部不亮。 5. 在异物轨旁控制器有现场测试1(或实验1)、现场测试2(或实验2)、现场恢复三个钥匙,用于现场测试系统完整性。 6. 在现场测试过程中,扭动完现场测试1(或实验1)、现场测试 2(或实验2)两把钥匙后,需要再扳回到原来位置,否则无法进行调度恢复。 7. 在风雨监测点的数据远程传输单元内有两个开关电源给两个传感器供电,两个电源输出电压是直流24V。如果电源正常则电源指示灯绿灯常亮。 8.目前上海局合武使用的风雨传感器实现采集冗余功能,传感器名称为维沙拉

9.两个风雨传感器一高一低安装的目的是:防止数据采集时相互干扰。 10.风雨传感器A和B风速采集原理是:超声波式。 11. 异物监测点报警级别分为:一级报警、两级报警。系统监测到双电网同时中断时,在终端发出一级报警;系统监测到单电网中断时,向终端发出二级报警。 12. 当发生一级报警时,如果在道路可临时通行但异物设备未修复好的情况下,经工务人员同意可由行车调度人员进行上、下行临时行车操作。 13. 在大雨发生报警降级或解除时,工务人员需要到现场确认符合条件,然后通过工务终端通知调度终端进行报警确认。如果升级报警, 调度终端不需要工务通知,直接可以进行“报警确认”操作。 14. 异物二级报警不需要调度人员进行处理,工务需要确认然后现场修复系统。 15. 当上、下行临时行车命令都下达后,若维护人员现场修复电网,并扭动现场恢复按钮后,行度终端监控界面相应指示灯亮。表示现场工务人员已经确认使系统恢复,是行调终端“调度恢复”按钮变为可用的一个条件。 16. 大风数值>30m/s时对应的报警级别一级报警;风速达到 20m/s<风速<=30m/s时对应的报警级别二级报警,此阈值由路局文件提供,可以通过配置文件配置。 17. 风监测点单套采集中断报警,则可判断为该套传感器对应的电源通道故障或传感器故障。

任务2国内外高速铁路安全与防灾系统概述.

石家庄铁路职业技术学院教案首页

【新课内容】 任务1 高速铁路安全与防灾系统概述 高速铁路是一个纷繁复杂的巨系统,其运行安全涉及到各个环节,从合理安排列车运行图和司乘人员,到运营设备、线路的状态检测与维修保养和环境安全监控预警,以及调度指挥和运行控制等。高速铁路安全与防灾安全技术是用于全面监测各种可能对安全行车产生危害的自然灾害,通过建立实时监控网络、及时采取预防与防护措施,达到减少灾害损失、最终保证行车安全的目。以日本、法国、德国为代表的国外高速铁路,把安全技术作为高速铁路的先导型核心技术加以系统研究。针对其所处的自然环境、地理条件以及运营条件的不同,分别采取了各自不同的安全保障措施,并通过实际运用对安全对策予以不断完善和提高。 一、国内外高速铁路防灾安全监控系统概述 1.日本 日本是一个台风、暴雨、地震、滑坡及大雪等自然灾害频繁发生的国家,铁路经常遭受自然灾害的侵袭。据统计,日本铁路大约有1/3的行车事故是由各类自然灾害引发的。自然灾害严重威胁着日本铁路的行车安全,其引发的次生灾害(也称二次灾害)往往导致重大行车事故,造成的损失难以估计。因此,日本铁路部门非常重视对自然灾害的研究、防治工作,自新干线建成运营以来,经过40余年的不断研究和开发,已经从简单的观测、报警、防护逐步构建形成一整套完善的安全防灾监控系统,加强了对地震、强风、暴雨和大雪等自然灾害的检测,确保日本铁路的安全运营。按照灾害信息的种类和系统功能划分,日本铁路的安全防灾监控系统分为灾害预测系统和灾害检测系统。前者是根据监测数据对灾害发生的可能性进行预测,通过采取灾害前的预警措施和行车规定,保障行车安全;后者是针对已经发生的灾害,通过检测判断,阻止列车进入灾害区段,避免次生灾害的发生。 日本铁路制定了灾害情况下相应的行车安全规则,以及降低灾害对行车影响的措施,并已经研究及开发了很多针对不同自然灾害的自动监控系统,如地震紧急检测报警系统(UREDAS)、防灾管理控制系统、气象信息系统(MICOS)、河流信息系统。 1996年东海道新干线还开发使用了轨温监测系统。目前,日本新干线采用的是综合防灾安全监控系统,它是COSMOS综合运营管理系统的子系统。它通过设置在沿线的雨量计、风向风速仪、水位计和相应地点的地震仪等观测装置和落石、滑坡、泥石流等沿线灾害检测装置,以及轨温及异物入侵检测设备,基础设施、大型建筑物和车站灾害监测设备,沿线防护开关和防护电话等,将沿线的各类灾害信息全部送到中央调度控制室并严密监视线路的状态,一旦发生灾害,系

