同步发电机突然三相短路的仿真研究_高仕红

同步发电机突然三相短路的仿真研究_高仕红
同步发电机突然三相短路的仿真研究_高仕红

第26卷第1期 湖北民族学院学报(自然科学版) V o.l26 N o.1 2008年3月 J ourna l o fHubei Institute for N ati ona liti es(N at ural Science Editi on) M a r.2008同步发电机突然三相短路的仿真研究

高仕红

(湖北民族学院电气工程系,湖北恩施445000)

摘要:同步发电机的突然三相短路,是电力系统最严重的故障,对电机本身和相关的电气设备都可能产生严重的影响,研究它有着非常重要的意义.在d-p坐标系统下,构建了同步发电机的数学模型以及动态等效电路.利用M a tlab7.1/Si m uli nk6.3的强大功能,构建了同步发电机机端突然三相短路的仿真模型,并对同步发电机的各物理量在短路期间进行了仿真研究.通过理论和仿真对比分析,同步发电机的各物理量在突然短路的暂态过程中产生很大的冲击和振荡,最后稳定在短路前的状态,仿真结果与理论分析相吻合.此方法还可用来研究同步发电机某些动态过程,从而为电机的优化设计提供必要的理论依据.

关键词:同步发电机;突然三相短路;数学模型;动态等效电路;仿真模型

中图分类号:TM301文献标识码:A文章编号:1008-8423(2008)01-0036-05

Si m ul ati on Study of Synchronous G enerator on Sudden

Three-phase Short C ircuit

GAO Sh i-hong

(Depart m ent o f E l ec trical Eng i neeri ng,H ube i Institute f o r N a ti ona li ties,Enshi445000,Chi na)

Abst ract:Three-phase short circuit of synchr onous generator is a seri o us fau lt i n t h e electric po w er sys-te m,wh ich is like l y to i n fl u ence bad l y on the nou m enon of electr icm ach i n e and correlati v e electric equ i p-m en,t so it is i m portant to study i.t In the reference fra m e,m athe m atic m ode l and dyna m ic equivalent c ir-cu itw as bu il.t By m aking use of po w erful f u ncti o n ofM atlab7.1/S i m uli n k6.3,si m ulati o n mode l of syn-chronous generator on sudden three-phase short circu it w as buil,t vari o us physica l quantities were stud-ied by si m u lation duri n g t h e short c ircu i.t By co mpari n g theoretics w ith si m ulati o n,various physica l quan-tities o f synchronous generator produced tre m endous i m pact and surge duri n g the sudden circu it and they stabilized in the pr oceedi n g state of short c ircu i.t The e m u lational resu lts are consi s tent w ith theore tic a-nalysis.Th ism ethod is a lso for the use o f researching certa i n dyna m ic course of synchronous generator, w hich provided necessary theoreti c basis for opti m u m desi g n of e lectric m ach i n e.

K ey w ords:synchronous generator;sudden three-phase short c ircu i;t m athe m atic m ode;l dyna m ic equ i v-alent circu i;t si m ulati o n m odel

同步发电机是电力系统中最重要和最复杂的元件,由多个具有电磁耦合关系的绕组构成.同步发电机突然短路的暂态过程所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响,因此对同步发电机动态特性的研究历来是电力系统中的重要课题之一[1~3].而同步电机的突然三相短路,是电力系统的最严重的故障,它是人们最为关心、研究最多的过渡过程.虽然短路过程所经历的时间是极短的(通常约为0.1~0.3s),但对电枢短路电流和转子电流的分析计算,却有着非常重要的意

收稿日期:2007-12-12.

基金项目:湖北省教育厅科学研究计划项目(B20082908).

作者简介:高仕红(1971-),男,硕士,讲师,主要从事电机控制和同步电机励磁控制.

义[4,5].为了保证发电机、变压器、断路器、互感器等的可靠运行,必须计算短路电流的最大瞬时值,为了决定继电保护装置的工作条件,需要知道短路电流的变化规律.此外,为了保证励磁系统的可靠运行以及强行励磁对短路电流的影响,需要进行励磁电流的计算.

电机动态过程的仿真一般是先建立电机的数学模型,在此基础上在编程进行仿真.传统编程语言的编程效率不高,作动态响应曲线也不够方便快捷[4].而M a tlab语言扩展能力强,能方便地调用C语言和Fo rtran 语言的已有程序,特别适用于矩阵计算,并且在数学建模、动态仿真及图形描述等方面都有其它高级语言难以比拟的优点[6,7].

1 同步发电机的数学模型

为了方便计算,做如下假定[1,2,5]: 只考虑电机气隙基波磁场的作用(气隙谐波磁场只在差漏磁场中加以考虑); 忽略齿谐波的作用; 不计磁路饱和、磁滋和涡流; 就纵轴或横轴而言,转子在结构上是对称的.在这样的假设下,建立起来的方程是线性的.在d-p坐标系统下,可得出以x a d基值系统表示的三相同步电机(有阻尼绕组)的状态方程(用标幺值表示).

1.1 电压方程

u d

u q

u fd

=

p- 00

p000

00p00

000p0

0000p

+

-r000

0-r000

00R fd00

000R1d0

-r000R1q

i d

i q

i f d

i1d

i1q

(1)

(a)d ax i s(b)q ax i s

图1 轴等效电路

F i g.1 Equiva l ent c ircuit o f axes

其中u d、u q:定子绕组电压的d、q轴分量;i d、iq:定子绕组电流的d、p轴分量; d、 q:定子绕组磁链的d、p轴分量;u fd:励磁绕组电压;i f d:励磁绕组电流; fd:励磁绕组的磁链;i1d、i1q:d、p轴阻尼绕组电流; 1d、 1q:d、p 轴阻尼绕组磁链;r定子绕组电阻;R fd:励磁绕组电阻;R1d、R1q:d、p轴阻尼绕组电阻

;p:微分算子

d

d t

; :转子的电角速度.

1.2 磁链方程

d

q

fd

1d

1q

=

-x d0x a d x ad

0-x q00x aq

-x ad0X ffd X f1d0

-x ad0X1fd X11d0

0-x aq00X11q

(2)

其中x d、x q:d、q轴同步电抗;x aq、x a q:d、p轴电枢反应电抗;X ffd:励磁绕组电抗;X f1d=X1fd:励磁绕组与d轴阻尼绕组间的互电抗;X11d、X11q:d、p轴阻尼绕组电抗.

