最新离散数学(屈婉玲)答案

最新离散数学(屈婉玲)答案
最新离散数学(屈婉玲)答案

第一章部分课后习题参考答案

16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)?0∨(0∧1) ?0

(2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0.

(3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0

(4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1

17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。”

答:p: π是无理数 1

q: 3是无理数0

r: 2是无理数 1

s:6能被2整除 1

t: 6能被4整除0

命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型:

(4)(p→q) →(?q→?p)

(5)(p∧r) ?(?p∧?q)

(6)((p→q) ∧(q→r)) →(p→r)

答:(4)

p q p→q ?q ?p ?q→?p (p→q)→(?q→?p)

0 0 1 1 1 1 1

0 1 1 0 1 1 1

1 0 0 1 0 0 1

1 1 1 0 0 1 1

所以公式类型为永真式//最后一列全为1

(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1

(6)公式类型为永真式(方法如上例)//

第二章部分课后习题参考答案

3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.

(1) ?(p∧q→q)

(2)(p→(p∨q))∨(p→r)

(3)(p∨q)→(p∧r)

答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式

(3)P q r p∨q p∧r (p∨q)→(p∧r)

0 0 0 0 0 1

0 0 1 0 0 1

0 1 0 1 0 0

0 1 1 1 0 0

1 0 0 1 0 0

1 0 1 1 1 1

1 1 0 1 0 0

1 1 1 1 1 1

所以公式类型为可满足式

4.用等值演算法证明下面等值式:

(2)(p→q)∧(p→r)?(p→(q∧r))

(4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q)

证明(2)(p→q)∧(p→r)

? (?p∨q)∧(?p∨r)

??p∨(q∧r))

?p→(q∧r)

(4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q)

?1∧(p∨q)∧?(p∧q)∧1

?(p∨q)∧?(p∧q)

5.求下列公式的主析取范式与主合取范式,并求成真赋值

(1)(?p→q)→(?q∨p)

(2)?(p→q)∧q∧r

(3)(p∨(q∧r))→(p∨q∨r)

解:

(1)主析取范式

(?p→q)→(?q∨p)

??(p ∨q)∨(?q ∨p)

?(?p ∧?q)∨(?q ∨p)

? (?p ∧?q)∨(?q ∧p)∨(?q ∧?p)∨(p ∧q)∨(p ∧?q)

? (?p ∧?q)∨(p ∧?q)∨(p ∧q)

?320m m m ∨∨

?∑(0,2,3)

主合取范式:

(?p →q)→(?q ∨p)

??(p ∨q)∨(?q ∨p)

?(?p ∧?q)∨(?q ∨p)

?(?p ∨(?q ∨p))∧(?q ∨(?q ∨p))

?1∧(p ∨?q)

?(p ∨?q) ? M 1

?∏(1)

(2) 主合取范式为:

?(p →q)∧q ∧r ??(?p ∨q)∧q ∧r

?(p ∧?q)∧q ∧r ?0

所以该式为矛盾式.

主合取范式为∏(0,1,2,3,4,5,6,7)

矛盾式的主析取范式为 0

(3)主合取范式为:

(p ∨(q ∧r))→(p ∨q ∨r)

??(p ∨(q ∧r))→(p ∨q ∨r)

?(?p ∧(?q ∨?r))∨(p ∨q ∨r)

?(?p ∨(p ∨q ∨r))∧((?q ∨?r))∨(p ∨q ∨r))

?1∧1

?1

所以该式为永真式.

永真式的主合取范式为 1

主析取范式为∑(0,1,2,3,4,5,6,7)

第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:

(2)前提:p→q,?(q∧r),r

结论:?p

(4)前提:q→p,q?s,s?t,t∧r

结论:p∧q

证明:(2)

①?(q∧r) 前提引入

②?q∨?r ①置换

③q→?r ②蕴含等值式

④r 前提引入

⑤?q ③④拒取式

⑥p→q 前提引入

⑦¬p ⑤⑥拒取式

证明(4):

①t∧r 前提引入

②t ①化简律

③q?s 前提引入

④s?t 前提引入

⑤q?t ③④等价三段论

⑥(q→t)∧(t→q) ⑤置换

⑦(q→t)⑥化简

⑧q ②⑥假言推理

⑨q→p 前提引入

⑩p ⑧⑨假言推理

(11)p∧q ⑧⑩合取

15在自然推理系统P中用附加前提法证明下面各推理:

(1)前提:p→(q→r),s→p,q

结论:s→r

证明

①s 附加前提引入

②s→p 前提引入

③p ①②假言推理

④p→(q→r) 前提引入

⑤q→r ③④假言推理

⑥q 前提引入

⑦r ⑤⑥假言推理

16在自然推理系统P中用归谬法证明下面各推理:

(1)前提:p→?q,?r∨q,r∧?s

结论:?p

证明:

①p 结论的否定引入

②p→﹁q 前提引入

③﹁q ①②假言推理

④¬r∨q 前提引入

⑤¬r ④化简律

⑥r∧¬s 前提引入

⑦r ⑥化简律

⑧r∧﹁r ⑤⑦合取

由于最后一步r∧﹁r 是矛盾式,所以推理正确.

第四章部分课后习题参考答案

3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:

(1) 对于任意x,均有2=(x+)(x).

(2) 存在x,使得x+5=9.

其中(a)个体域为自然数集合.

(b)个体域为实数集合.

解:

F(x): 2=(x+)(x ).

G(x): x+5=9.

(1)在两个个体域中都解释为)(x xF ?,在(a )中为假命题,在(b)中为真命题。

(2)在两个个体域中都解释为)(x xG ?,在(a )(b)中均为真命题。

4. 在一阶逻辑中将下列命题符号化:

(1) 没有不能表示成分数的有理数.

(2) 在北京卖菜的人不全是外地人.

解:

(1)F(x): x 能表示成分数

H(x): x 是有理数

命题符号化为: ))()((x H x F x ∧???

(2)F(x): x 是北京卖菜的人

H(x): x 是外地人

命题符号化为: ))()((x H x F x →??

5. 在一阶逻辑将下列命题符号化:

(1) 火车都比轮船快.

(3) 不存在比所有火车都快的汽车.

解:

(1)F(x): x 是火车; G(x): x 是轮船; H(x,y): x 比y 快

命题符号化为: )),())()(((y x H y G x F y x →∧??

(2) (1)F(x): x 是火车; G(x): x 是汽车; H(x,y): x 比y 快

命题符号化为: ))),()(()((y x H x F x y G y →?∧?? 9.给定解释I 如下:

(a) 个体域D 为实数集合R.

(b) D 中特定元素=0.

(c) 特定函数(x,y)=x y,x,y D

∈.

(d) 特定谓词(x,y):x=y,(x,y):x

∈.

说明下列公式在I下的含义,并指出各公式的真值:

(1)))

G

x

y

?

y

x?

?

)

(

,

,

(

x

(y

F

(2)))

f

x

y

F

a

?

x→

y

?

,

)

(

,

),

(

x

(y

(

G

答:(1) 对于任意两个实数x,y,如果x

(2) 对于任意两个实数x,y,如果x-y=0, 那么x

10. 给定解释I如下:

(a)个体域D=N(N为自然数集合).

(b) D中特定元素=2.

(c) D上函数=x+y,(x,y)=xy.

(d) D上谓词(x,y):x=y.

说明下列各式在I下的含义,并讨论其真值.

(1)xF(g(x,a),x)

(2)x y(F(f(x,a),y)→F(f(y,a),x)

答:(1) 对于任意自然数x, 都有2x=x, 真值0.

(2) 对于任意两个自然数x,y,使得如果x+2=y, 那么y+2=x. 真值0.

11. 判断下列各式的类型:

(1)

(3) yF(x,y).

解:(1)因为1

?

q

→p

p

p为永真式;

q

p

?

(

)

)

(?

?

所以为永真式;

(3)取解释I个体域为全体实数

F(x,y):x+y=5

所以,前件为任意实数x存在实数y使x+y=5,前件真;

后件为存在实数x对任意实数y都有x+y=5,后件假,]

