华中科技大学超声声速的测量课件

华中科技大学超声声速的测量课件
华中科技大学超声声速的测量课件

实验3.12 超声声速的测量

声波是一种机械波,它可以在气态、液态、固态物质中传播,它会引起物质的光学、电磁、力学、化学性质以及人类生理、心理等性质的变化。人耳能听到的声波称为可闻声波,频率在20Hz ~20kHz 之间,频率低于20Hz 的声波称为次声波,频率高于20kHz 则称为超声波。超声波在媒质中传播时,声速、声衰减和声阻抗都和媒质的特性及状态有关,通过测量这些声学量可以探知媒质的特性和状态变化。这些声学量的测量方法就是超声无损检测的实验基础。由于媒质中的声速与媒质的许多非声学特性都有直接或间接的关系,所以通过声速的测量可以求出固体媒质的弹性模量,进行气体成分分析,测定液体的比重,液体的成分及溶液浓度等。利用媒质的温度、压强、流速与声速的关系则可以探测这些状态参量的变化。媒质中的声速是应用最广而且测量精度也较高的声学量。测量声速依据的原理可以是t l v /=(l 表示声音传播的距离,t 表示通过这段距离的时间)

,也可以是λf v =(f 为声波的频率,λ为声波的波长)。本实验采用的共振干涉法和相位比较法均属于后者。

一、预备问题

1. 压电换能器是如何工作的?

2. 声波在媒质中传播的速度与哪些因素有关? 3. 何为共振干涉法和相位比较法?

二、引言

1.超声波的发射和接收

超声波的发射和接收都需要用换能器,换能器的作用是将其它形式的能量转换成超声波的能量(发射换能器),或将超声波的能量转换为其它可以检测的能量(接收换能器)。最常使用的是压电换能器。压电晶体(如石英)或压电陶瓷(如钛酸钡、锆钛酸铅)这类压电材料受到应力T 的作用会在材料内产生电场E ,且满足T E ?=σ(σ为压电常数),这就是压电效应。压电效应是法国人居里兄弟1880年在研究热电现象和晶体对称性的时候发现的。压电换能器接收超声波信号使之转换为电信号,从而将机械能转换为电能,利用的就是压电效应原理。当超声波频率与系统固有(共振)频率一致时所产生的电信号最强。压电材料还具有逆压电效应,压电材料在电场E 的作用下产生伸缩形变S ,且满足E d S ?=(d 为伸缩常数),在交变电场的作用下会产生周期性的收缩和伸长,当外加电场的频率和压电体固有频率相同时振幅最大。发射换能器利用逆压电效应就可以将电能转换成超声振动能,在周围媒质中激发超声波。

2.声速的测量

声波在媒质中传播的速度决定于媒质的密度、弹性模量等性质。声波在液体和固体中的传播速度一般大于在气体中的传播速度。声速也和媒质的压强、温度等状态有关,因为温度变化一般比压强大,所以温度对声速的影响也比较大。若频率已知,测出波长即可根据波长、频率和声速三者的关系λf v =求出波速。

(1)共振干涉法测声速

如图3.12-1 所示,S 1、S 2都是压电换能器,两者相互平行。由低频信号发生器输出的频率为f 的正弦电信号激励超声波发射器S 1发射出沿x 方向传播的近似平面超声波,经超声波接收器S 2反射后,在两端面间来回传播并叠加而形成驻波(严格地说还有行波的成份)。在驻波场中,x 处空气质点的位移y 可表示为

图3.12-1 共振干涉法测声速

t kl

x l k a y ωcos sin )]

(sin[-=

(3.12-1)

式中a 为声波的振幅,)2(f πω=为声波的角频率,)//2(v k ωλπ==为波数,λ为声波的波长,l 为S 1与S 2间的距离。对于某一确定的l ,在驻波场中满足1)](sin[=-x l k 的那些地方,位移达到最大而形成波腹;而在满足0)](sin[=-x l k 的那些地方,位移为零而成为波节。两相邻波腹或波节之间的距离均为2/λ。

在驻波场中,空气质点位移y 的图像不能被直接观测,而声压p 却可以通过仪器观测。声压p 就是空气中由于声扰动而引起的超出静态大气压强的那部分压强,根据声学理论,声压p 的驻波可以表示为

t kl

x l k va x y v p ωπωρρcos sin ]2/)(sin[02

0+-=??-= (3.12-2) 其中0ρ为空气的静密度。同样在驻波场中会形成声压的波腹和波节,两相邻波腹或波节之间的距离也为2/λ,所不同的是空气质点位移总是最大的地方却是声压的波节,而空气质

点总是静止的地方却是声压的波腹。

若将接收到的超声波声压信号转换成电信号再输入示波器,当发射频率固定时,移动S 2,改变两者的相对距离就能在一系列特定的距离(为声波半波长的整数倍)上建立驻波共振态,从示波器上可以观察到信号振幅周期性地呈现最大值,相邻最大值之间的距离为

2

λ=?l (3.12-3)

则 l f f v ?==2λ (3.12-4)

实际测量中为了提高测量精度,可以连续多次测量并用逐差法处理数据。 (2)相位比较法测声速

图3.12-2 相位比较法测声速

声波是振动状态的传播,在声波传播方向上任何一点和波源之间都存在位相差。若设位相差为φ,声波频率为f ,波速v 和传播距离l 之间的关系为

λππωφl v fl t 22=== (3.12-5)