TFZh型铁路防灾安全监控系统维护手册

目录 1 系统整体结构 (1) 2 监测设备(现场层设备) (2) 2.1 气象监测设备 (2) 2.2 异物现场监测设备 (12) 3 基站监控单元设备 (17) 3.1 监控主机 (19) 3.2 UPS (23) 3.3 UPS切换器 (28) 3.4 继电器及电源组合 (30) 3.5 长线收发器 (33) 3.6 监控单元供电 (34) 3.7 监控单元防雷 (38) 4 问题处理 (40) 4.1 网络中断 (40) 4.2 气象数据异常或无数据 (41) 4.3 异物网黄色(或红色)报警 (42) 4.4 电源故障 (46) 4.5 防雷器故障 (55) 4.6 监控主机故障 (56)

5 日常维护 (57) 5.1 远程试验 (59) 5.2 现场试验 (60) 5.3 巡检 (62) 6 TFZH型铁路防灾安全监控系统工程信息表(见第二册) (66)

1系统整体结构 TFZh型铁路防灾安全监控系统(以下简称“防灾系统”)总体结构由现场层设备、基站层设备、中心设备与应用设备四层组成: ◆现场层设备:用于现场灾害信息采集,主要由各种灾害信息采集 传感器(风速、雨量)和异物监测设备组成。 ◆基站层设备:用于现场采集设备的处理,主要由监控单元组成。 ◆中心层设备:用于对实时数据进行存储、分析、转发等工作,主 要由应用服务器、数据库服务器等组成。 ◆应用层设备:用于对灾害数据的显示与统计工作,是人机界面的 接口,主要由各种应用终端组成。 系统整体结构图如下:

2监测设备(现场层设备) 防灾监控系统监测设备包括:风雨传感器、数据远程传输单元、双电网传感器、轨旁控制器及传输电缆。 2.1气象监测设备 2.1.1风雨传感器及数据远程传输单元的安装 风雨现场监测设备是由风速风向传感器、数据远程传输单元和传输线缆组成。风速风向传感器使用专用托架,使用M16的螺栓和螺母安装在接触网支柱上,如下图所示:

国外高速铁路防灾安全监控系统简介.

第七节 国外高速铁路防灾安全监控系统简介 世界各国在建设高速铁路之初,均把“安全”作为高速铁路的先导核心技术加以系统研究,并在实际运用中不断完善。通过实现基础设施高标准、技术装备高质量、运行管理自动化和安全监控实时化,来保证高速列车安全正点运行。 以日本、法国和德国为代表的高速铁路,由于其所处的自然环境、地理条件及运营方式不同,各自采用了不同特点的防灾安全保障措施。 一、日 本 日本是一个灾害多发国家,台风、暴雨、大雪、地震等自然灾害频繁。新干线自1964年10月开业至今,保持着无一乘客伤亡的优异成绩。每天运行列车750列,运送旅客75万人次以上,列车晚点平均小于1 min,首先应归功于日臻完善的防灾安全保障体系。 (一)沿线灾害监测及管制措施 1.地震监测及运行管制 日本是一个多地震国家,除在沿线(大部分在变电所)设置加速度报警检测仪及显示用地震仪外,东北、上越、长野新干线还沿海岸线设置地震监测系统,以便提前检测到40 Gal以上的地震波。东海道和山阳新干线由于距东海及关东地震区很近,则采用了更为先进的“地震P波早期监测警报系统(UrEDAS)”,利用沿线地震报警仪(设定40 Gal)和M(震级)—△(距震中心距)图,对运行管制区域进行判断和管制。图6.7.1为日本地震信息系统示意图,图6.7.2、图6.7.3为发生地震时的列车运行管制范围和过程。表6.7.1。表6.7.3为发生地震时的列车运行管制规则。 图6.7.1 日本地震信息系统示意图

图6.7.2 甲、乙、丙、丁所代表的范围 图6.7.3 日本地震发生时的处理过程框图 2.风速监测和运行管制 在易发生强风及突然大风的高架桥、河川等地安装风向风速仪,其信息在中央调度所的显示盘上或CRT上显示(Cathod Ray Tube是调度员和信息处理系统的电脑互相交换情报的人。机装置)。日本对列车运行进行管制的风速值,全部为瞬时风速值。管制标准各地区不尽相同,在设置了挡风墙的地段,对强风进行运行管制的标准可适当放宽。 表6.7.1 地震发生时列车运行规则(东海道新干线) 行 车 规 则 地震强度 停 车 限 速 运 行 甲 在规定的区间停车 在规定的区间限速70 km/h以下,特例30 km/h以下 乙 在规定的区间停车 在规定的区间限速70 km/h以下,特例30 km/h以下 丙 / 在规定的区间限速70 km/h以下,特例30 km/h以下 丁 / / 注:(1)“地震强度”是UrEDAS早期监测系统判定的地震烈度。 (2)“特例”是指下列情况之一:

铁路综合视频监控系统方案设计

铁路综合视频监控系统方案设计 视频监控系统在铁路运输中的作用日益显著。铁路公安、车务、电务、客运、货运等部门各自建设了独立的视频监控系统。 这些系统技术水平参差不齐,规模有大有小,互相独立,不能资源共享,重复 建设,造成巨大浪费。为了解决这些问题,铁道部决定建设铁路综合视频监控系统,它是一个共享平台,包括行车、客货运等各类视频监控系统。 然而,铁路综合视频监控系统的建设还处于起步阶段,在建设过程中遇到了 许多问题。本论文将就视频编码技术、视频存储技术、视频接入技术等方面在铁 路综合视频监控系统的应用进行研究,在此基础上,提出了一种铁路综合视频监 控系统设计方案。 视频编解码技术和视频数据存储技术是铁路综合视频监控系统的关键技术。 目前铁路综合视频监控系统普遍采用的视频编解码标准是MPEG-4/H.264。 然而MPEG-4/H.264标准都涉及几十项国外专利,而且分别属于不同的公司 机构。铁路综合视频监控系统规模巨大,产生的专利费将会非常多,而且手续繁琐。 本论文在铁路综合视频监控系统中引入我国拥有自主知识产权的AVS音视 频编码标准,提出一种新型的通信协议栈。这样不但能够节约大量专利费用,而且能够提供与H.264相当的编码效率的情况下,降低编解码复杂度,从而降低建设 成本。 目前,铁路综合视频监控系统采用的视频数据存储技术主要有DAS、NAS、SAN。在工程设计和建设中,发现许多问题,比如NAS存储系统在调取存储视频信息时 速度很慢。 本论文对各种存储技术进行了详细分析,提出了适合铁路综合视频监控系统

的存储技术。DAS和SAN技术主要是进行“块”存储,而NAS技术主要是进行“文件”存储,连续性差,在历史图像的调用浏览上响应速度较慢。 比较之下,DAS和SAN技术更适合于对视频信息的存储,NAS技术更适合于对 文本信息的存储。采用DAS时,整个视频网络上的存储设备是分散、独立而无法 共享的,资源利用率较低。 FC-SAN的部署方式、构建成本均较之IP-SAN高出很多,所以目前在大型网 络数字视频监控系统中更多采用的是IP-SAN架构。铁路综合视频监控系统一般 规模较大,视频路数较多,要求资源共享,再考虑到投入维护成本,本文推荐采用 IP-SAN存储技术。 目前,铁路综合视频监控系统前端摄像机接入层有以下几种方式:射频同轴 电缆、点对点光端机和节点式光端机。本文提出一种新式的接入方式,基于VPON 和EPON的视频接入方式。 这种方式有以下几个优点:1、节约大量光纤资源。2、无源光网络的稳定性。 3、全光纤网络的安全性和抗干扰性。本论文设计铁路综合视频监控系统具 有以下特点:1、采用AVS编码标准,改进了通信协议栈。 可实现与H.264、MPEG-4相当的编码效率,而且实现简单。可避免大量国外 专利费,节约大量投资。 2、采用IP-SAN存储技术,实现网络大容量共享视频存储,降低了投资。 3、基于无源光网络(VPON和EPON)组建视频接入层,节约大量光纤资源,而且可做到无损传输。

铁路车辆运行安全监控体系(5T系统)

铁路车辆运行安全监控体系(5T系统) 铁路车辆运行安全监控体系简称“5T”系统,主要由五大系统构成:红外线轴温探测智能跟踪系统(简称THDS)、货车运行状态地面安全监测系统(简称TPDS)、货车滚动轴承早期故障轨边声学诊断系统(简称TADS)、货车运行故障动态图像检测系统(简称TFDS)、客车运行安全监控系统(简称TCDS)。以及与“5T”系统配套的铁路车号自动识别系统(简称ATIS)。 THDS(TrackHotboxDetectionSystem): 系统利用轨边红外线探头,对通过车辆每个轴承温度实时检测,并将检测信息实时上传到路局车辆运行安全检测中心,进行实时报警。通过配套的铁路车号自动识别系统,实现车次、车号跟踪,热轴货车车号的精确预报,重点探测车辆轴承温度,对热轴车辆进行跟踪报警。重点防范热切轴事故。 TPDS(TruckPerformanceDetectionSystem): 系统利用安装在铁路正线直线段上的轨边检测平台,动态监测轮轨间包括脱轨系数、减载率等动力学参数,实现对货车的运行状态分级评判。通过配套的铁路车号自动识别系统,实现车次、车号跟踪。重点防范货车脱轨事故,防范车轮踏面擦伤、剥离以及货物超载、偏

载等行车安全隐患。

TADS(TrucksideAcousticDetectionSystem): 系统利用轨边噪声采集阵列,实时采集运动货车滚动轴承噪音,通过数据分析,及时发现货车轴承早期故障。通过配套的铁路车号自动识别系统,实现车次、车号跟踪。重点防范切轴事故,TADS系统使安全防范关口前移,对轴承故障进行早期预报。 TFDS(TroubleofmovingFreightcarDetectionSystem): 系统采用高速连续数字照像技术、大容量图像数据实时处理技术和精确定位技术,利用轨边高速摄像头,对运行货车隐蔽故障和常见故障进行动态检测,及时发现货车运行故障,重点检测货车走行部、制动梁、悬吊件、枕簧、大部件、钩缓等安全关键部位,重点防范制动梁脱落事故,防范摇枕、侧架、钩缓大部件裂损、折断,防范枕簧丢失、窜出等危及行车安全隐患。 TCDS(TrainCoachRunningDiagnosisSystem): 系统通过车载检测装置对运行中客车的供电、空调、电源、车门、火灾、轴温、制动系统、转向架等关键部件进行实时监测、诊断和报警,并以无线方式实时传输到地面监测中心,保证地对车的状态监控、