此时为假命题

再取解释I个体域为自然数N,

F(x,y)::x+y=5

所以,前件为任意自然数x存在自然数y使x+y=5,前件假。此时为假命题。

此公式为非永真式的可满足式。

离散数学屈婉玲版第一章部分习题汇总

第一章习题 1.1&1.2 判断下列语句是否为命题,若是命题请指出是简单命题还 是复合命题.并将命题符号化,并讨论它们的真值. (1) √2是无理数. 是命题,简单命题.p:√2是无理数.真值:1 (2) 5能被2整除. 是命题,简单命题.p:5能被2整除.真值:0 (3)现在在开会吗? 不是命题. (4)x+5>0. 不是命题. (5) 这朵花真好看呀! 不是命题. (6) 2是素数当且仅当三角形有3条边. 是命题,复合命题.p:2是素数.q:三角形有3条边.p?q真值:1 (7) 雪是黑色的当且仅当太阳从东方升起. 是命题,复合命题.p:雪是黑色的.q:太阳从东方升起. p?q真值:0 (8) 2008年10月1日天气晴好. 是命题,简单命题.p:2008年10月1日天气晴好.真值唯 一. (9) 太阳系以外的星球上有生物. 是命题,简单命题.p:太阳系以外的星球上有生物.真值唯一. (10) 小李在宿舍里. 是命题,简单命题.P:小李在宿舍里.真值唯一. (11) 全体起立! 不是命题. (12) 4是2的倍数或是3的倍数. 是命题,复合命题.p:4是2的倍数.q:4是3的倍数.p∨q 真值:1 (13) 4是偶数且是奇数.

是命题,复合命题.P:4是偶数.q:4是奇数.p∧q真值:0 (14) 李明与王华是同学. 是命题,简单命题.p: 李明与王华是同学.真值唯一. (15) 蓝色和黄色可以调配成绿色. 是命题,简单命题.p: 蓝色和黄色可以调配成绿色.真值:1 1.3 判断下列各命题的真值. (1)若 2+2=4,则 3+3=6. (2)若 2+2=4,则 3+3≠6. (3)若 2+2≠4,则 3+3=6. (4)若 2+2≠4,则 3+3≠6. (5)2+2=4当且仅当3+3=6. (6)2+2=4当且仅当3+3≠6. (7)2+2≠4当且仅当3+3=6. (8)2+2≠4当且仅当3+3≠6. 答案: 设p:2+2=4,q:3+3=6,则p,q都是真命题. (1)p→q,真值为1. (2)p→┐q,真值为0. (3)┐p→q,真值为1. (4)┐p→┐q,真值为1. (5)p?q,真值为1. (6)p?┐q,真值为0. (7)┐p?q,真值为0. (8)┐p?┐q,真值为1. 1.4将下列命题符号化,并讨论其真值。 (1)如果今天是1号,则明天是2号。 p:今天是1号。 q:明天是2号。 符号化为:p→q 真值为:1 (2)如果今天是1号,则明天是3号。 p:今天是1号。

离散数学答案屈婉玲版第二版 高等教育出版社课后答案

离散数学答案屈婉玲版 第二版高等教育出版社课后答案 第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(pr)∧(﹁q∨s) ?(01)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)(p∧q∧﹁r) ?(1∧1∧1) (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例)

第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p)

离散数学习题答案(耿素云屈婉玲)

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 ) 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 、 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 。 解:公式的真值表如下:

由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ [ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 } ⑦ s ⑤⑥假言推理 15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论: p u → 证明:用附加前提证明法。 ① p 附加前提引入

离散数学屈婉玲版课后习题

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1 所以公式类型为永真式 (3) P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1

屈婉玲版离散数学课后习题答案【2】

第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有错误!未找到引用源。2=(x+错误!未找到引用源。)(x 错误!未找到引用源。). (2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解: F(x): 错误!未找到引用源。2=(x+错误!未找到引用源。)(x 错误!未找到引用源。). G(x): x+5=9. (1)在两个个体域中都解释为)(x xF ?,在(a )中为假命题,在(b)中为真命题。 (2)在两个个体域中都解释为)(x xG ?,在(a )(b)中均为真命题。 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在北京卖菜的人不全是外地人. 解: (1)F(x): x 能表示成分数 H(x): x 是有理数 命题符号化为: ))()((x H x F x ∧??? (2)F(x): x 是北京卖菜的人 H(x): x 是外地人 命题符号化为: ))()((x H x F x →?? 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x 是火车; G(x): x 是轮船; H(x,y): x 比y 快

命题符号化为: )) F x G x→ ∧ ? ? y y ( )) ( ) , x ((y ( H (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快 命题符号化为: ))) x x F y y→ ?? ∧ ? G (y H ( , ( ) ( ( x ) 9.给定解释I如下: (a) 个体域D为实数集合R. (b) D中特定元素错误!未找到引用源。=0. (c) 特定函数错误!未找到引用源。(x,y)=x错误!未找到引用源。y,x,y D ∈错误!未找到引用源。. (d) 特定谓词错误!未找到引用源。(x,y):x=y,错误!未找到引用源。(x,y):x