如图3.12-2所示,将S 1和S 2的正弦电压信号分别输入示波器的X 信道和Y 信道 ,在示波器上可以观察到两个相互垂直的同频率简谐振动合成的李萨如图形。改变S 1、S 2之间的距离时位相差发生变化,椭圆的特性也随之变化。每当位相差的变化满足

πλπλ

π???2221

2

12=-

=

-=?l l ,即

λ=-=?12l l l (3.12-6)

时,相同的李萨如图形就会重复出现(如图3.12-3所示)。由此可以测定λ,算出声速

l f f v ?==λ (3.12-7)

(3)时差法测量原理

以上二种方法测声速,都是用示波器观察波谷和波峰,或观察二个波间的相位差,原理是正确,但存在读数误差,较精确测量声速是用时声波差法,时差法在工程中得到了广泛的应用。它是将经脉冲调制的电信号加到发射换能器上,声波在介质中传播,经过T 时间后,到达L 距离处的接收换能器,所以可以用以下公式求出声波在介质中传播的速度。

T L V /=

(3.12-8)

图3.12-3 李萨如图

=?φ

4

πφ=?

2

πφ=?

4

3πφ=?

πφ=?

4

5πφ=?

23πφ=?

4

7πφ=?

π

φ2=?

3.理想气体中的声速

声波在理想气体中的传播可以认为是绝热的,声速可表示为

)1()1()1(0

00000T t

v T t RT T t RT v +=+=+=

μγμγ (3.12-9) 式中v p c c /=γ是气体的比热;R =8.314J/(mo l ·K )是摩尔气体常数;μ是气体的摩尔质量;t 是气体的摄氏温度,K T 15.2730=。

若把干燥空气看作是理想气体,在0℃时s m v /45.3310=.若再考虑大气压和空气中水蒸汽的影响,则声速为

)3192.01)(1(00p

p T t

RT v w ++=

μγ (3.12-10) 式中p 为大气压;p w 是水蒸汽的分压强,它等于温度为t 时空气中水蒸汽的饱和蒸汽压p s (参见本实验后附录)乘以当时的相对湿度H ,H 可从干湿温度计上读出。

三、仪器设备

【实验仪器】

4SV 型声速测定仪及5SV 型声速测定专用信号源(它们构成的组合仪可用于测量空气

和液体介质的声速,其外形结构见下图3.12-5,双踪示波器,干湿温度计,水银气压计等。

4SV 型声速测定仪主要由储液槽、传动机构、数显标尺、压电换能器等组成。作为发射超声波用的换能器 1S 固定在储液槽的左边,另一只接收超声波用的接收换能器2S 装在

可移动滑块上,通过传动机构进行位移,并由数显表头显示位移的距离。

1S 发射换能器超声波的正弦电压信号由5SV 声速测定专用信号源供给,换能器2S 把接

收到的超声波声压转换成电压信号,用示波器观察。

四、实验程序

一、调整系统达到最佳发射和接受状态。

当激励正弦电信号与换能器固有频率基本一致时能较为有效地实现电能和声能的相互转换。调节方法如下:

图3.12-54SV 型声速测定仪及5SV 型声速测定专用信号源

图3.12-6 共振法、相位法测量声速线路连接

1.参考图3.12-6连接线路, 将专用信号源的“发射波形”端接至示波器,调节示波器,能清楚地观察到同步的正弦波信号;

2.调节专用信号源上的“发射强度”旋钮,使其输出电压在P P V -2左右,然后将换能器的

接收信号接至示波器,选择适当的示波器偏转因数,调整信号频率()25kHz~45kHz ,频率由专用信号源频率显示窗口直接读出,观察接收波的电压幅度变化,在某一频率点处(因不同的换能器或介质而异)电压幅度最大,此频率即是压电换能器1S 、2S 相匹配频率点,记录此频率i f 。

3.改变1S 、2S 的距离,使示波器的正弦波振幅最大,再次调节正弦信号频率,直至示波器显示的正弦波振幅达到最大值。共测5次取平均频率f ,测量中保持该频率不变。 二、用共振干涉法测量空气中的声速

按图3.12-6接线,在专用信号源上将测试方法设置到“连续波”方式,将专用信号源上“声速传播介质”置于“空气”位置。转动距离调节鼓轮移动S 2观察信号幅值随距离周期变化的现象。选择某个振幅最大值作为测量起点,由数显尺上直接读出或在机械刻度上读出并记录下此时的位置,然后向着同方向再缓慢移动S 2,逐一记下各振幅极大的位置,记录12组数据。用逐差法处理数据。

由(3.12-3)式有 2

)(6117

=-=

?l l l ……………………

2

)(616126λ=-=?l l l 所以 2

6161λ

=?=?∑=i i l l

f l v ?=2 (3.12-11) 三、用相位比较法测量水中的声速

按图3.12-6方式接线,小心将金属测试架从储液槽中取出,然后向储液槽注入液体,

直至“液面线”处,但不要超过液面线。在专用信号源上将“测试方法”设置到“连续波”方式,将专用信号源上“声速传播介质”置于“液体”位置。按前面实验内容一的方法,确定最佳工作频率。发射波接到双踪示波器的“1CH ”,接收波接到 “2CH ”,打到“Y X -” 显示方式,适当调节示波器,出现李萨如图形。转动距离调节鼓轮,移动S 2并观察示波器上李萨如图形的变化。选择图形为某一方向的斜线时的位置作为测量的起点,向同一个方向移动S 2,依次记下示波器屏上斜率负、正变化的直线出现的对应位置1l ,2l ,…12l 。共记录12组数据。单次波长12i i i l l λ-=?- 。多次测定用逐差法处理数据,即可得到波长λ。