铁路防灾系统

- 客运专线防灾安全监控系统总体技术方案(暂行)(初稿) 1.总则 1.1防灾安全监控系统是保证客运专线列车安全、高速运行的重要基础装备之一。行车调度员根据风雨雪天气、地震灾害、异物侵限等安全环境的实时监测报警、预警信息以及铁道部、铁路局的相关规章制度,指挥列车安全运行;工务维护部门按照防灾安全监控系统提供的相关灾害信息,开展基础设施的巡检、抢险及维修养护工作。 1.2防灾安全监控系统是风监测子系统、雨量监测子系统、雪深监测子系统、地震监控子系统以及异物侵限监控子系统的集成系统,并预留轨温监测子系统的接入条件。 1.3客运专线铁路应根据沿线的气象、地质条件以及线路环境、运营速度,选用相应的子系统,合理构建客运专线防灾安全监控系统。 1.4防灾安全监控系统应与客运专线同步设计、安装、调试及开通运用。 1.5防灾安全监控系统设备应布设于铁路用地界内,现场监测设备的安装不得侵入客运专线的建筑限界。 1.6防灾安全监控系统与其他系统的接口设备故障时,不应影响其他系统的正常运行。

1.7防灾安全监控系统应具有抗雷电及电气化铁路电磁干 - 2 - 扰的能力。 1.8防灾安全监控系统的构建应支持兼容子系统的接入及其所引起的系统容量、功能等方面的平滑扩展。 1.9防灾安全监控系统现场设备应满足无人值守的要求,具有较完善的故障自诊断和远程维护功能。 2.引用标准 《地面气象观测规范》(QX/T61-2007) 《中国地震动参数区划图》(GB18306-2001) 《地震台站观测环境技术要求》(GB/T 19531.1-2004)《计算机软件开发规范》(GB8566-88); 《微型计算机通用规范》(GB/T 9813-2000); 《国际电联2Mbps 接口通信标准》(ITU—TG.703、G.704);《电磁兼容试验和测量技术》(IEC61000-4-12); 《计算机信息系统雷电电磁脉冲安全防护规范》(GA267);《外壳防护等级》(GB4208-2008); 《电工电子产品环境试验》(IEC60068-2-14:1984); 《电子计算机场地通用规范》(GB2887-2000); 《铁路防雷、电磁兼容及接地工程技术暂行规定》(铁建设…2007?39号); 《CTCS-3级列控系统技术创新总体方案》(铁运…2008?73

铁路综合视频监控概览

13 综合视频监控 13.1一般规定 13.1.1铁路综合视频监控系统(以下简称综合视频系统)由视频节点、视频汇集点、视频采集点、承载网络和终端设备组成。其中,视频节点包括视频核心节点、视频区域节点、I 类视频接入节点和II类视频接入节点,视频终端包括用户终端(含显示设备)和管理终端。 13.1.2 视频节点设备包括服务器、存储设备、网络交换设备、解码设备等;视频汇集点设备包括编码设备、视频光端机、网络交换设备等;视频采集点设备,即前端采集设备,包括摄像机、镜头、视频光端机,及与之配套的云台、防护罩、室外设备箱、视频杆塔等附属设备;终端设备包括计算机、通信接入设备等。前端采集设备、编码设备及视频接入设备等设备总称前端设备。 1 13.2 设备管理 13.2.1 综合视频系统的维护分界 13.2.1.1综合视频专业与通信其他专业分界 (1)与传输专业分界:以连接传输设备的第一连接端子为界,连接器(不含)至视频监控设备由视频监控专业负责; (2)与数据网专业分界:以数据网设备所在机房配线架的连接器(或第一端子)为界,连接器(不含)至视频监控设备由视频监控专业负责。 (3)与通信线路专业分界:以进入综合视频系统的第一连接处为分界点,连接处至视频监控设备由视频监控专业负责。 13.2.1.2通信专业与铁路其它专业部门的维护分界 (1)前端设备与节点设备间的分界:前端采集设备为模拟摄像机时,以编码设备的输入端为界,编码设备(含)至节点设备由通信专业负责;编码器(不含)至摄像机由前端设备维护单位负责。 前端采集设备为IP摄像机时,以通信接入设备为界,通信接入设备至节点设备由通信部门负责维护,通信接入设备(不含)至IP摄像机由铁路局指定单位负责维护。 (2)用户终端与节点设备间的分界:以用户终端的通信接入设备为界,通信接入设备至节点设备由通信部门负责维护,通信接入设备(不含)至用户终端由用户终端维护单位负责。 13.2.2 接入综合视频系统的视频终端应进行存储介质封闭处理;严禁在视频终端上进行与视频监控系统无关的操作;严禁在视频终端上安装、运行与视频监控系统无关的软件;未经批准,严禁擅自接入视频终端。 13.2.3 维护人员不得擅自改变综合视频系统的系统数据,对确实需要改动的系统数据,需报上级主管部门审批。 13.2.4 铁路局应做好管内综合视频系统用户及设备编码规划、分配和管理工作。 13.2.5 维护单位根据测试检修工作需要,应配备以下主要仪器仪表和专用工具: 视频测试卡、视频信号发生器、视频信号分析仪、图像质量分析仪、视频监控测试仪、网络仿真仪、照度计 13.2.6 维护部门应具备以下主要技术资料: (1)相关工程竣工资料、验收测试记录; (2)视频监控系统组网图; (3)传输通道、路由径路图; (4)室内设备布置和配线图; (5)IP地址分配表; 92