离散数学(屈婉玲版)第四章部分答案

离散数学(屈婉玲版)第四章部分答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xRy 。如果R=Is ,则(A );如 果R 是数的小于等于关系,则(B ),如果R=Es ,则(C )。 (2)设有序对与有序对<5,2x+y>相等,则 x=(D),y=(E). 供选择的答案 A 、 B 、 C :① x,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2; ④ x=2,y=2;⑤ x=y=1或 x=y=2;⑥ x=1,y=2;⑦x=2,y=1。 D 、 E :⑧ 3;⑨ 2;⑩-2。 答案: A: ⑤ B: ③ C: ① D: ⑧ E: ⑩ 4.2设S=<1,2,3,4>,R 为S 上的关系,其关系矩阵是 ????? ???????0001100000011001 则(1)R 的关系表达式是(A )。 (2)domR=(B),ranR=(C). (3)R ?R 中有(D )个有序对。 (4)R ˉ1的关系图中有(E )个环。 供选择的答案 A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>}; B 、 C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。 D 、 E ⑦1;⑧3;⑨6;⑩7。 答案: A:② B:③ C:⑤ D:⑩ E:⑦ 4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {<x,y >︳x,y ∈Z+∧x+3y=12}, 则 (1)R 中有A 个有序对。 (2)dom=B 。 (3)R ↑{2,3,4,6}=D 。 (4){3}在R 下的像是D 。 (5)R 。R 的集合表达式是E 。 供选择的答案 A:①2;②3;③4. B 、 C 、 D 、E:④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};

离散数学版屈婉玲(答案)

《离散数学1-5章》练习题答案第2,3章(数理逻辑) 1.答:(2),(3),(4) 2.答:(2),(3),(4),(5),(6) 3.答:(1)是,T (2)是,F (3)不是 (4)是,T (5)不是(6)不是 4.答:(4) 5.答:?P ,Q→P 6.答:P(x)∨?yR(y) 7.答:??x(R(x)→Q(x)) 8、 c、P→(P∧(Q→P)) 解:P→(P∧(Q→P)) ??P∨(P∧(?Q∨P)) ??P∨P ? 1 (主合取范式) ? m0∨ m1∨m2∨ m3 (主析取范式) d、P∨(?P→(Q∨(?Q→R))) 解:P∨(?P→(Q∨(?Q→R))) ? P∨(P∨(Q∨(Q∨R))) ? P∨Q∨R ? M0 (主合取范式) ? m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、

b、P→(Q→R),R→(Q→S) => P→(Q→S) 证明: (1) P 附加前提 (2) Q 附加前提 (3) P→(Q→R) 前提 (4) Q→R (1),(3)假言推理 (5) R (2),(4)假言推理 (6) R→(Q→S) 前提 (7) Q→S (5),(6)假言推理 (8) S (2),(7)假言推理 d、P→?Q,Q∨?R,R∧?S??P 证明、 (1) P 附加前提 (2) P→?Q 前提 (3)?Q (1),(2)假言推理 (4) Q∨?R 前提 (5) ?R (3),(4)析取三段论 (6 ) R∧?S 前提 (7) R (6)化简 (8) R∧?R 矛盾(5),(7)合取 所以该推理正确 10.写出?x(F(x)→G(x))→(?xF(x) →?xG(x))的前束范式。 解:原式??x(?F(x)∨G(x))→(?(?x)F(x) ∨ (?x)G(x)) ??(?x)(?F(x)∨G(x)) ∨(?(?x)F(x) ∨ (?x)G(x)) ? (?x)((F(x)∧? G(x)) ∨G(x)) ∨ (?x) ?F(x)

离散数学(屈婉玲版)第四章部分答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xRy 。如果R=Is ,则(A );如 果R 是数的小于等于关系,则(B ),如果R=Es ,则(C )。 (2)设有序对与有序对<5,2x+y>相等,则 x=(D),y=(E). 供选择的答案 A 、 B 、 C :① x,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2; ④ x=2,y=2;⑤ x=y=1或 x=y=2;⑥ x=1,y=2;⑦x=2,y=1。 D 、 E :⑧ 3;⑨ 2;⑩-2。 答案: A: ⑤ B: ③ C: ① D: ⑧ E: ⑩ 4.2设S=<1,2,3,4>,R 为S 上的关系,其关系矩阵是 ????? ???????0001100000011001 则(1)R 的关系表达式是(A )。 (2)domR=(B),ranR=(C). (3)R ?R 中有(D )个有序对。 (4)R ˉ1的关系图中有(E )个环。 供选择的答案 A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>}; B 、 C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。 D 、 E ⑦1;⑧3;⑨6;⑩7。 答案: A:② B:③ C:⑤ D:⑩ E:⑦ 4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {<x,y >︳x,y ∈Z+∧x+3y=12}, 则 (1)R 中有A 个有序对。 (2)dom=B 。 (3)R ↑{2,3,4,6}=D 。 (4){3}在R 下的像是D 。 (5)R 。R 的集合表达式是E 。 供选择的答案 A:①2;②3;③4. B 、 C 、 D 、E:④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};