同样用逐差法处理数据求出水中的声速

f l v ?=2 (3.12-12)

图3.12-7 时差法测量声速线路连接

四、时差法测量声速(选做)

a )按图3.12-7连接线路,测量空气声速时,将专用信号源上“声速传播介质”置于“空气”位置,测量液体声速时,置于“液体”位置。将测试方法设置到“脉冲波”方式。

b )将1S 和2S 之间的距离调到一定距离(≥mm 50)。开启数显表头电源,并置0,再调节接收增益,使示波器上显示的接收波信号幅度在mV 400~300左右(峰-峰值),以使计时器工作在最佳状态。然后记录此时的距离值和显示的时间值i l 、i t 。(时间由声速测试仪信号源时间显示窗口直接读出);移动2S ,记录下这时的距离值和显示的时间值1+i l 、1+i t 共测12组数据。

)/()(11i i i i t t l l V --=++ (3.12-13) 需要说明的是,由于声波的衰减,移动换能器使测量距离变大(这时时间也变大)时,如果测量时间值出现跳变,则应顺时针方向微调“接收放大”旋钮,以补偿信号的衰减;反之测量距离变小时,如果测量时间值出现跳变,则应逆时针方向微调“接收放大”旋钮,以使计时器能正确计时。

五、记录传播介质温度)C ( t ?。

五、数据处理

1、用逐差法处理数据,按(3.12-11)式计算声速。记录测量时的室温 t ,由(3.12-9)式或(3.12-10)式计算该温度时空气中的声速,与实验中测得的空气中的声速比较,计算

理-v v v =?及

%-理

理100?v v v 。

2、用逐差法处理数据,按(3.12-12)式计算水中的声速v ,估算其不确定度并给出完整的结果表述。

六、拓展问题

1.如果两个换能器不平行对实验有什么影响? 2.实验中应如何确定换能器的共振频率?

3.试用本实验的仪器设备测量空气的比热和摩尔质量,写出实验原理、步骤和数据处理的方法。

4.对固体媒质,用改变S 2的位置来改变传播距离求出波长再计算声速的方法往往不可行。试在传播距离不能改变的条件下,设计一种利用本实验提供的设备测量声速的方法。

5.工程中常需要在无损的条件下精确测量某些部件的厚度。若已知部件的材料,在上一问题的基础上设计一种超声测厚的方法。

参考资料

1.程守洙, 江之永. 《普通物理学 3》 高等教育出版社 1998 2.熊永红 主编 《大学物理实验》华中科技大学出版社 2004

3.同济大学声学研究室. 《超声工业测量技术》上海人民出版社 1977

4.胡建恺, 张谦林. 《超声检测原理和方法》 中国科学技术大学出版社 1993 5.马大猷等. 《声学手册》 科学出版社 1983 6.许肖梅 《声学基础》 科学出版社 2003

附 录

冰(0℃以下)、水的饱和蒸汽p

数显表头的使用方法及维护

声速测定仪数显表头使用方法:

1.mm /inch 按钮为英制/公制转换用,测量声速时用“mm ” 2.“OFF ”“ON ”按钮为数显表头电源开关 3.“ZERO ”按钮为表头数字回零用。

4.数显表头在标尺范围内,接收换能器处于任意位置都可设置“0”位。摇动丝杆,接收换能器移动的距离为数显表头显示的数字。

5.数显表头右下方有“▼”处打开为更换表头内扣式电池处。

6.使用时严禁将数显表头淋湿,如表头不慎受潮不能正常显示,可用电吹风吹干(用电吹风低温档,温度不超过C 60 )或把标尺卸下在太阳光下洒干驱潮即可恢复功能)。 7.数显表头与数显杆尺的配合极其精密,应避免剧烈的撞击和重压。 8.仪器使用完毕后,应关掉数显表头的电源,以免无谓消耗钮扣电池。

9.当数显表头的电池能量使用完时,应及时更换新电池。但在数显表暂时不能使用的情况下,可以直接用游标卡尺进行读数,不会影响测量结果!!!

超声光栅测液体中的声速 实验报告

实验设计说明书题目:利用超声光栅测液体中的声速 院部:理工科基础教学部 专业班级:物理学(创新实验班)1班 学生姓名:某某某 学号:41106XXX 实验日期: 2013年5月21日

超声光栅测液体中的声速 人耳能听到的声波,其频率在16Hz 到20kHz 范围内。超过20Hz 的机械波称为超声波。光通过受超声波扰动的介质时会发生衍射现象,这种现象称为声光效应。利用声光效应测量超声波在液体中传播速度是声光学领域具有代表性的实验。 一、实验目的 (1)学习声光学实验的设计思想及其基本的观测方法。 (2)测定超声波在液体中的传播速度。 (3)了解超声波的产生方法。 二、 仪器用具 分光计,超声光栅盒,高频振荡器,数字频率计,纳米灯。 三、 实验原理 将某些材料(如石英、铌酸锂或锆钛酸铅陶瓷等)的晶体沿一定方向切割成晶片,在其表面上加以交流电压,在交变电场作用下,晶片会产生与外加电压频率相同的机械振动,这种特性称为晶体的反压电效应。把具有反压电效应的晶片置于液体介质中,当晶片上加的交变电压频率等于晶片的固有频率时,晶片的振动会向周围介质传播出去,就得到了最强的超声波。 正文: 光声效应的发现无疑是物理学两大分支的又一次融合,利用超声光栅测量液体中的声速就是这一物理现象的应用。此次实验的仪器包括超声光栅池、超声仪、分光计、测微目镜以及光源。 由于声波是纵波,所以当超声波在液体(本实验用的是水)传播时,声波的振动会引起液体密度空间分布的周期性变化(如右图),进而导致液体的折射率亦呈周期性分布(如右图)。如果在某一时间t 0,液体密度的空间函数为: ()0s 02sin x t x π ρρρωλ??=+?- ? ?? ? ① 其中,0ρ是液体的静态密度,ρ?是密度的变化幅度,s ω是超声波的角频率,λ是超声波长,x 是超声波的传播方向,也是密度变化的空间方向;此时,折射率 的空间函数为:()0s 02sin n x n n t x πωλ? ?=+?-? ?? ?②,其中0n 为液体的静态折射率