德国、法国、日本高速铁路防灾安全监控系统简介

德国高速铁路防灾安全监控系统简介 德国高速铁路属客、货混运型,且隧道约占线路长度的1/3。因此,隧道内的行车安全成为德国高速铁路安全保障的重点。德铁制定了非常严格有效的防范措施。例如:禁止无加固和防护措施的货物列车或装有危险货物的列车驶入隧道;尽可能减少客、贷列车在隧道内交会,并要求限速运行;专门制造了两列隧道救援列车,随车带有医疗卫生救助设备,并同地方政府共同组织消防、救援队,当出现意外事故时,能及时进行抢救。 此外,在高速新线上也采用了新型防灾报警系统MAS90,除可监督线路装备的运用状况外,还可识别和及时报告环境对行车安全的影响,以及移动设备发生破损的情况。该警报系统在全线南、北、中段设有中央控制单元(SZE),相互连通;每个SZE又连接若干设在沿线总站信号楼内的各种报警和记录单元(MRE),并与之进行信息和命令交换。MRE接受安装在沿线的探测报警仪器采集的信息。这些探测报警仪器主要有:HOA903型热轴探测器;LSMA隧道气流报警器(在长度大于1.5km的隧道内安装);WMA风测量仪(在所有桥梁上安装);BMA火灾报警仪;沿线设置防护开关;隧道口坍方报警信号装置(EMA);隧道两端及隧道内每1000m(早期600m)设置应急电话(NR),仅需扳动手柄就可打开电话箱,紧急呼叫的信息具有绝对优先权。德国的计算机辅助列车监控(或称行车调度LZB)系统,可起到安全调度功能。 图为德国新建高速铁路防灾报警系统配置示意图。 图德国新建高速铁路防灾报警系统配置图 探测设备:HOA—热轴探测设备;WMA—风力测量报警设备;LSMA—气流报警设备; BMA—火灾报警设备;EMA—塌方报警设备;Whz—道岔加热设备。 处理设备:ZSE—集中控制单元;MRE—报警显示和记录装置。

8、铁路综合视频监控系统的应用及技术发展趋势探讨

铁路综合视频监控系统的应用及技术发展趋势探讨 尉剑刚 (北京世纪瑞尔技术股份有限公司,北京100073) 1 铁路综合视频监控系统需求分析及简单应用分类 铁路是由多专业、多部门构成的一个有机整体,各专业、部门间各有分工,同时业务上又相互关联,工作空间方面也互有交叉耦合,因此要求铁路综合视频监控系统是一个能够满足多业务、多工种、多部门、多场所、多用途需求的综合性视频监控系统。 与铁路运营管理体系相一致,铁路综合视频监控系统也是覆盖沿线工区、站段、路局/公司、铁道部的大规模网络化系统,具有空间上大覆盖、时间上全天候的应用特点。从运用范围来看,系统的用途主要包括治安防范、业务监督、日常维修养护、现场作业指导和辅助应急指挥等。 2 铁路综合视频监控系统的现状 由于业务需要,视频监控技术在铁路的应用由来已久,从传统模拟视频到简单数字视频,再到有一定规模的专业性视频监控系统都或多或少地得到了应用。但真正开始成规模、系统化的视频监控系统则是从客运专线视频监控系统的建设开始的。 2.1铁路视频监控的规范体系现状 系统建设,标准先行。为此铁道部相关主管部门组织出台了《铁路综合视频监控系统技术规范(试行版)》,相应的接口规范、测试规范和工程验收规范也在编制之中。系列规范的制定为系统的大规模建设奠定了基础。 2.2铁路综合视频监控系统的系统结构 铁路综合视频监控系统是一个多级管理、多级转发、多级存储的大型网络化视频监控系统,图1是新颁布的技术规范对铁路视频监控系统整体结构的抽象描述。

图1 铁路视频监控系统整体结构 此前已按线路工程招标、建设实施的各数字视频监控系统基本上均符合这个规范,仅有个别线路的视频监控系统在接入节点设置了系统管理功能,某些线路的存储节点较规范有所下移,但总体结构与规范无原则上的差异。 2.3铁路综合视频监控系统的对象 目前,铁路综合视频监控系统主要覆盖了车站站房、站场、专业机房和区间线路等各主要环节,具体如下。 站场:咽喉区、站台区、进出站口、装卸货区、站场区内的移动作业点; 区间:隧道口、铁路桥梁引桥处、桥梁维修梯、公跨铁/铁跨铁桥梁、重点路堤/路堑路段; 专业机房:各专业室内安防、室内主要设备区; 站房:车站运转室、售票厅、候车厅、电梯等; 供电:电力/电牵引变配电所、开闭所、分区所、AT所,包括关键设备及安防对象监测。 2.4铁路综合视频监控系统的组网方式 本质上,铁路综合视频监控系统是一个分布处理、分布授权、多级管理的大型海量信息系统,信息流自下而上,逐级收敛。 铁路视频监控网络的传输通道,铁道部视频监控中心核心节点与各路局/客专调度所间通过n*2M专业通道互联。基层视频数据流到路局/客专调度所的汇聚,在设置独立IP传输网络的高等级线路中,通过IP数据网传送;其它线路中,通过传输系统的2M通道传送,个别既有传输系统资源确实紧张的,可利用站间空余光纤,构建千兆光纤以太网来承载。视频监视点到前端接入点的传输链路,以光缆及电缆为主,无线传输为辅。 3 视频监控技术的发展趋势 虽然视频监控技术诞生已久,但是无论从视频内容处理角度、传输平台角度还是从应用全面性角度看,都远未达到成熟,还具有很大的发展空间。视频监控技术的发展依赖于视频处理技术(包括视频编解码技术、模式识别技术、视频检索技术等)、基础网络技术和相关信息集成技术的发展,紧密跟踪这些基础技术及其应用的发展,是掌握视频监控技术发展趋势的根本之道。总结起来,认为在如下方面应加以关注。 (1)体系规范化:视频编解码标准的多义性、系统数据交换环节强有力规范的缺位(各主要行业、部门均出台或正在酝酿出台各自的规范,这种局面一方面说明各方注意到了规范统一的重要性,另一方面也说明在这一块权威规范的缺位的现实,必须有强力规范来统一这种混乱局面)是当前视频监控系统发展的最大障碍,统一而清晰的视频编解码标准和权威的系统接口规范是这个行业高速普及发展的主要前提。 (2)系统智能化:只有智能化才能真正形成视频监控系统的灵魂,提升应用价值。视频监控系统的智能化至少应体现在视频内容自动分析与对象识别、传输策略自动调整、存储