离散数学(屈婉玲版)第四章部分标准答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xR y。如果R=Is ,则(A); 如果R 是数的小于等于关系,则(B),如果R=Es ,则(C)。 (2)设有序对<x+2,4>与有序对<5,2x+y>相等,则 x=(D),y=(E). 供选择的答案 A、B 、C :① x ,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2; ④ x=2,y=2;⑤ x=y=1或 x =y=2;⑥ x=1,y=2;⑦x=2,y =1。 D 、E:⑧ 3;⑨ 2;⑩-2。 答案: A: ⑤ B: ③ C: ① D: ⑧ E: ⑩ 4.2设S =<1,2,3,4>,R 为S 上的关系,其关系矩阵是 ????? ???????0001100000011001 则(1)R 的关系表达式是(A )。 (2)dom R=(B),ranR=(C). (3)R ?R中有(D)个有序对。 (4)R ˉ1的关系图中有(E)个环。 供选择的答案 A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>}; B、C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。 D、E ⑦1;⑧3;⑨6;⑩7。 答案: A :② B:③ C:⑤ D:⑩ E:⑦ 4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {︳x,y ∈Z+∧x +3y=12}, 则 (1)R 中有A 个有序对。 (2)d om=B 。 (3)R ↑{2,3,4,6}=D 。 (4){3}在R 下的像是D 。 (5)R 。R 的集合表达式是E 。 供选择的答案 A:①2;②3;③4. B 、 C 、 D 、 E :④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};⑦{3,6,

离散数学最全课后答案(屈婉玲版)

………………………………………………最新资料推 荐……………………………………… 1.1.略 1.2.略 1.3.略 1.4.略 1.5.略 1.6.略 1.7.略 1.8.略 1.9.略 1.10.略 1.11.略 1.12.将下列命题符号化,并给出各命题的真值: (1)2+2=4当且仅当3+3=6.(2)2+2= 4的充要条件是3+3≠6.(3)2+2≠4与 3+3=6互为充要条件.(4)若2+2≠4, 则 3+3≠6,反之亦然. (1)p?q,其中,p: 2+2=4,q: 3+3=6, 真值为 1.(2)p??q,其中,p:2+2=4,q:3+3=6,真值为0. (3)?p?q,其中,p:2+2=4,q:3+3=6,真值为 0.(4)?p??q,其中,p:2+2=4,q:3+3=6,真值为1. 1.13.将下列命题符号化, 并给出各命题的真值:(1) 若今天是星期一,则明天是星期二.(2)只有今天 是星期一,明天才是星期二.(3)今天是星期一当 且仅当明天是星期二. (4)若今天是星期一,则明 天是星期三. 令p: 今天是星期一;q:明天是星期二;r:明天是星期三.(1) p→q ? 1. (2) q→p ? 1. (3) p?q? 1. (4)p→r当p ? 0时为真; p ? 1时为假. 1.14.将下列命题符号化. (1) 刘晓月跑得快,跳得高.(2) 老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小 组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃 饭, 一面听音乐. (8)如果天下大雨,他就乘 班车上班.(9)只有天下大雨,他才乘班车上 班.(10)除非天下大雨,他才乘班车上班.(11) 下雪路滑, 他迟到了. (12)2与4都是素数,这是不对的. (13)“2或4是素数,这是不对的”是不对的.