声速的测量(超声)实验报告

声速的测量(超声) 一、实验目的: ①用共振干涉法求超声声速; ②用相位比较法求超声声速。 二、实验仪器: 超声声速测量仪、信号发生器、数字频率计、同轴电缆、示波器、游标卡尺、压电陶瓷超声换能器。 三、实验原理: ①声速的测量: 利用公式νλ,测量声波的频率ν和波长λ去求声速v。 ②声压驻波:已知两列频率、振幅和振动方向相同的平面简谐波,向相反的方向传播时,叠加的合成波就是驻波,在驻波场中质点振幅最大处为波腹,质点位移振幅近似为零处为波节,相邻波腹或波长的距离为半波长(λ/2)。 ③声波波长的测量:接收器S2输出的信息有两部分:1、驻波的信息,其振幅随S2的移动而变化,在共振时,S1、S2的距离为l:,,,此时振幅较大。2、类 似行波的信息,S1、S2用的相位差,也随着S2的移动而变化,每移动λ/2,相位差改变Π(即180°)。利用这两种信息均可测量声波波长λ。(1)共振干涉法;(2)相位比较法。 四、实验方法: ①用共振干涉法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,示波器上显示的是S2的交流信号按时间展开的图形,移动S2示波器上图形有时很大,有时很小。在S2移动范围内,仔细测多个出现极大值时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ②用相位比较法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,移动S2示波器上的图形会从椭圆变换到一条直线,再从直线变换到一个反方向的椭圆,往复变换。在S2移动范围内,仔细测多个出现直线时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ③记录实验室的实温t。 ④用当前实温和公式求出声速,与以上两种方法求出的声速进行比较, 分析。 五、数据处理: 温度:34℃频率:37500Hz 共振干涉法(单位:mm): 218.98 213.58 209.20 204.56 199.62 194.92 190.64 185.72 180.62 176.52 相位比较法(单位:mm): 174.60 169.60 164.80 160.68 155.90 151.22 146.28 141.58 136.68 131.70 共振干涉法: λ

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

华中科技大学超声声速的测量课件

实验3.12 超声声速的测量 声波是一种机械波,它可以在气态、液态、固态物质中传播,它会引起物质的光学、电磁、力学、化学性质以及人类生理、心理等性质的变化。人耳能听到的声波称为可闻声波,频率在20Hz ~20kHz 之间,频率低于20Hz 的声波称为次声波,频率高于20kHz 则称为超声波。超声波在媒质中传播时,声速、声衰减和声阻抗都和媒质的特性及状态有关,通过测量这些声学量可以探知媒质的特性和状态变化。这些声学量的测量方法就是超声无损检测的实验基础。由于媒质中的声速与媒质的许多非声学特性都有直接或间接的关系,所以通过声速的测量可以求出固体媒质的弹性模量,进行气体成分分析,测定液体的比重,液体的成分及溶液浓度等。利用媒质的温度、压强、流速与声速的关系则可以探测这些状态参量的变化。媒质中的声速是应用最广而且测量精度也较高的声学量。测量声速依据的原理可以是t l v /=(l 表示声音传播的距离,t 表示通过这段距离的时间) ,也可以是λf v =(f 为声波的频率,λ为声波的波长)。本实验采用的共振干涉法和相位比较法均属于后者。 一、预备问题 1. 压电换能器是如何工作的? 2. 声波在媒质中传播的速度与哪些因素有关? 3. 何为共振干涉法和相位比较法? 二、引言 1.超声波的发射和接收 超声波的发射和接收都需要用换能器,换能器的作用是将其它形式的能量转换成超声波的能量(发射换能器),或将超声波的能量转换为其它可以检测的能量(接收换能器)。最常使用的是压电换能器。压电晶体(如石英)或压电陶瓷(如钛酸钡、锆钛酸铅)这类压电材料受到应力T 的作用会在材料内产生电场E ,且满足T E ?=σ(σ为压电常数),这就是压电效应。压电效应是法国人居里兄弟1880年在研究热电现象和晶体对称性的时候发现的。压电换能器接收超声波信号使之转换为电信号,从而将机械能转换为电能,利用的就是压电效应原理。当超声波频率与系统固有(共振)频率一致时所产生的电信号最强。压电材料还具有逆压电效应,压电材料在电场E 的作用下产生伸缩形变S ,且满足E d S ?=(d 为伸缩常数),在交变电场的作用下会产生周期性的收缩和伸长,当外加电场的频率和压电体固有频率相同时振幅最大。发射换能器利用逆压电效应就可以将电能转换成超声振动能,在周围媒质中激发超声波。 2.声速的测量 声波在媒质中传播的速度决定于媒质的密度、弹性模量等性质。声波在液体和固体中的传播速度一般大于在气体中的传播速度。声速也和媒质的压强、温度等状态有关,因为温度变化一般比压强大,所以温度对声速的影响也比较大。若频率已知,测出波长即可根据波长、频率和声速三者的关系λf v =求出波速。 (1)共振干涉法测声速 如图3.12-1 所示,S 1、S 2都是压电换能器,两者相互平行。由低频信号发生器输出的频率为f 的正弦电信号激励超声波发射器S 1发射出沿x 方向传播的近似平面超声波,经超声波接收器S 2反射后,在两端面间来回传播并叠加而形成驻波(严格地说还有行波的成份)。在驻波场中,x 处空气质点的位移y 可表示为