探索铁路安全监测系统构建(标准版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 探索铁路安全监测系统构建(标 准版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

探索铁路安全监测系统构建(标准版) 摘要:随着我国经济建设的高速发展,人们的生活水平日益提高,简单的物质生活已经不能满足人们对美好生活的追求,节假日的旅游出现已经成为一种时尚。随着人们思想观念的改变,出行的人数越来越多。铁路运行建设的完善和速度的提高,越来越多的人选择铁路作为旅行的交通工具,再加上货运运输量的与日俱增,给铁路部门的管理工作造成了相当大的压力,尤其是在节假日期间,运营安全问题是非常重大并且敏感的话题。为解决这一问题,我国政府真在大力推进铁路安全监测系统的构建,为人们的安全出行保驾护航。 关键词:铁路安全;安全监测;系统构建 随着人们生活水平的提高,旅行已经成为人们节假日期间的一种常见的娱乐休闲方式,与飞机相比,铁路更为安全、便宜,并且,

火车的几次提速,也极大的促进了人们乘坐火车出行的趋势。但是,旅行期间的安全问题,是人们最为关注的事情,尽管相对于飞机,火车更为安全,但也难免出现一些意想不到的事情,或者是蓄意的破坏,因此,铁路系统的安全监测工作已经成为人们关注的热点问题。 一、我国铁路安全监测系统的现状分析 我国目前铁路安全监测系统存在着以下几个问题: (一)未统一组网,管理和维护困难 现有的铁路各种安全保障系统由电务、车辆、机务、工务等部门各自组网,只考虑单个专业部门的具体需求,使用的网络类型都有各自的特点。虽然在各自的实际应用中也都发挥了应有的作用,但是网络标准不统一,采用了独立的通信网络和不同的数据通信接口及协议,使得当前对于铁路沿线安全监测系统及其设备管理和维护困难。 (二)信息不能相互共享,网络利用率低 由于各个部门的安全监测系统各自独立工作,各个安全监测系

客运专线防灾安全监控系统总体技术方案

客运专线防灾安全监控系统总体技术方案(暂行) (初稿) 1.总则 1.1 防灾安全监控系统是保证客运专线列车安全、高速运行的重要基础装备之一。行车调度员根据风雨雪天气、地震灾害、异物侵限等安全环境的实时监测报警、预警信息以及铁道部、铁路局的相关规章制度,指挥列车安全运行;工务维护部门按照防灾安全监控系统提供的相关灾害信息,开展基础设施的巡检、抢险及维修养护工作。 1.2防灾安全监控系统是风监测子系统、雨量监测子系统、雪深监测子系统、地震监控子系统以及异物侵限监控子系统的集成系统,并预留轨温监测子系统的接入条件。 1.3 客运专线铁路应根据沿线的气象、地质条件以及线路环境、运营速度,选用相应的子系统,合理构建客运专线防灾安全监控系统。 1.4 防灾安全监控系统应与客运专线同步设计、安装、调试及开通运用。 1.5 防灾安全监控系统设备应布设于铁路用地界内,现场监测设备的安装不得侵入客运专线的建筑限界。 1.6 防灾安全监控系统与其他系统的接口设备故障时,不应影响其他系统的正常运行。

1.7防灾安全监控系统应具有抗雷电及电气化铁路电磁干扰的 能力。 1.8防灾安全监控系统的构建应支持兼容子系统的接入及其所引起的系统容量、功能等方面的平滑扩展。 1.9防灾安全监控系统现场设备应满足无人值守的要求,具有较完善的故障自诊断和远程维护功能。 2.引用标准 《地面气象观测规范》( QX/T61-2007 ) 《中国地震动参数区划图》( GB18306-2001 ) 《地震台站观测环境技术要求》 ( GB/T 19531.1-2004 ) 《计算机软件开发规范》( GB8566-88 );《微型计算机通用规范》( GB/T 9813-2000 );《国际电联 2Mbps 接口通信标准》( ITU -TG.703 、 G.704 ); 《电磁兼容试验和测量技术》( IEC61000-4-12 ); 《计算机信息系统雷电电磁脉冲安全防护规范》 ( GA267 ); 《外壳防护等级》( GB4208-2008 );《电工电子产品环境试验》( IEC60068-2-14:1984 );《电子计算机场地通用规范》 ( GB2887-2000 );《铁路防雷、电磁兼容及接地工程技术暂行规定》(铁建设〔2007 〕 39号); 《CTCS-3 级列控系统技术创新总体方案》 (铁运〔2008 〕 73号) 《客运专线列控系统临时限速技术规范( V1.0 )》(科技运〔2008 〕151 号) 除上述标准和规范外,在防灾安全监控系统设备制造、软件编