离散数学屈婉玲版

1 离散数学(第四版) ( ( ( (耿素云屈婉玲张立昂著) ) ) ) 清华大学出版社 第第第第 1 1 1 1 章章章章习题解答习题解答习题解答习题解答 1.1 除(3),( 4),( 5),( 11)外全是命题,其中,(1),( 2),( 8),( 9),(10),( 14),( 15)是简单命题,(6),( 7),( 12),( 13)是复合命题。 分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。 本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句, 所以它们都不是命题。 其次,(4)这个句子是陈述句,但它表示的判断结果是不确定。又因为(1),(2),( 8),( 9),( 10),( 14),( 15)都是简单的陈述句,因而作为命题,它们都是简单命题。(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来 的复合命题。这里的“且”为“合取”联结词。在日常生活中,合取联结词有许 多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。但要注意,有时“和”或“与”联结的是主语,构成简单命题。例如,(14)、( 15)中的“与”与“和”是联结 的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。 1.2 (1)是无理数,p 为真命题。 2: p (2)能被 2 整除,p 为假命题。 :5 p (6)。其中,是素数,q:三角形有三条边。由于 p 与 q 都是真 qp → 2 : p 命题,因而为假命题。 qp → (7),其中,p:雪是黑色的,q:太阳从东方升起。由于 p 为假命 qp → 题,q 为真命题,因而为假命题。 qp → (8)年 10 月 1 日天气晴好,今日(1999 年 2 月 13 日)我们还不 :2000 p 课后答案网 https://www.360docs.net/doc/2314880432.html, 2 知道 p 的真假,但 p 的真值是确定的(客观存在的),只是现在不知道而已。 (9)p:太阳系外的星球上的生物。它的真值情况而定,是确定的。 (10)p:小李在宿舍里. p 的真值则具体情况而定,是确定的。 (12),其中,是偶数,是奇数。由于 q 是假命题,所以,q qp ∨ 4 : p 4: q 为假命题,为真命题。 qp ∨ (13),其中,是偶数,是奇数,由于 q 是假命题,所以, qp ∨ 4 : p 4: q 为假命题。 qp ∨ (14) p:李明与王华是同学,真值由具体情况而定(是确定的)。 (15) p:蓝色和黄色可以调配成绿色。这是真命题。 分析命题的真值是唯一确定的,有些命题的真值我们立即可知,有些则不 能马上知道,但它们的真值不会变化,是客观存在的。 1.3 令则以下命题分别符号化为 6,33:4,22: +=+= qp (1) qp → (2) qp →?

离散数学最全最新答案 屈婉玲

第一章 命题逻辑基本概念 课后练习题答案 4.将下列命题符号化,并指出真值: (1)p∧q,其中,p:2是素数,q:5是素数,真值为1; (2)p∧q,其中,p:是无理数,q:自然对数的底e 是无理数,真值为1; (3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1; (4)p∧q,其中,p:3是素数,q:3是偶数,真值为0; (5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0. 5.将下列命题符号化,并指出真值: (1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1; (2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1; (3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; (4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1; (5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; 6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨; (2)(p∧┐q)∨(┐p∧q),其中,p :刘晓月选学英语,q :刘晓月选学日语;. 7.因为p 与q 不能同时为真. 13.设p:今天是星期一,q:明天是星期二,r:明天是星期三: (1)p→q,真值为1(不会出现前件为真,后件为假的情况); (2)q→p,真值为1(也不会出现前件为真,后件为假的情况); (3)p q ,真值为1; (4)p→r,若p 为真,则p→r 真值为0,否则,p→r 真值为1. 16 设p 、q 的真值为0;r 、s 的真值为1,求下列各命题公式的真值。 (1)p ∨(q ∧r)? 0∨(0∧1) ? (2)(p ?r )∧(﹁q ∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p ∧?q ∧r )?(p ∧q ∧﹁r) ?(1∧1∧1) ? (0∧0∧0)?0 (4)(?r ∧s )→(p ∧?q) ?(0∧1)→(1∧0) ?0→0? 1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数 r: 2是无理数 1 s: 6能被2整除 1 t: 6能被4整除 0 命题符号化为: p ∧(q →r)∧(t →s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p →q) →(?q →?p) (5)(p ∧r) ?(?p ∧?q) (6)((p →q) ∧(q →r)) →(p →r) 答: (4) p q p →q ?q ?p ?q →?p (p →q)→(?q →?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 //最后一列全为1 (5)公式类型为可满足式(方法如上例)//最后一列至少有一个1 (6)公式类型为永真式(方法如上例)// 返回 第二章 命题逻辑等值演算 本章自测答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p ∧q →q) (2)(p →(p ∨q))∨(p →r) (3)(p ∨q)→(p ∧r) 答:(2)(p →(p ∨q))∨(p →r)?(?p ∨(p ∨q))∨(?p ∨r)??p ∨p ∨q ∨r ?1 所以公式类型为永真式 (3) P q r p ∨q p ∧r (p ∨q )→(p ∧r) 0 0 0 0 0 1 0 0 1 0 0 1