声速测量实验报告

大学物理实验课教案 俸永格(136********) 教学题目:声速的测量 教学对象:10级电子信息班、10动医学班、10级农机班、10级植保班。授课地点:海南大学基础实验楼2610室。 教学重点:让学生了解测量超声波在媒介中传播速度的实验设计思想和实验方法。 教学难点:让学生熟练掌握双踪示波器、SV5/7测试仪、SV8信号源的协调使用并完成两正交信号相位差的多次测量。 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: GW-680双踪示波器一台,SV8信号发生器一台,SV7测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)

间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ×f λ=2X v = 2X×f 原理图示1(驻波法原理图) (二)相位法测量声速基本原理 请同学们自行完成!要求体现以下两个方面的内容! (1)简谐振动正交合成的基本原理, (2)利用李萨如图形的相位差特点间接测量声速的基本原理。 四实验内容与步骤 (一)驻波法测声速 实验连线图示1(驻波法) (1)了解测试仪的基本结构,调节两个换能器的间距5cm左右。 (2)初始化示波器面板获得扫描线。 (3)按图示1正确连线,将示波器的扫描灵敏度与通道1垂直灵敏度旋钮分别调至适当档位,缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置

声速的测量

物理实验报告 一、【实验名称】 超声波声速的测量 二、【实验目的】 1、了解声速的测量原理 2、学习示波器的原理与使用 3、学习用逐差法处理数据 三、【仪器用具】 1、SV-DH-3型声速测定仪段 2、双踪示波器 3、SVX-3型声速测定信号源 四、【仪器用具】 1.超声波与压电陶瓷换能器 频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。 图1 压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器

及弯曲振动换能器。声速教学实验中所用的大多数采用纵向换能器。图1为纵向换能器的结构简图。 2.共振干涉法(驻波法)测量声速 假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。 在上述假设条件下,发射波ξ1=Acos (ωt+2πx /λ)。在S2处产生反射,反射波ξ 2 =A 1cos (ωt+2πx /λ),信号相位与ξ1相反,幅度A 1<A 。ξ1与ξ2在反射平面相交叠加, 合成波束ξ 3 ξ3=ξ1+ξ2=(A 1+A 2)cos (ωt-2πx /λ)+A 1cos (ωt+2πx /λ) =A 1cos(2πx /λ)cos ωt+A 2cos (ωt - 2πx /λ) 由此可见,合成后的波束ξ3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在相位上,具有随(2πx /λ)呈周期变化的特性。 图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。 图2 换能器间距与合成幅度 实验装置按图7所示,图中S1和S2为压电陶瓷换能器。S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。移动S2位置(即改变S1和S2之间的距离),你从示波器显示上会发现,当S2 在某此位置时振幅有最小值。根据波的干涉理论可以知道:任何 发射换能器与接收换能器之间的距离

超声波测声速实验报告

实验名称:超声波测声速实验报告 一、实验目的 (1)、了解超声波的发射和接收方法。 (2)、加深对振动合成、波动干涉等理论知识的理解。 (3)、掌握用干涉法和相位法测声速。 二、实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共装置图。 波与发射波叠加,它们波动方程分别是: 叠加后合成波为:

的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。 相位比较法测波长:从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:φ=2∏x/λ,其中λ是波长,x为S1和S2之间距离)。因为x改变一个波长时,相位差就改变2∏。利用李萨如图形就可以测得超声波的波长。 三、实验仪器 超声声速测定仪:主要部件是两个压电陶瓷换能器和一个游标卡尺。函数信号发生器:提供一定频率的信号,使之等于系统的谐振频率。示波器:示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 四、实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。

3.用相位比较法测波长和声速。 五、实验数据及处理: f=34kHz; Vp-p=5V; L=3.976cm; 六、实验结论: 波长λ=1.0612cm; 由此声速经测算为v=(354±3)m/s; U=0.8% 七、思考题: 1.固定距离,改变频率,以求声速。是否可行? 答:不行,由“v = f λ”,距离一定后使得波长无法计算。 2.各种气体中的声速是否相同?为什么? 答:不同,因为不同气体的密度不同,声波在不同介质中波长改变,根据公式可得结论。