1.3 运动方程

J

d r

d t

=T m-T e(3)其中J:转动惯量; r:转子的机械角速度;T m:原动机的机械转矩;T e:电机的电磁转矩.

1.4 等效电路

在标么值系统下,忽略励磁绕组与d轴阻尼绕组间的互电抗且令L a d=L md、L aq=L m q,由式(1)、(2)可得同步发电机的d-q轴等效电路如图1

(a)、(b)所示.其中L l:d、q轴绕组的漏电

感;L md、L mq:d、p轴绕组的激磁电感;L lfd:

励磁绕组的漏电感;L l1d、L lq1:d、p轴阻尼

绕组的漏电感.

37第1期 高仕红:同步发电机突然三相短路的仿真研究

2 同步发电机突然三相短路的理论分析

2.1 定子电流的计算

在分析突然三相短路时,可以利用叠加原理,认为不是发生了突然短路,而是在电机的端头上突然加上了与电机突然短路前的端电压大小相等但方向相反的三相电压.这样考虑时,同步电机的突然三相短路问题就变成了下述两种工作情况的综合问题了.即: 与短路前一样的稳态运行状况; 突然在电机端头上加上与突然短路前的端电压大小相等但方向相反的三相电压[1,2]

.

将电机突然三相短路后的定子电流分为两部分来计算.将它们合并后,即得同步发电机突然三相短路后的实际电流为:

i d =

1x d -1x d e -t T d +1x d -1x d

e -t t d U cos +E x d -U x d e -t T a cos (t + )(4)i q =-1x q -1x q e -t T q U si n +U x q

e -t T a sin (t+ )

(5)

其中 :同步发电机的功角.T d :纵轴超瞬变电流衰减的时间常数.T d :纵轴瞬变电流衰减的时间常数.T a :定子非周期电流衰减的时间常数.U:同步发电机机端的相电压有效值.表1 仿真参数

T ab .1 S i m ulati on para m e ters 发电机变压器P N (MW )200U N (H z)

13.8S N (KVA )210U N (kV )13.8/230f N (H z)50r 2.8544e -3连接 /Y R 10.0027x d

1.305x d

0.296L 1

0.08R 2

0.0027x d 0.252

x q 0.474L 2

0.08

L m

500

x q 0.243T d (s)1.01T d (s)

0.

053T q (s)

0.053

2.2 转子电流的计算

突然三相短路后,电机转子中的电流,也象计算定子电流一样,可以分成两部分来计算[1,2]

.即: 原来

稳态三相对称运行时的转子电流. 突然在电机端头上加上与突然短路前的端电压大小相等但方向相反的

三相电压所引起的转子电流.

将电机突然三相短路后的转子电流分为两部分来计算.将它们合并后,即得同步发电机突然三相短路后

的实际电流为:

当转子上没有阻尼绕组时,则:

i fd =

U

R fd +x ad X ffd U x d e -t T d cos -x a d X ffd U x d

e -t T a cos (t + )(6)

当转子上有阻尼绕组时,则:

i fd =U

R fd

+

X 11d x ad -x 2

ad X 11d X ffd -x 2

ad 1x d -x ad X ffd 1x d e -t T a +x ad X ffd 1x d e -t T a

U co s +X 11d x ad -x 2

ad X 11d X ffd -x 2a d

U x d e -t T a cos (t + )(7) 阻尼绕组中的实际电流,在短路前,即稳态对称运行时,阻尼绕组的电流为零,因之,突然三相短路后的阻尼绕组的实际电流为:

i 1d =X 11d x a d -x 2ad X 11d X ffd -x 2ad U x d e -t T d co s ( )-X 11d x ad -x 2

ad X 11d X ffd -x 2

ad U x d

e -t T a co s (t + );i 1q =x aq X 11q U x d e -t T q sin +x aq X 11q U x q e -t

T a sin (t + )3 同步发电机突然三相短路的仿真分析

M atlab 是一个强大数学计算和仿真工具,利用它可以避免复杂的数学计算编程(比如矩阵的计算),并

且借助其绘图函数可方便实现了计算结果的可视化[7~10]

.本文利用M atlab7.1/Si m u link6.3提供的电力系统

分析工具,构造了同步发电机突然三相短路的仿真模型[11~13]

,如图2所示.

凸极同步发电机的调节机构由水轮机调节器(HTG)和励磁调节器(Excitation Syste m )构成.水轮机调节器(H TG )根据反馈量 大小进行调节.励磁调节器采用的是I EEE1型励磁调节系统,根据机端电压经过坐

标变换的v d 、v d 进行电压调节.发电厂与无穷大电网母线经单回线相联,长度为200

k m,每公里的参数为:电阻0.01273,电抗

0.35182,在发电机机端处发生突然三相短路.仿真参数如表1所示.3.1 短路前为理想空载

设突然短路前为理想空载状态(P ref =0),当同步发电机机端三相突然短路时,同38

湖北民族学院学报(自然科学版) 第26卷

步发电机各物理量的仿真结果如图3(a)、(b)、(c)、(d)、(e)、(f)所示.3.2 短路前为75%额定负载

设突然短路前发电机带75%额定负载(p ref =0.75),当同步发电机机端三相突然短路时,同步发电机各物理量的仿真结果如图4(a)~(f)所示.3.3 仿真结果分析

由以上的仿真波形可以看出,不管同步发电机是理想空载或是带75%额定负载,在机端发生三相突然短路时,各绕组电流、各绕组电压、转速、电磁转矩、功角以及输出功率都发生了震荡,经过短暂的过渡过程,最后衰减到短路前的稳定值.定子绕组电流含有周期分量和非周期分量,转子各绕组电流也含有周期分量和

39

第1期 高仕红:同步发电机突然三相短路的仿真研究

非周期分量,这与理论分析相吻合.在短路过程中,最大冲击电流可达额定电流的9倍左右,对于三相对称突然短路,转子初始位置角的大小不影响相电流幅值的大小,也不影响i d 和i q 的数值,但将改变i a 、i b 、i c 的大小.在同一点短路时,有载比空载的短路电流大,且前者的电磁转矩振荡也大些,这是因为有载短路开始时,空载电势高,定子电流、励磁电流较大.短路电流的最大值出现在短路后的半周期左右.