离散数学(屈婉玲版)第六章部分答案

6.1(5) 5S =n M (R),+为矩阵加法,则S 是(群) 答:满足封闭性,因为矩阵加法可结合所以为半群,且幺元为e =0的矩阵,故为独异点。又因为以任一n 阶矩阵的逆元存在是它的负矩阵,所以是群。 评语:答案太简单 6.2 (1)因为可结合,交换,幺元为1,但不存在逆元 所以是半群 (2)因为可交换,结合,幺元为0,是有限阶群并且是循环群,G 中的2阶元是2,4阶元是1和3 6.4 设Z 为正数集合,在Z 上定义二元运算 ° ,? x,y ∈Z 有 x ° y=x+y-2, 那么Z 与运算 ° 能否构成群?为什么? 解: 设 ? a,b,c ∈Z (a ° b )° c = (a+b-2) ° c = a+b- 2+ c-2 =a+b+c-4 a ° ( b ° c) = a ° (b+c-2) =a + b+c-2-2 =a+b+c-4 对2∈Z ,? x ∈Z 有 x ° 2=x+2-2=x=2° x, 可见 , 存在幺元,幺元为2。 对? x ∈Z 有4-x ∈Z,使x ° (4-x )= (4-x) ° x=2 所以 x-1 = 4-x 所以Z 与运算 ° 能构成群 。 6.7 下列各集合对于整除关系都构成偏序集,判断哪些偏序集是格? (1)L={1,2,3,4,5}. (2)L={1,2,3,6,12}. (3)L={1,2,3,4,6,9,12,18,36}. (4)L={1,2,2(2),…,2(n)}. (1)L={1,2,3,4,5}. 解:由它的哈斯图可以知道,该偏序集不是格,因为3和4、5和4 、3和5有最大下届是1,但是没有最小上届。 (2)L={1,2,3,6,12}. 解:由它的哈斯图可以知道,该偏序集是格。因为L 中的任意俩个元素都有最大下结和最小上届。 (3)L={1,2,3,4,6,9,12,18,36}. 解:由它的哈斯图可以知道,该偏序集是格。因为L 中的任意俩个元素都有最大下结和最小上届。 (4)L={1,2,2(2),…,2(n)}.

离散数学第2版答案

离散数学第2版答案 【篇一:离散数学课后习题答案_屈婉玲(高等教育出版 社)】 txt>16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)? 0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1) ? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“?是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。”答:p: ?是无理数 1 q: 3是无理数 0 r: 2是无理数 1 s: 6能被2整除 1 t: 6能被4整除 0 命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q?p?q→?p (p→q)→(?q→?p) 0 01 111 1 0 11 011 1 1 00 100 1 1 11 001 1所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式, 再用真值表法求出成真赋值. (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r)

答:(2)(p→(p∨q)) ∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1 所以公式类型为永真式 (3) p qr p∨q p∧r (p∨q)→(p∧r) 0 0000 1 0 0100 1 0 1010 0 0 1110 0 10 010 0 10 111 1 11 010 0 11 111 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (?p→q)→(?q?p) ??(p?q)?(?q?p) ?(?p??q)?(?q?p) ? (?p??q)?(?q?p)?(?q??p)?(p?q)?(p??q) ? (?p??q)?(p??q)?(p?q) ?m0?m2?m3 ?∑(0,2,3) 主合取范式:

离散数学最全课后答案(屈婉玲版)_0

离散数学最全课后答案(屈婉玲版) 离散数学习题解1 习题1 1 . 1 . 2 . 1 . 3 . 1 . 4 . 1 . 5 . 1 . 6 . 1 . 7 . 1 . 8 . 1 . 9 . |下列命题用符号表示,并给出其真值: (1) 2+2(2) 2+2 = 4的充要条件是3+3?6.(3)2+2?4和3+3 = 6都是必要和充分的条件。(4)如果2+2?4,然后3+3?6,反之亦然。 (1)p?q,其中p: 2+2 = 4,q: 3+3 = 6,真值为1。(2)p??q,其中p: 2+2 = 4,q: 3+3 = 6,真值为0。(3)?p?q,其中p: 2+2 = 4,q: 3+3 = 6,真值为0。(4)?p??q,其中p: 2+2 = 4,q: 3+3 = 6,真值为1. 1.13。用符号表示下列命题,并给出每个命题的真实值:(1)如果今天是星期一,明天就是星期二。只有今天是星期一。明天是星期二。(3)今天是星期一,只有明天是星期二。(4)如果今天是星期一,明天就是星期三。