基于视频的高铁综合安全防灾系统分析实用版

YF-ED-J4144 可按资料类型定义编号 基于视频的高铁综合安全防灾系统分析实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

基于视频的高铁综合安全防灾系 统分析实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 安全是铁路运输永恒的主题,是铁路的生 命线。我国地域辽阔,地形复杂,气候变化 大,致使铁路灾害分布广泛、类型众多、发生 频繁,铁路灾害的分布遍及全国,基本上凡有 铁路的地方均受程度不同的灾害侵袭,由此平 均每年造成铁路运输中断100余次,累计 10002000h,最高峰曾达到年断道211次。已发 生灾害路段占全路总运营里程的20%以上,尚有 许多线路灾害处于潜伏状态,严重威胁铁路的 行车安全。

高速铁路由于列车运行速度高、密度大,运送对象以旅客为主,一旦发生事故后果不可想象。因此,除了要求机车车辆、供电、线路以及通信信号设备高性能外,对各种可能发生的灾害,如自然灾害(强风、暴雨、大雪、地震)、突发事故(坍方落石、异物侵限)、列车及设备故障、突发的大规模群体事件等,都要实施全面监测。世界各国已建成和正在建成的高速铁路均将综合安全保障体系的研究放在首位。如何针对可能发生的各类危及行车安全的灾害,建立安全、可靠、实时、准确的铁路安全防灾监控和信息传输体系,制定科学有效的预警机制和应急预案,在灾害发生前或发生后及时控制运行列车减速或停车,使各种多发、随机的铁路灾害造成的破坏力降低到最小程度

[ppt] 城市铁路综合监控系统业务

发展历程 8和利时公司在国内率先提出综合监控技术理念。2000年,在北京城铁13号线实施了我国第一个综合监控系统项目,成功进入城市轨道交通自动化领域; 82001年,自主研发了城市轨道交通综合监控系统MACS SCADA; 82002年,签订深圳地铁一期工程综合监控系统项目,后成为该项目工程总包商,实现深度集成; 8成功实施了包括北京、深圳、广州在内的国内十多条主要地铁综合监控系统的建设项目,截至2009年6月底,公司承担的项目数量居国内同行首位 8确立了在国内轨道交通综合监控系统领域中制定技术标准、工程实施及验收标准的主导地位。

城市轨道交通综合监控自动化系统 城市轨道交通综合监控系统(MACS-SCADA) 8该系统集成了包括电力、环控、防灾等多个地铁自动化专业子系统,并在集成平台支持下对地铁各专业进行统一监控,实现各专业系统的信息共享及系统之间的联动控制功能,为实现城市轨道交通现代化运营管理提供信息化基础。 8该系统对子系统的集成采用了和利时自主创新的深度集成技术,在同一软件平台上,将被集成子系统的中央级、车站级和设备控制级集成在一起,极大地提高集成系统的性能。 8产品广泛应用在北京地铁十三号线、十号线(含奥运支线),广州地铁 三、四、五号线,深圳地铁一号线、四号线,武汉市轨道交通一号线, 天津市快速轨道交通、大连快速轨道交通三号线等十几条线中。

城市轨道交通综合监控自动化系统MACS-SCADA是在同一网络和同一软件平台上集成和互联多个自动化专业子系统开放的分层分布式系统,对各个集成和互联的专业系统进行统一监控,构建面向城市轨道交通各个专业系统的数字化信息共享平台,实现不同专业系统之间的信息、资源共享及专业系统之间的联动控制功能,为实现城市轨道交通现代化运营管理提供信息化基础,提升处理城市轨道交通突发事故的应急能力。

铁路车辆运行安全监控体系5T系统

铁路车辆运行安全监控体系(5T系统) 铁路车辆运行安全监控体系简称“5T”系统,主要由五大系统构成:红外线轴温探测智能跟踪系统(简称THDS)、货车运行状态地面安全监测系统(简称TPDS)、货车滚动轴承早期故障轨边声学诊断系统(简称TADS)、货车运行故障动态图像检测系统(简称TFDS)、客车运行安全监控系统(简称TCDS)。以及与“5T”系统配套的铁路车号自动识别系统(简称ATIS)。 THDS(TrackHotboxDetectionSystem): 系统利用轨边红外线探头,对通过车辆每个轴承温度实时检测,并将检测信息实时上传到路局车辆运行安全检测中心,进行实时报警。通过配套的铁路车号自动识别系统,实现车次、车号跟踪,热轴货车车号的精确预报,重点探测车辆轴承温度,对热轴车辆进行跟踪报警。重点防范热切轴事故。 TPDS(TruckPerformanceDetectionSystem): 系统利用安装在铁路正线直线段上的轨边检测平台,动态监测轮轨间包括脱轨系数、减载率等动力学参数,实现对货车的运行状态分级评判。通过配套的铁路车号自动识别系统,实现车次、车号跟踪。重点防范货车脱轨事故,防范车轮踏面擦伤、剥离以及货物超载、偏