4 结论

本文在坐标系统下,建立了三相同步发电机的数学模型以及绘制出了它的动态等效电路.在M atlab7.1/S i m ulink6.3环境下,构建了同步发电机机端突然三相短路的仿真模型,不需要编程,模型层次分明、简洁,电机结构和内部电磁关系的概念非常清晰.通过仿真结果分析,仿真结果与理论分析相吻合.本文的方法还可用来对同步发电机某些动态过程的研究,如突加突卸过程动态电压跌落、突然短路过程最大短路电流的仿真研究,从而为电机的优化设计提供必要的理论依据.参考文献:

[1] 马志云.电机瞬态分析[M ].北京:中国电力出版社,1998.

[2] 高景德,李发海.交流电机及其系统的分析[M ].北京:清华大学出版社,1993.

[3] 陈伯时.电力拖动自动控制系统[M ].北京:机械工业出版社,1996.

[4] 汤晓燕.同步电动机的动态和瞬态稳定极限[J].电机与控制学报,2002,6(4):275-278.[5] 黄家裕,岑文汇.同步电动机基本理论及其动态行为分析[M ].上海:上海交通大学出版社,1988.[6] 黄家裕,陈礼义,孙德昌.电力系统数字仿真[M ].北京:中国电力出版社,1993.[7] 苏金明,阮沈勇.M ATLAB 电力系统设计与分析[M ].北京:国防工业出版社,2004.[8] 朱军.基于M ATLAB 的同步发电机动态过程仿真[J].船电技术,2001(1):26-28.

[9] 张敬南,丛望.基于SI MULI NK 的六相双Y 绕组同步电动机的仿真[J ].船电技术,2005(1):17-19.[10] 王沫然.S i m uli nk4建模及动态仿真[M ].北京:电子工业出版社,2002.

[11] 李立兵,冯志彪.两种同步电机实时仿真模型[J].同济大学学报:自然科学版,2005,33(3):390-394.

[12] 董恩钊,王祥珩,王维俭,等.汽轮发电机三相短路引起的失步仿真及保护[J].继电器,2003,31(9):20-25.[13] 高仕红.同步电机转子组绕组接地监测灵敏度的仿真研究[J].湖北民族学院学报:自然科学版,2007,25(4):393-396.

40

湖北民族学院学报(自然科学版) 第26卷

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此 (6-17)

基于MATLAB的同步发电机突然短路设计

第1章绪论 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。随着电力工业的发展,电力系统的规模越来越大。在这种情况下,许多大型的电力科研试验很难进行,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。因此,寻求一种最接近于电力系统实际运行状况的数字仿真工具必不可少。而在众多的仿真工具中,MATLAB 以其优越的运算能力、方便和完善的绘图功能脱颖而出。 1.1设计目的 让学生综合运用Matlab/Simulink仿真工具箱,建立电力系统仿真模型,对系统三相短路和单相短路等故障形式进行设计、仿真、分析,加深对供电和电力系统知识的了解,并进一步熟悉MATLAB电力系统这一仿真工具。 1.2设计任务 1.运用Simulink建立简单的单机-无穷大系统进行仿真,对系统运行出现短路情况时的仿真结果进行详细的分析。 2.建立带励磁系统的发电机系统,通过仿真结果分析带上励磁系统时电压和电流的变化情况。 1.3设计要求 1.要求每个学生独立完成设计任务。 2.针对每个仿真要给出详细的结果分析。 3.完成实训任务书。 4.要求提交成果:报告书一份。

第2章MATLAB语言的概述 2.1 MATLAB简介 MATLAB是将计算、可视化、程序设计融合在一起的功能强大的平台,所具有的程序设计灵活,直观,图形功能强大的优点使其已经发展成为多学科,多平台的强大的大型软件。MATLAB提供的Simulink工具箱是一个在MATLAB环境下用于对动态系统进行建模、仿真和分析的软件包。它提供了用方框图进行建模的接口,与传统的仿真建模相比,更加直观、灵活。Simulink的作用是在程序块间的互联基础上建立起一个系统。每个程序块由输入向量,输出向量以及表示状态变量的向量等3个要素组成。在计算前,需要初始化并赋初值,程序块按照需要更新的次序分类。然后用 ODE计算程序通过数值积分来模拟系统。MATLAN含有大量的 ODE计算程序,有固定步长的,有可变步长的为求解复杂的系统提供了方便。MATLAB在电力系统建模和仿真的应用主要由电力系统仿真模块SimPowerSystem 来完成的。 由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。MATLAB 的出现给电力系统仿真带来了新的方法和手段。通过MATLAB 的 SimPowerSystem的模块对电力系统中的应用进行仿真,从而说明其在电力系统仿真中的运用电力系统的仿真可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,通过故障仿真得出了相关的电压稳定性方面的结论,从而证明了这种仿真的正确性和在分析应用中的可行性。 2.2 Simulink简介 Simulink是Matlab软件下的一个附加组件,是一个用来对动态系统进行建模、仿真和分析的MATLAB软件包。支持连续、离散以及两者混合的线性和非线性系统,同时它也支持具有不同部分拥有不同采样率的多种采样速率的仿真系统。 由于 Simulink可以很方便地创建和维护一个完整的模型,评估不同算法和结构并验证系统性能,另外Simulink还可以与MATLAB中的DSP工具箱、信号处理工具箱以及通讯工具箱等联合使用,进而实现软硬件的接口,从而成为实用的

同步发电机短路实验

同步发电机突然短路的分析 一、实验目的 1.学会使用MATLAB软件对电力系统进行时域仿真分析,加深对电力系统短路时暂态过程的理解。 2.通过实验,进一步理解有限容量系统和无穷大系统短路时暂态过程的不同 二、实验原理 同步电机是电力系统中的重要元件,由多个有磁耦合关系的绕组构成,同步电机突然短路的暂态过程要比恒定电压源电路复杂很多,所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响。 同步电机短路时,由于定子绕组中周期分量电流突变将对转子产生电枢反应,该反应产生交链励磁绕组的磁链。为了维持励磁绕组在短路瞬间总磁链不变,励磁绕组内将产生直流电流分量,其方向与原有的励磁电流方向相同,它产生的磁通也有一部分要穿过定子绕组,从而使定子绕组的周期分量电流增大。因此在有限容量系统突然发生三相短路时,短路电流的初值将大大超过稳态短路电流,最终衰减为稳态短路电流。 三、实验内容 电力系统时域分析实例(仿真) 范例:同步电机突然短路模型如图所示—使用简化的同步电机(Simplified Synchronous Machine),使用三相并联RLC负载并通过三相电路短路故障发生器元件实现同步电机的三相短路。 图1 同步电机突然短路电路模型