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

液体及固体介质声速测量陈忠

液体及固体介质声速测量 (陈忠2013301020155 武汉大学物理科学与技术学院) 摘要:本实验用共振干涉法、相位比较法和时差法测定超声波在不同介质中的的传播速度,利用声波的传播速度与其频率和波长的关系和声波传播所经过的距离和传播时间的关系可获得声速。 关键词:声速,介质,时差法,相位比较法,共振干涉法。 Abstract: This study measured ultrasonic wave propagation velocity in different media with resonance interferometry, phase comparison method and the difference method, the relationship between distance and travel time relations and the use of acoustic wave propagation velocity of propagation of sound waves and their frequency and wavelength through which can get the speed of sound. Key words: speed of sound, media, time difference, phase comparison method, resonance interferometry. 导言:声波是一种在弹性媒质中传播的机械波,频率低于Hz20的声波称为次声波;频率在kHz20~Hz20 的声波可以被人听到,称为可闻声波;频率在kHz20以上的声波称为超声波。由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。 实验原理: 1.共振干涉法 实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即 (3) 时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。 因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实 验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。 图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。

大学物理仿真实验实验报告 超声波测声速

大学物理仿真实验实验报告 试验日期: 实验者: 班级: 学号: 超声波测声速 一实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。下图是超声波测声速实验装置图。 驻波法测波长 由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分 别是:

叠加后合成波为: 的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 二实验仪器 1)声速的测量实验仪器 包括超声声速测定仪、函数信号发生器和示波器 2)超声声速测定仪 主要部件是两个压电陶瓷换能器和一个游标卡尺。 3)函数信号发生器 提供一定频率的信号,使之等于系统的谐振频率。 4)示波器 示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 三实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。 3.用相位比较法测波长和声速。

*注意事项 1.确保换能器S1和S2端面的平行。 2.信号发生器输出信号频率与压电换能器谐振频率f 0保持一致。 三 数据记录与处理 1. 基础数据记录 谐振频率=33.5kHz 2. 驻波法测量声速 λ的平均值:==∑=1 6i i λλ 1.0585(cm ) λ的不确定度: ) 1()(6 1 2 --= ∑=i i S i i λλ λ=0.002(cm ) 因为,λi = (1i+6-1i ) /3,Δ仪=0.02mm 所以,=仪?= 3 32λu 0.000544(cm ) =+=22λ λλσu S 0.021(mm ) 计算声速: 50.354==λυf (m/s ) 计算不确定度: (m/s) 3)()((kHz) 2.03 %122=+==?= f f f f λσσσσλυ 实验结果表示:υ=(354±3)m/s ,=0.8% 3. 相位比较法测量声速

超声波测声速汇总

超声波测声速 声波是一种在弹性介质中传播的机械波,它是纵波,其振动方向与传播方向一致.声速是描述声波在介质中传播特性的一个基本物理量,它与介质的特性及状态因素有关,因而通过介质中声速的测定,可以了解介质的特性或状态变化。例如,测量氯气、蔗糖等气体或溶液的浓度、氯丁橡胶乳液的比重以及输油管中不同油品的分界面等等,这些问题都可以通过测定这些物质中的声速来解决。 频率低于20Hz的声波称为次声波;频率在20Hz~20kHz的声波可以被人听到,称为可闻声波;频率在20kHz以上的声波称为超声波.超声波的传播速度就是声波的速度.由于超声波具有波长短、易发射、能定向传播等优点,在超声波段进行声速测量是比较方便的. 本实验用压电陶瓷超声换能器来测定超声波在空气中的传播速度。 [实验目的] 1.学习相位比较法测定声速的原理及方法.加深对振动合成等理论知识的理解 2.了解压电换能器的工作原理和功能,进一步熟悉信号发生器、示波器的使用 3.练习使用逐差法处理数据 [实验仪器] 声速测定组合仪,信号发生器,示波器 声速测量仪: 由发射器、接收器、游标卡尺组成。当一交变正弦电压信号加在发射器上时,由于压电晶片的逆压电效应,产生机械振动发生超声波。可移动的接收器,将接收的声振动转化为电振动信号输至示波器。接收器的位置由游标卡尺读数确定。 图1. 声速测量仪 使用方法:

左击或右击换能器,可以改变换能器面与水平方向的夹角。按下右边换能器的拖动,可以改变两个换能器之间的的距离。点击或按下窗体中上部的微调按钮,可以缓慢改变两个换能器之间的距离。 信号发生器: 图2. 信号发生器 它是一种多功能信号发生器,可以输出正弦波、方波、三角波三种波形的交变信号,信号频率范围为10Hz—2000kHz,既可分档调节,又可连续调节。信号幅度可连续调节。 1.频率显示窗口:显示输出信号的频率或外测频信号的频率,用五位数字显示信号的频率,且频率连续可调(输出信号时)。 2.幅度显示窗口:显示函数输出信号的幅度,由三位数字显示信号的幅度。 3.输出波形,对称性调节旋钮(SYM):调节此旋钮可改变输出信号的对称性。当电位器处在关闭或者中心位置时,则输出对称信号。输出波形对称调节器可改变输出脉冲信号空度比,与此类似,输出波形为三角或正弦时可使三角波调变为锯齿波, 正弦波调变为正与负半周分别为不同角频率的正弦波形,且可移相180?。(仿真实验中使用方法:右键单击进行顺时针旋转,左键打击进行逆时针旋转。) 4.速率调节旋钮(WIDTH):调节此电位器可以改变内扫描的时间长短。在外测频时,逆时针旋到底(绿灯亮),为外输入测量信号经过低通开关进入测量系统。 5.扫描宽度调节旋钮(RATE):调节此电位器可调节扫频输出的扫频范围。在外测频时,逆时针旋到底(绿灯亮),为外输入测量信号经过衰减“20dB”进入测量系统。 6.外部输入插座(INPUT):当“扫描/计数键”(13)功能选择在外扫描外计数状态时,外扫描控制信号或外测频信号由此输入。 7. TTL信号输出端(TTL OUT):输出标准的TTL幅度的脉冲信号,输出阻抗为600Ω。 8.函数信号输出端:输出多种波形受控的函数信号,输出幅度20Vp–p(1MΩ负载),10Vp–p (50Ω负载)。