载等行车安全隐患。 TADS(TrucksideAcousticDetectionSystem): 系统利用轨边噪声采集阵列,实时采集运动货车滚动轴承噪音,通过数据分析,及时发现货车轴承早期故障。通过配套的铁路车号自动识别系统,实现车次、车号跟踪。重点防范切轴事故,TADS系统使安全防范关口前移,对轴承故障进行早期预报。 TFDS(TroubleofmovingFreightcarDetectionSyste m): 系统采用高速连续数字照像技术、大容量图像数据实时处理技术与精确定位技术,利用轨边高速摄像头,对运行货车隐蔽故障与常见故障进行动态检测,及时发现货车运行故障,重点检测货车走行部、制动梁、悬吊件、枕簧、大部件、钩缓等安全关键部位,重点防范制动梁脱落事故,防范摇枕、侧架、钩缓大部件裂损、折断,防范枕簧丢失、窜出等危及行车安全隐患。 TCDS(TrainCoachRunningDiagnosisSystem): 系统通过车载检测装置对运行中客车的供电、空调、电源、车门、

CR-NIVM-铁路综合视频监控系统-V3.0-安装手册—接入节点分册

CR-NIVM 铁路综合视频监控系统安装手册 -接入节点分册 V3.0 版权所有(C)北京世纪瑞尔技术股份有限公司

目录 1.系统安装准备 (2) 1.1.系统整体结构概述 (2) 1.2.系统安装环境要求 (3) 2.系统安装 (4) 2.1.管理服务器 (5) 2.2.流媒体服务器、录像服务器 (25) 2.3.客户端 (47) 2.4.GIS插件 (47) 2.5.数字矩阵 (50) 2.6.接入代理服务 (51)

1.系统安装准备 1.1.系统整体结构概述 软件系统由管理服务器、终端、流媒体服务器、录像服务器、外部告警采集(OPC)和数据库、数字矩阵等部分构成。 ?管理服务器:提供对系统的配置;告警的采集、分析、处理;上下级管理服务器间的协调。 ?流媒体服务器:实时采集视频编码设备(DVR)的音视频数据;实时采集行为分析告警及轨迹数据; 根据音视频分发请求进行分发。 ?录像服务器:可定时录像、告警录像和外部触发录像功能。具有定期清理存储磁盘和循环清理功能。 ?终端:可点播或轮巡播放实时音视频;显示实时告警信息;云台控制(上、下、左、右、调焦、聚焦、光圈、预制位、雨刷等);手动录像、抓拍;回放图片及录像(手动、告警);查询历史告警信息;系统管理员可远程管理管理服务器等。 ?数据库:存储系统配置、告警记录和日志等信息。 ?数字矩阵:通过对音视频流的解码,最终将音视频信号输出到大屏。并能将画面进行多种方式的分割播放。 管理服务器程序与终端程序为同一个应用程序,通过配置的运行模式区分当前运行进程是管理服务器或终端。 系统的一级软件体系结构如下图所示:

铁路防灾安全监控系统

铁路安全监控系统 主要功能 铁路防灾安全监控系统是专门为高速铁路遇到风、雪、雨等灾害情况实施监测的系统,由于铁路线路的特殊性,风、雪、雨等自然灾害对铁路行车的影响,会由于具体的地形地貌,铁路的防护措施等而变化,因此达到灾害等级的风、雪、雨灾害不一定会影响到铁路运行,而未达到灾害等级的风、雪、雨气候条件却有可能影响到铁路运行。因此铁路防灾安全系统的建立,不仅是对风、雪、雨气象条件的监测,而是要对实测数据、历史数据、气象预报数据、经验数据等多种数据的综合处理,提供告警预警。 技术特征 防灾安全监控系统监控单元、网络汇聚点、调度所构成防灾系统专用局域网。系统中心上联调度所,下联二级汇聚点,同时负责前端控制器接入,还负责和其他第三方系统安全互联;系统二级汇聚点,负责汇集区段前端控制器数据;调度所为系统远程中心,与CTC、雨量监测系统等进行安全互联;中心-远程中心-二级汇聚间联网采用双星形结构,双设备/双网冗余;汇聚点-前端控制器采用双网冗余接入。 系统能够接收管辖区内的各监控单元上传的风速风向、降雨量、异物侵限等监测信息和设备工作状态;对风、雨、异物侵限等灾害的监测信息进行综合分析处理,根据灾害强度,生成各类报警、预警信息以及相应的行车管制预案并在工务终端上生成文本、图形显示及音响报警;同时,将风、雪、地震、异物侵限等灾害的报警、预警信息以及相应的行车管制预案传送至调度中心防灾终端。 防灾监控数据处理设备在用户界面上图形化地、动态地集中显示全线监测点的监测信息,主要包括各类监测项目的实时变化值及防灾安全监控系统的运行状态;防灾监控数据处理设备提供完善的系统管理功能,包括基础数据维护、系统运行参数配置、用户权限管理和访问日志功能。 知识产权:归属自有 应用领域:客运专线、既有铁路 铁路防灾安全监控系统结构示意图: 1

相关文档
最新文档