1、从电机元件库选择简化的同步电机(Simplified Synchronous Machine)元件,设置参数如下 2、从测量元件库中选择三相电压—电流测量元件,进行参数设置。电压测 量选项中选择测量相电压(phase-to-ground)用来测量同步发电机突然短路后三相电压的变化。 3.从线路元件库中选择三相短路故障发生器(3-phase-Fault),双击将三 相故障同时选中并设置转换时间。 4.从线路元件库中选择三相并联RLC负载元件,参数设置如下:

发电机静态试验方案样本

发电机静态实验方案 目录 1实验目 2实验根据 3人员职责分工 4发电机名牌参数 5发电机静态实验前应具备条件和关于安全注意事项6发电机静态实验环节和办法 6.1 发电机定子绝缘电阻、吸取比 6.2 发电机定、转子绕组直流电阻 6.3发电机转子绕组绝缘电阻 6.4测量发电机轴承绝缘电阻 6.5发电机定子绕组直流耐压实验和泄漏电流测量6.6发电机定子绕组交流耐压实验 6.7发电机转子交流阻抗和功率损耗

1.实验目 通过实验可以检查发电机安装后绝缘状况等,数据分析发电机与否可以满足启动条件和稳定运营。 2.实验根据 2.1GB50150--《电气装置安装工程电气设备交接实验原则》; 2.2设备《出厂阐明书》 2.3设备《出厂实验报告》 2.4《电业安全工作规程》 3.人员职责分工 3.1实验方案需报请监理审核、现场指挥机构批准,重要实验项目需业主、监理旁站。 3.2施工及建设等单位应为实验实行提供必要实验条件。 3.3实验项目负责人负责组织实验工作实行,检查实验安全工作。3.4参加实验工作人员应熟悉工作内容、仪器设备使用及实验数据记录整顿。 4.发电机名牌参数 额定功率:12MW 额定电压:10.5 kV 额定电流:825A 功率因数:0.8 滞后 频率:50Hz 冷却方式:空冷

励磁方式:机端变压器自并励励磁系统 励磁电压:188.9V 励磁电流:220.3A 5.发电机静态实验前应具备条件和关于安全注意事项 5.1所有工作人员应严格遵守《电业安全工作规程》。 5.2实验时实验人员应精力集中,分工明确,密切配合。实验地点至少有两人工作,重要部位要有专人监视,并有必要通讯设施,发现问题及时报告。 5.3实验用仪器、仪表需通过检查,保证完好工况,保证明验顺利进行。 5.4发电机实验线固定良好,保持安全距离。一次连线断口(与非试侧)保证安全距离。 5.5发电机小间关门上锁,必要时派专人把守(实验地点在发动机空冷器室内)。 6发电机静态实验环节和办法 6.1发电机定子绝缘电阻、吸取比 6.1.1采用手摇式2500V兆欧表进行测试 6.1.2。测量某相时,非测量相必要短路接地(每项绕组必要头尾相短接)。 6.1.3在120转/分钟下分别读取15、60秒绝缘电阻值。 6.1.4每测量一相绕组后,对其被测相充分放电。 6.2 发电机定、转子绕组直流电阻

发电机试验大纲

发电机电气设备大修后调试方案与措施 一、试验项目 1、不同转速下的发电机转子的绝缘电阻,交流阻抗测试. 2、励磁机空载特性试验. 3、发电机短路特性试验,励磁机负载特性试验. 4、发电机电流保护定值校对. 5、发电机电压回路检查. 6、发电机空载特性试验. 7、发电机及PT、引出线核相检查. 8、发电机差动相量检查. 9、发电机轴电压测量. 二、组织措施 1、试验总指挥: 2、试验负责人: 3、试验人员: 三、试验时间安排 1、试验前由值长下达电气准备启动调试命令. 2、试验时间计划从汽轮机转速稳定在3000r/min移交电气共4小时. 四、安全措施(负责人:运行班长) 1、试验前应收回1#发电机系统的全部工作票,并有发电机本体、小间及发电机引出线母线、电缆、开关、CT、PT的有关报告及保护传动报告. 2、发电机系统核相前,应由操作班运行人员再次检查回路清洁,无关人员撤离现场. 3、设备带电后,检查本体,主控及相关回路的设备有无异常,所有人员禁止接触带电设备的绝缘部分,已防漏电伤人. 4、做短路特性的短路排应能承受800A 、10分钟无异常. 五、试验前的准备工作 1、准备好在1#发电机出口断路器021、开关下接线座装设短路排,备做短路特性试验用. 2、准备好各项试验用的表格记录;负责人根据试验内容进行人员分工. 3、仪器、仪表接线 ①、准备一块双钳相位表,一块相序表,一块数字万用表和试验用的引线及一次定相杆. ②、在发电机本体处接好做交流阻抗、功率损耗试验用的电压、电流和瓦特表. ③、在励磁机励磁电流RC回路613中串接一块0.5级0-5A的直流电流表,在发电机小间400A/75mV的分流器606和608线引到主控处接入0.5级0-75mV的直流电压表,并把表盘电流表拆掉. ④、在发电机控制屏转子电压表601、602并接一块0.5级的0-300V的直流电压表 ⑤、在发电机控制屏端子排A451、C451串接两块0.5级0-5A电流表,在A613、B600,C613、B600并接两块0.5级0-150V电压表及N461串接一块电流表. 六、试验的检查工作 1、发电机、励磁机碳刷齐全,接触良好. (检查人: ) 2、测量发电机定子、转子及回路绝缘合格. (检查人: ) 3、021开关油位正常,一次系统接头良好,清洁无杂物.(检查人: ) 4、检查CT测量、保护、计量回路不开路. (检查人: ) 5、检查PT二次回路不应有短路现象. (检查人: ) 6、检查PT一、二次保险齐全,无熔断现象. (检查人: )