声速测定以及声速数据处理

【实验目的】 1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。 2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。 3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。 【实验原理】 在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ?=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。常用的方法有共振干涉法与相位比较法。 声波传播的距离L 与传播的时间t 存在下列关系:t V L ?= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。 1.共振干涉法(驻波法)测量声速的原理: 当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。对于波束1:)/X 2t cos(A F 1λ?π-ω?=、波束2:()λ?π+ω?=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω?λ?π?=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。由此可见,叠加后的声波幅度,随距离按()λ?π/X 2cos 变化。如图28.1所示。 压电陶瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。根据波的干涉理论可以知道:任何二相邻的振幅最

大学物理实验报告-声速的测量

实 验 报 告 声速的测量 【实验目的】 1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速 2.学会用逐差法进行数据处理; 3.了解声速与介质参数的关系。 【实验原理】 由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。 超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。 声波的传播速度与其频率和波长的关系为:v f λ=? (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。 1. 共振干涉法 实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 (3) 时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。 因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。 图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。

大学物理实验:超声声速测定

超声声速测定 声波特性的测量,如频率、波长、声速、声压衰减、相位等,是声波检测技术中的重要内容。特别是声速的测量,不仅可以了解媒质的特性而且还可以了解媒质的状态变化,在声波定位、探伤、测距等应用中具有重要的实用意义。例如,声波测井、声波测量气体或液体的浓度和比重、声波测量输油管中不同油品的分界面等等。 “声速的测量”是一个综合性声学实验。实验中采用压电陶瓷超声换能器通过驻波法(共振干涉法)和相位比较法测量超声波在空气中的传播速度,这是一个非电量电测方法的应用。通过这个实验可以重点学习如下内容:(1)实验方法:非电量的电测方法;测量声速的驻波法和相位比较法。(2)测量方法:利用示波器测量电信号的极大值和观察李萨如图形测量相位差的方法。(3)数据处理方法:求声波波长的逐差法。(4)仪器调整使用方法:双踪示波器和函数信号发生器的正确调节和使用方法。 【实验目的】 1.学习用驻波共振法和相位比较法测量超声波在空气中的传播速度。 2.了解压电换能器的功能。 3.学习用逐差法处理数据。 【实验仪器】 SVX-5型声速测试仪信号源、SV-DH系列声速测试仪、双踪示波器等

【实验原理】 频率介于20Hz ~20kHz 的机械波振动在弹性介质中的传播就形成声波,介于20kHz ~500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz ~60kHz 之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。 根据声波各参量之间的关系可知f ?=λυ,其中υ为波速, λ为波长,f 为频率。 图4-5-1共振法测量声速实验装置 在实验中,可以通过测定声波的波长λ和频率f 求声速。声波的频率f 可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法(行波法)和共振干涉法(驻波法)来测量。 图4-5-2 相位比较法测量声速实验装置 1.相位比较法 实验装置接线如图4-5-2所示,置示波器功能于X -Y 方式。当S1发出的平面超声波通过媒质到达接收器S2,合成振动方程为:

大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告 一实验目的 1.了解超声波的物理特性及其产生机制; 2.学会用相位法测超声波声速并学会用逐差法处理数据; 3.测量超声波在介质中的吸收系数及反射面的反射系数; 4.并运用超声波检测声场分布。 5.学习超声波产生和接收原理, 6.学习用相位法和共振干涉法测量声音在空气中传播速度,并与公认值进行比较。 7.观察和测量声波的双缝干涉和单缝衍射 二实验条件 HLD-SV-II型声速测量综合实验仪,示波器,信号发生仪 三实验原理 1、超声波的有关物理知识 声波是一种在气体。液体、固体中传播的弹性波。声波按频率的高低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。 声波频谱分布图 振荡源在介质中可产生如下形式的震荡波: 横波:质点振动方向和传播方向垂直的波,它只能在固体中传播。 纵波:质点振动方向和传播方向一致的波,它能在固体、液体、气体中的传播。 表面波:当材料介质受到交变应力作用时,产生沿介质表面传播的波,介质表面的质点做椭圆的振动,因此表面波只能在固体中传播且随深度的增加衰减很快。 板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH波与兰姆波。

超声波由于其波长短、频率高,故它有其独特的特点:绕射现象小,方向性好,能定向传播;能量较高,穿透力强,在传播过程中衰减很小,在水中可以比在空气或固体中以更高的频率传的更远,而且在液体里的衰减和吸收是比较低的;能在异质界面产生反射、折射和波形转换。 2、理想气体中的声速值 声波在理想气体中的传播可认为是绝热过程,因此传播速度可表示为 μrRT =V (1) 式中R 为气体普适常量(R=),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力学温度,若以摄氏温度t 计算,则:t T T +=0 K T 15.2730= 代入式(1)得, 00001V 1)(V T t T t T rR t T rR ++?+===μμ (2) 对于空气介质,0℃时的声速0V = m s 。若同时考虑到空气中的蒸汽的影响,校准后 声速公式为: s m p p T t w /)319.01)(1(45.331V 0++= (3) 式中w p 为蒸汽的分压强,p 为大气压强。 3、共振干涉法 设有一从发射源发出的一定频率的平面声波,经过空气传播,到达接收器,如果接收面与发射面严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波,反射面处为位移的波节。改变接收器与发射源之间的距离l ,在一系列特定的距离上,媒质中出现稳定的驻波共振现象。此时,l 等于半波长的整数倍,驻波的幅度达到极大;同时,在接收面上的声压波腹也相应地达到极大值。不难看出,在移动接收器的过程中,相邻两次达到共振所对应的接收面之间的距离即为半波长。因此,若保持频率 v 不变,通过测量相邻两次接收信号达到极大值时接收面之间的距离(2/λ),就可以用λv =V 计算声速。 声压变化与接收器位置的关系:

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

声 速 的 测 量(超声波法)

声速的测量(超声波法) 声波是一种在弹性媒质中传播的机械波。声波在媒质中传播时,声速,声强等诸多参量都和媒质的特性与状态有关,通过测量这些声学量可以测知媒质的特性及状态变化。例如,通过测量声速可求出固体的弹性模量:气体、液体的比重、成分等参量。 在同一媒质中,声速基本与频率无关,例如在空气中,频率从20赫兹变化到8万赫兹,声速变化不到万分之二。由于超声波具有波长短,易于定向发射,不会造成听觉污染等优点,我们通过测量超声波的速度来确定声速。超声波在医学诊断,无损检测,测距等方面都有广泛应用。 声速的测量方法可分为两类;第一类方法是直接根据关系式v=S/t,测出传播距离S和所需时间t后即可算出声速,称为“时差法”。第二类方法是利用波长频率关系式v=fλ,测量出频率f和波长λ来计算出声速。 【实验目的】 1.了解超声换能器的工作原理和功能 2.学习不同方法测定声速的原理的技术 3.熟悉测量仪和示波器的调节使用 4.测定声波在空气及水中的传播速度 【实验仪器】 QSSV-2型声速测定实验仪、示波器 【实验原理】 一、声速在空气中的传播速度 在理想气体中声波的传播速度为 v=(1)式中γ =Cp/Cv称为比热比,即气体定压比热容与定容比热容的比值,μ是气体的摩尔质量,T是绝对温度,R=8.31441J/moL?K为普适气体常数。由(1)式可见,声速与温度有关,又

与摩尔质量μ及比热比γ有关,后两个因素与气体成分有关因此,测定声速可以推算出气体的一些参量。利用(1)式的函数关系还可制成声速温度计。 在正常情况下,干燥空气成分按重量比为氮:氧:氩:二氧化碳=78.084:20.946:0.934:0.033。它的平均摩尔质量为0μ=28.94×10-3 kg/moL 在标准状态下,干燥空气中的声速为0 v =331.5m/S 。在温室t ℃下,干燥空气中的声速为 0v v = (2) 式中T0=273.15K 。由于空气实际上并不是干燥的,总含有一些水蒸气,经过对空气平均摩尔质量a μ和比热比γ的修正,在温度为t 、相对温度为t 0的空气中,声速为 (3) 式中s p 为t ℃时空气的饱的和蒸气压,可从饱和蒸气压、蒸气压和温度的关系表中查出;P为大气压,取P =1.013×105Pa 即可;相对温度r 可从干湿温度计上读出。由这些气体参量可以计算出声速,故(3)式可作为空气中声速的理化计算公式。 二、测量声速的实验方法 声速的传播速度v 与声波频率f 和波长λ的关系为 v = f λ (4) 测出声波的频率和波长,就可以求出声速。其中声波频率可通过测量声源的振动频率得出,剩下的任务就是测声波波长,也就是本实验的主要任务。 波长可用下面两种方法测出: 1.相位法:波是振动状态的传播,也可以说相位传播。沿传播方向上的任何两点、如果其振动状态相同(同相)或者说其相位差为2π的整数倍,这时两点间的距离应等于波长λ的整数倍,即 L=n λ (n 为-正整数) (5) v =

超声波测声速实验报告

实验名称:超声波测声速实验报告 一、实验目的 (1)、了解超声波的发射和接收方法。 (2)、加深对振动合成、波动干涉等理论知识的理解。 (3)、掌握用干涉法和相位法测声速。 二、实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。下图是超声波测声速实验装置图。 驻波法测波长:由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是: 叠加后合成波为:

的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。 相位比较法测波长:从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:φ=2∏x/λ,其中λ是波长,x为S1和S2之间距离)。因为x改变一个波长时,相位差就改变2∏。利用李萨如图形就可以测得超声波的波长。 三、实验仪器 超声声速测定仪:主要部件是两个压电陶瓷换能器和一个游标卡尺。函数信号发生器:提供一定频率的信号,使之等于系统的谐振频率。示波器:示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 四、实验内容

1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。 3.用相位比较法测波长和声速。 五、实验数据及处理: f=34kHz; Vp-p=5V; L=3.976cm; 六、实验结论: 波长λ=1.0612cm; 由此声速经测算为v=(354±3)m/s; U=0.8% 七、思考题: 1.固定距离,改变频率,以求声速。是否可行? 答:不行,由“v = f λ”,距离一定后使得波长无法计算。 2.各种气体中的声速是否相同?为什么? 答:不同,因为不同气体的密度不同,声波在不同介质中波长改变,根据公式可得结论。 如有侵权请联系告知删除,感谢你们的配合!

相关文档
最新文档