订单P:今天是星期一;问:明天是星期二;明天是星期三。问??1.(2) q?p??1.(3) p?问??1. (4) p?r何时p??0为真;p??一小时是假的。 1.14。象征以下命题。 (1)刘跑得快,跳得高。老王来自山东或河北。 (3)因为天气寒冷。所以我穿上了羽绒服。(4)王欢和李乐组成一个小组。 (5)李欣和李默是兄弟。 (6)王强和刘伟都学过法语。他一边吃饭一边听音乐。如果下大雨,他就乘公共汽车去上班。只有下大雨时,他才乘公共汽车去上班。除非下大雨。他刚刚乘公共汽车去上班。雪很滑,他迟到了。(12)2和4是质数,这是错误的。(13)“2或4是质数,这是错误的”是错误的。离散数学习题解答 (1)p?其中,刘跑得快,刘跳得高。(2)p?其中,p:老王来自山东,q:老王来自河北。(3)p?问:那里的天气很冷,问:我穿着羽绒服。(4)p,其中P:王欢和李乐组成一个组,这是一个简单的命题。(5)p,其中P:李欣和李默是兄弟。 (6)p?其中,王强学的是法语,刘伟学的是法语。其中,p:他吃饭,q:他听音乐。其中,p:雨下得很大,q:他乘公共汽车去上班。其中,

离散数学答案屈婉玲版第二版高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社 课后答案 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

离散数学答案屈婉玲版 第二版高等教育出版社课后答案 第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)? 0∨(0∧1) ?0 (2)(pr)∧(﹁q∨s) ?(01)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)(p∧q∧﹁r) ?(1∧1∧1) (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数 0 r: 2是无理数 1 s: 6能被2整除 1 t: 6能被4整除 0 命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例)

第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3) P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r

离散数学(屈婉玲版)第二章习题答案

设解释I为:个体域D I ={-2,3,6},一元谓词F(X):X3,G(X):X>5,R(X):X7。在I下求下列各式的真值。 (1)x(F(x)G(x)) 解:x(F(x)G(x)) (F(-2) G(-2)) (F(3) G(3)) (F(6) G(6)) ((-23) (-2>5)) ((33) (3>5)) ((63) (6<5)) ((1 0))((1 0)) ((0 0)) 000 (2) x(R(x)F(x))G(5) 解:x(R(x)F(x))G(5) (R(-2)F(-2)) (R(3)F(3)) (R(6)F(6)) G(5) ((-27) (-23)) (( 37) (33)) (( 67) (63)) (5>5) (1 1) (1 1) (10) 0 1 1 0 0 (3)x(F(x)G(x)) 解:x(F(x)G(x)) (F(-2) G(-2)) (F(3) G(3)) (F(6) G(6)) ((-23) (-2>5)) ((33) (3>5)) ((63) (6>5)) (1 0) (1 0) (0 1) 1 1 1

1 求下列各式的前束范式,要求使用约束变项换名规则。 (1)??xF(x)→?yG(x,y) (2) ?(?xF(x,y) ∨?yG(x,y) ) 解:(1)??xF(x)→?yG(x,y) ???xF(x)→?yG(z,y) 代替规则 ??x?F(x)→?yG(z,y) 定理(2 ) ??x(?F(x) →?yG(z,y) 定理(2)③ ??x?y(?F(x) →G(z,y)) 定理(1)④ (2)?(?xF(x,y) ∨?yG(x,y) ) ??(?zF(z,y) ∨?tG(x,t)) 换名规则 ??(?zF(z,y) )∧?(?tG(x,t) ) ??z?F(z,y) ∧?t?G(x,z) ??z (?F(z,y) ∧?t?G(x,z)) ??z ?t(?F(z,y) ∧?G(x,t)) 求下列各式的前束范式,要求使用自由变项换名规则。(代替规则)(1)xF(x)∨yG(x,y) xF(x) ∨yG(z,y) 代替规则 x(F(x) ∨yG(z,y))定理(1)① xy(F(x) ∨G(z,y))定理(2)① (2)x(F(x)∧yG(x,y,z))→zH(x,y,z) x(F(x)∧yG(x,y,t))→zH(s,r,z) 代替规则 xy (F(x)∧G(x,y,t))→zH(s,r,z) 定理(1)② x(y (F(x)∧G(x,y,t))→zH(s,r,z))定理(2)③ xy((F(x)∧G(x,y,t))→zH(s,r,z))定理(1)③ xyz((F(x)∧G(x,y,t))→H(s,r,z))定理(2)④ 构造下面推理的证明。

相关文档
最新文档