同步发电机突然三相短路的仿真研究_高仕红

第26卷第1期 湖北民族学院学报(自然科学版) V o.l26 N o.1 2008年3月 J ourna l o fHubei Institute for N ati ona liti es(N at ural Science Editi on) M a r.2008同步发电机突然三相短路的仿真研究 高仕红 (湖北民族学院电气工程系,湖北恩施445000) 摘要:同步发电机的突然三相短路,是电力系统最严重的故障,对电机本身和相关的电气设备都可能产生严重的影响,研究它有着非常重要的意义.在d-p坐标系统下,构建了同步发电机的数学模型以及动态等效电路.利用M a tlab7.1/Si m uli nk6.3的强大功能,构建了同步发电机机端突然三相短路的仿真模型,并对同步发电机的各物理量在短路期间进行了仿真研究.通过理论和仿真对比分析,同步发电机的各物理量在突然短路的暂态过程中产生很大的冲击和振荡,最后稳定在短路前的状态,仿真结果与理论分析相吻合.此方法还可用来研究同步发电机某些动态过程,从而为电机的优化设计提供必要的理论依据. 关键词:同步发电机;突然三相短路;数学模型;动态等效电路;仿真模型 中图分类号:TM301文献标识码:A文章编号:1008-8423(2008)01-0036-05 Si m ul ati on Study of Synchronous G enerator on Sudden Three-phase Short C ircuit GAO Sh i-hong (Depart m ent o f E l ec trical Eng i neeri ng,H ube i Institute f o r N a ti ona li ties,Enshi445000,Chi na) Abst ract:Three-phase short circuit of synchr onous generator is a seri o us fau lt i n t h e electric po w er sys-te m,wh ich is like l y to i n fl u ence bad l y on the nou m enon of electr icm ach i n e and correlati v e electric equ i p-m en,t so it is i m portant to study i.t In the reference fra m e,m athe m atic m ode l and dyna m ic equivalent c ir-cu itw as bu il.t By m aking use of po w erful f u ncti o n ofM atlab7.1/S i m uli n k6.3,si m ulati o n mode l of syn-chronous generator on sudden three-phase short circu it w as buil,t vari o us physica l quantities were stud-ied by si m u lation duri n g t h e short c ircu i.t By co mpari n g theoretics w ith si m ulati o n,various physica l quan-tities o f synchronous generator produced tre m endous i m pact and surge duri n g the sudden circu it and they stabilized in the pr oceedi n g state of short c ircu i.t The e m u lational resu lts are consi s tent w ith theore tic a-nalysis.Th ism ethod is a lso for the use o f researching certa i n dyna m ic course of synchronous generator, w hich provided necessary theoreti c basis for opti m u m desi g n of e lectric m ach i n e. K ey w ords:synchronous generator;sudden three-phase short c ircu i;t m athe m atic m ode;l dyna m ic equ i v-alent circu i;t si m ulati o n m odel 同步发电机是电力系统中最重要和最复杂的元件,由多个具有电磁耦合关系的绕组构成.同步发电机突然短路的暂态过程所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响,因此对同步发电机动态特性的研究历来是电力系统中的重要课题之一[1~3].而同步电机的突然三相短路,是电力系统的最严重的故障,它是人们最为关心、研究最多的过渡过程.虽然短路过程所经历的时间是极短的(通常约为0.1~0.3s),但对电枢短路电流和转子电流的分析计算,却有着非常重要的意 收稿日期:2007-12-12. 基金项目:湖北省教育厅科学研究计划项目(B20082908). 作者简介:高仕红(1971-),男,硕士,讲师,主要从事电机控制和同步电机励磁控制.

发电机匝间短路故障诊断

目录 1 引言 (1) 1.1 研究目的与意义 (1) 1.2 发电机故障诊断技术的发展状况 (1) 1.3 发电机转子绕组匝间短路故障检测的研究现状 (2) 1.4 本文的内容和主要工作 (4) 2 汽轮发电机转子绕组匝间短路的理论分析 (6) 2.1 汽轮发电机的转子结构 (6) 2.2 转子绕组发生匝间短路的原因 (6) 2.3 匝间短路的磁场分析 (7) 2.3.1 发电机发生匝间短路的磁场分析 (9) 3 发电机转子绕组匝间短路故障的探测线圈法 (12) 3.1 探测线圈法的测试原理 (12) 3.2 探测线圈的结构及置放 (14) 3.2.1 诊断系统及其功能组成 (15) 3.2.2 基本参数 (16) 3.2.3 传感器安装和定位 (16) 3.3.3 故障判断 (16) 3.3 大亚湾核电站发电机组的探测线圈法实例分析 (17) 参考文献 (20)

1引言 1.1研究目的与意义 随着我国国民经济的快速发展,电力工业正处于大电机和大电网的发展阶段。人们的生活和生产水平迅速提高,使得电能需求量日益增长,进而对电力系统的供电质量、可靠性及经济性等指标的要求也不断提高。发电机是电能生产的重要设备,它为整个电力系统提供电能,是整个电网的心脏,因此如果发电机发生故障,可能会导致局部停电甚至整个系统崩溃。 发电机转子作为发电机的重要组成部分,主要由励磁绕组线圈、线圈引线以及阻尼绕组等部分组成。发电机运行时,由于转子处于高速旋转状态,这些部件将承受很大的机械应力和热负荷,若超过其极限值时将导致部件的损坏。转子绕组是发电机经常出现故障的部位,除本体故障外,主要是转子绕组的短路故障,如匝间短路、一点接地短路、两点接地短路等。发电机正常运行时,转子绕组对地之间会有一定的分布电容和绝缘电阻,绝缘甩阻的阻值通大于1兆欧。但是因某种原因导致对地绝缘损坏或绝缘电阻严重下降时,就会发生转子绕组接地事故。当发电机转子发生一点接地故障时,因为励磁电源的泄漏电阻很大,一般不会造成多大的伤害,限制了接地泄露电流的数值。但是,发电机转子两点接地故障将会产生很大的电流,经故障点处流过的故障电流会烧坏转子本体。而部分转子绕组的短接,励磁绕组中增加的电流可能会导致转子因过热而烧坏,气隙磁通也会失去平衡,从而引起发电机的振动,还可能使转子大轴磁化,甚至会导致灾难性的后果,因此两点接地故障的后果是很严重的。 目前,在国内运行的大型发电机组中,发电机匝间短路故障占故障总数的比重较大,大多数发电机都发生过或已经存在转子绕组匝间短路的故障。由于转子绕组绝缘的损坏,转子绕组匝间短路后会形成短路电流,从而导致局部过热。发电机长期在这种环境下运行,会进一步引起绝缘的损坏,导致更为严重的匝间短路,最终形成恶性循环。据统计资料表明,发电机转子匝间短路故障并不会影响机组的正常运行,所以常常被忽略,但是如果任其发展,转子电流将会显著增加,绕组温升过高,无功输出降低,电压波形畸变,机组振动加剧,并且还会引起其它的机械故障,严重时还会影响发电机的无功出力。如果发生的是不对称的匝间短路故障,发电机组的振动将会加剧,转子绕组的绝缘也有可能进一步的损坏,进而发展成为接地故障,对发电机组的安全稳定运行构成了严重的威胁。因此,对发电机绕组匝间短路故障的诊断与识别是十分必要的。 1.2 发电机故障诊断技术的发展状况 早期的故障诊断主要依靠人工经验,如:看、听、触、摸等方法进行诊断,

同步发电机突然三相短路中的几问题

第2章作业参考答案 2-1 为何要对同步发电机的基本电压方程组及磁链方程组进行派克变换答:由于同步发电机的定子、转子之间存在相对运动,定转子各个绕组的磁路会发生周期性的变化,故其电感系数(自感和互感)或为1倍或为2倍转子角θ的周期函数(θ本身是时间的三角周期函数),故磁链电压方程是一组变系数的微分方程,求解非常困难。因此,通过对同步发电机基本的电压及磁链方程组进行派克变换,可把变系数微分方程变换为常系数微分方程。 2-2 无阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量其中哪些部分是衰减的各按什么时间常数衰减试用磁链守恒原理说明它们是如何产生的 答:无阻尼绕组同步发电机突然三相短路时,定子电流中出现的分量包含:a)基频交流分量(含强制分量和自由分量),基频自由分量的衰减时间常数’。 为T d 。 b)直流分量(自由分量),其衰减时间常数为T a 。 c)倍频交流分量(若d、q磁阻相等,无此量),其衰减时间常数为T a 转子电流中出现的分量包含: ’。 a)直流分量(含强制分量和自由分量),自由分量的衰减时间常数为T d b)基频分量(自由分量),其衰减时间常数为T 。 a 产生原因简要说明: 1)三相短路瞬间,由于定子回路阻抗减小,定子电流突然增大,电枢反应 使得转子f绕组中磁链突然增大,f绕组为保持磁链守恒,将增加一个自 由直流分量,并在定子回路中感应基频交流,最后定子基频分量与转子 直流分量达到相对平衡(其中的自由分量要衰减为0). 2)同样,定子绕组为保持磁链守恒,将产生一脉动直流分量(脉动是由于d、 q不对称),该脉动直流可分解为恒定直流以及倍频交流,并在转子中感 应出基频交流分量。这些量均为自由分量,最后衰减为0。 2-3 有阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量其中哪些部分是衰减的各按什么时间常数衰减

抚顺望花电厂发电机空载和短路试验方案

抚顺望花电厂发电机空载和短路试验方案 1 发电机空载试验 1.1试验目的及依据 测量发电机空载曲线; 试验依据DL/T 596-1996 《电力设备预防性试验规程》 1.2试验接线 试验接线图如图1. 图1 发电机空载接线图 注:本次试验需引入以下参量:发电机定子三相电压、发电机定子三相电流、转子电压、转子电流(转子电压和电流应采取不经过变送器的量)试验仪器由东北电力科学研究提供,电厂负责接线,另外为了试验过程的安全,建议采用故障录波器的端子屏。 1.3试验步骤 1)发电机出口封闭母线断开,检查断开距离,确保有足够的击穿距离(以发电机额定电压2.0倍以上为准);

2)试验接线准备,将发电机定子三相电压、定子三相电流、转子电压和转子电流接入试验仪器中,检查试验接线; 3)试验接线一切无误后,打开自动试验记录,开始提高励磁电压,要求励磁电压缓慢上升至1.3Un(不带变压器,如带变压器进行空载试验电压上限为1.1Un),(注:如果当励磁电流达到额定值而励磁电压还没有到1.3Un,则试验以励磁电流额定值为上限),然后励磁电压从1.3Un缓慢下降到零,此时查看空载曲线,如无异常,则关闭自动记录,试验结束。 2 发电机短路试验 2.1 试验目的及依据 测量发电机短路曲线; 试验依据DL/T 596-1996 《电力设备预防性试验规程》 2.2试验接线 试验接线图如图2. 图2 发电机短路接线图 注:本次试验需引入以下参量:发电机定子三相电压、发电机定子三相电流、转子电压、转子电流(转子电压和电流应采取不经过变送器的量)

试验仪器由东北电力科学研究提供,电厂负责接线,另外为了试验过程的安全,建议采用故障录波器的端子屏。 2.3 试验步骤 1)发电机出口封闭母线断开,检查断开距离,确保有足够的击穿距离(以发电机额定电压2.0倍以上为准); 2)用短路板将发电机出口进行短路,确保短路板与发电机三相接触良好。 3)试验接线准备,将发电机定子三相电压、定子三相电流、转子电压和转子电流接入试验仪器中,检查试验接线; 4)试验接线一切无误后,打开自动试验记录,开始提高励磁电流,当励磁电流到15%-20%额定值时,观察发电机定子电流,确保三相平衡,如不平衡则应查找原因前禁止继续增加励磁电流; 5)缓慢增加励磁电流直到定子电流到达额定值,然后减少励磁电流直到为零,观察短路曲线,如无异常则试验结束。

同步发电机突然三相短路的物理过程及短路电流分析

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此

发电机同期并网试验方案及措施

宁夏天元锰业余 热发电项目 西北电力建设一公司调试所 调试措施 NXTY 共 9页 发行时间 二〇一四年十月 宁夏天元锰业余热1#发电机组 准同期并网试验方案及措施

宁夏天元锰业余热1#发电机组 电气调试方案 名称单位签名日期批准建设单位 审核施工单位监理单位调试单位 编写调试单位 措施名称:宁夏天元锰业余热1#发电机准同期并网试验方案及措施 措施编号:NXTYMY201410措施日期:2014年10月 保管年限:长期密级:一般 试验负责人:刘迎锋 试验地点:宁夏天元锰业余热发电车间 参加试验人员:刘迎锋、曾志文 参加试验单位:陕西电建一公司调试所(以下简称调试单位)、山东恒信建设监理公司(以下简称监理单位)、山东兴润建设有限公司(以下简称安装单位);宁夏天元锰业余热发电电气车间(以下简称生产单位)、设备厂家等

试验日期:2014年10月 目录 1.系统概述 (4) 2.主要设备参数 (5) 3.编制依据与执行的标准 (6) 4.试验仪器 (6) 5. 试验应具备的条件 (6) 6. 发电机短路特性试验 (7) 组织机构及人员分工 (8) 8.安全技术措施 (9)

1、系统概述 1.1系统概述: 1.1.1宁夏天元锰业余热发电工程,设计规模山东济南锅炉厂生产75 T/h循环流化床锅炉,配青岛汽轮机厂抽汽式12MW汽轮机和东方电气集团东风电机有限公司15MW发电机组。锅炉以煤/煤矸石燃烧,由山东省环能设计院有限公司设计。由山东兴润建设有限公司负责安装,西北电力有限公司调试所负责调试。 1.1.2宁夏天元锰业3×15MW发电工程,其发电机出口电压为10.5KV,发电机出口经1#主变高压侧送至110KVⅠ段/110KVⅡ段母线;与枣锰Ⅰ回联络线并入系统; 1.1.3 110KV系统设计为双母分段,Ⅰ母与Ⅱ母互为备用,Ⅰ母与Ⅱ母之间装设有母

发电机电气试验方法及标准

发电机电气试验方法及标准 一.高压发电机 第一部分:定子部件 1.直流电阻 2.目的:检查绕组的焊头是否出问题等原因 测试环境:冷状态下进行 测试工具:直流电阻电桥 数据处理:各项的测试应做以下处理 数据处理(I max-I min)/I平均≤2% 结果判定:测试值必须满足以上的关系,不满足就应检查定子线圈。 3.绝缘电阻 目的:检测线圈的绝缘电阻的大小,为以后的试验确定安全保证。 测试环境:常温下测试,记录数据要记录当前的温度。 测试工具:兆欧表 注意事项:在绝缘电阻测试的过程中,在每项测试完之后应该对绕组充分放电,不然会造成严重的后果 测试方法:在测量前应充分对地放点,注意机械调零,在测试的时候除开被测项,其他的各项都应该接地,测试的时候记录测试时间为15s和60s时的电阻值,在测试后计 算吸收比,吸收比=R60/R15吸收比应满足大于2,而且各个项的绝缘电阻不平衡 系数不应大于2(不平衡系数指最大一项的R60与最小一项R60之比) 4.直流耐电压. 目的:在较高的电压下发现绕组绝缘的缺陷 测试环境:常温下进行试验 测试工具:直流耐压设备一套 测试方法:利用调压器调节电压使高压侧直流电压为0.5U N、1.0 U N、1.5 U N、2.0 U N、2.5 U N、 3.0U N每阶段要停留一分钟的耐压试验时间,并在试验的时候记录各个电压时候 的电流值。每项在测试的时候其他项都必须接地。而且在电压相同的时候各个项 的电流值应该比较相近。在规定的试验电压下,各相泄漏电流的差别不应大于最小 值的50%。 注意事项:在测试的时候由于是高压,因此在测试的时候要注意安全,小心周围环境。在每项测试完之后必须充分放电,否则容易造成事故。必须注意的就是,测温线圈的 接线头必须接地。 5.交流耐电压 目的:检查线圈之间的绝缘性能 测试环境:常温下进行试验 测试工具:耐电压试验设备一套 测试方法:发电机定子的交流耐压试验在制作的过程中一共有三个阶段要测试,下面就分别介绍试验的方法: (1)、单个线圈的交流耐电压试验,每次基本上做10个线圈的耐电压试验,试验 方法是:在工作台上面放木方,木方里面用海绵等软性有弹性的材料包扎一圈, 必须要厚点的,外面包0.1mm左右的铝铂,并且用铜丝将其绑好,在整个线圈的 低阻部分必选全放在木方上方。试验的电压计算公式见后表格 (2)、在下线的过程中耐电压试验,每次基本上下线下到10个左右就要做该试验, 在做线圈试验的时候,除开试验的线圈其他线圈都必选接地,试验电压计算公式

测量发电机转子绕组短路故障的方法(新编版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 测量发电机转子绕组短路故障的 方法(新编版)

测量发电机转子绕组短路故障的方法(新编 版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 (1)有效性的原因 这一试验是在转子绕组上施加工频交流电压,测量交流阻抗和功率损耗、若绕组中存在匝间短路,当交流电压作用时,在短路线匝中产生的短路电流,约是正常线匝电流的n倍(n为一个槽内绕组总匝数),它有着强烈的去磁作用,从而导致绕组的交流阻抗大大下降,电流大大增大,因功率损耗与电流的平方成正比,所以功率损耗也显落增大,通过测量转子绕组的交流阻抗和功率损耗,与原始(或以前)数据比较,即可灵敏地判断出转子绕组是否存在匝间短路缺陷。 (2)试验方法 ①试验接线:测量发电机转子绕组的交流阻抗和功率损耗试验接线如图8—14所示。图中仪表的量限应按具体机组而定,准确度不得低于0.5级。 ③注意事项:

a.要求试验电压为正弦波,为了减小高次谐波,最好试验电源取自线电压。 b.试验电压的峰值不得超过转子额定励磁电压。 c.试验时,先升至最高电压,然后下降分段测量,目的是为了减小剩磁对阻抗的影响。 d.交流阻抗和功率损耗与许多因素有关,试验时必须注意在相同的状态(指静态、动态,定子膛内、膛外,护环和槽楔与本体的结合状态)和相同参数(指转速、电压)下进行测量比较。 e.当转子绕组存在一点接地时,试验电源不能采用具有地线的电源,否则,试验电路中应另加隔离变压器,以免造成绕组和铁芯烧损事故。 f.对隐极式转子应在定子膛内或膛外测量。在膛内测量时,定子回路必须断开,以免因定子绕组中产生的感应电动势引起环流,影响测量结果,另外应注意安全。在膛外测量时,转子最好与周围的铁磁物质相距0.5m以上,距离有钢筋的地面0.3m以上。 e.对于显极式转子一般仅要求在膛外测量,除测量整个转子绕组的交流阻抗和功率损耗外,还应在相同的电流条件下测量各磁极绕组的电压,试验电路如图8—15所示。

发电机短路升流试验

发电机短路升流试验 (一)试验条件 1、水轮发电机检修工作全部完毕,具备启动条件; 2、励磁变具备带电条件; 3、发电机出口三相短接; 4、试验前准备工作; 5、用2500V兆欧表测定3F定子绕组对地吸收比不小于1.6,用500V兆欧表测量转子绕组对地绝缘不小于0.5MΩ,测量结果合格; 6、检查发电机出口断路器3在拉开位置,合上发电机中性点刀闸; 7、检查主变已投运; 8、投入发电机空冷器xx 励磁部分准备工具:小起子、短接线、万用表、图纸、钳形电流表、说明书 (二)试验xx 1、发变组保护功能只投A套转子接地保护 注释:发电机转子充磁后励磁系统首次工作且励磁电流电压较高,励磁电流最大为,该过程同运行时一致仅投A套转子接地保护,出口仅跳灭磁开关。 2、两套低压记忆过流保护的第二时限并将该时限缩短为0秒,两套发变组保护出口仅投跳灭磁开关,过流定值按增容后定值整定。 注释:发电机转子充磁后励磁系统首次工作,由于主保护差动保护退出且发电机定子电流较大约为且仅发电机中性点电流互感器二次侧有电流,故该过程将低压记忆过流保护作为发电机试验运行方式下的主保护投入(过流定值1.21A),出口仅跳灭磁开关。低压记忆过流保护跳闸分两个时限,第一时限跳母联分段断路器故必须退出该时限,在保护功能层面杜绝误出口的可能性。

操作过程:“过流t1投退”改为“0”;“t2延时”由原定值“4.6s”改为“0S”实际只能改为“0.1s”;投入该保护软压板,出口投双套保护跳灭磁开关。试验结束恢复原定值,坚决杜绝误整定。 3、投入保护装置电源,拉开发电机交直流配电屏内机组出口开关控制盘直流1路、2路电源。 注释:拉开断路器操作电源,防止出口开关误分闸。 4、投入水机保护回路。 5、检查发电机出口及中性点母线各CT回路应不开路,电气测量仪表指示应正确。 6、在做短路试验时,必须将励磁调节柜内调节器的“残压起励”、“系统电压跟踪”以及“通道跟踪”功能退出,其中“系统电压跟踪”自运行以来均未投过。试验完成后将“残压起励”、“通道跟踪”功能恢复投入。断开起励电源开关,同时严禁操作起励按键和进行通道切换,以防止励磁系统出现误强励。 7、短路点设置 短路点在发电机机端近端出口处,将发电机机端母排解开,此时可以采用合上发电机出口断路器,从系统倒送电方式供电,励磁变和出口PT将有电源,此种模式将不需要调压器给调节器PT供电,以满足机组短路升流要求。 (三)试验危险点分析 1、增加励磁时,一定要使用恒电流模式以防止励磁电流和定子电流失控。 2、试验过程中对所有带电部分进行检查时注意保持安全距离。 3、试验完毕拆除短接线时要注意放电。 (四)试验目的 1、检查定子三相电流的对称性。 2、判断转子绕组有无匝间短路。

基于MATLAB的同步发电机短路故障仿真研究

毕业设计(论文) 题目基于MATLAB的同步发电机短路故障仿真研究学院计算机与控制工程学院 专业班级电气xxx 学生姓名 指导教师 成绩 2014 年6 月26 日

摘要 众所周知,同步发电机在电力系统中发挥着至关重要的作用,现代社会中使用的电能几乎由同步发电机所产生,同步发电机在人类社会的生活生产中占据着非常重要的地位。为了更直观地了解同步发电机短路故障状态下的特性指标,尽量避免发生短路故障或及时对短路故障做出相应的正确措施,更合理选择保护装置,研究同步发电机的短路故障状态就成了当务之急的问题。随着科技进步与自动化水平的提高,人们要求能够快速分析故障和解决故障,在电力系统中,因运行环境、可操作性问题的限制,现场对同步发电机测试不太现实,因此,利用软件仿真的方法对同步发电机进行仿真研究就显得极其重要。本论文通过MATLAB软件建立同步发电机的仿真模型,对常见的短路故障进行仿真研究,以便更好地掌握同步发电机短路故障状态下的各特性,并设计了GUI 用户界面,更好的实现了人机交互。文中对各短路故障进行了仿真实验,从仿真结果可以看出,本文所设计的仿真系统满足对同步发电机短路故障的研究需求,实现论文设计的目标。 关键词:同步发电机;短路故障;MATLAB;GUI I

Abstract As is known to all, synchronous generator plays an important role in power system. Now the electric power used in our society almost produce by synchronous generators.Synchronous generator occupies a very important position in human society.In order to learning the characteristic parameters of synchronous generator more intuitive in fault condition, and trying to avoid short circuit fault or to make corresponding measures to correct vision in time or to protect device in the method of reasonable, studying the synchronous generator fault status has become an urgent problems. With the progress of science and technology and the improvement of automation level, people require to be able to quickly analyze fault and solve the problem in the electric power system. With the limitation of the environment in running a synchronous generator, doing a test of generators directly is unlikely.Therefore, with the aid of MATLAB software powerful computing and graphics processing simulation to study the synchronous generator is extremely important.In this paper, a simulation model of the synchronous generator is established by MATLAB software in order to better grasp the performance index of synchronous generator in fault condition.And we also design the Graphical User Interface(GUI) for better realizing the human-computer interaction. Each short circuit fault simulation experiments was carried out in this paper, as can be seen from the simulation results, the simulation system is designed to satisfy demands for synchronous generator short circuit fault research, realizing the target of this paper. Key words: Synchronous generator;Short circuit fault;MATLAB;GUI II

相关文档
最新文档