计算方法练习题与答案

计算方法练习题与答案
计算方法练习题与答案

练习题与答案

练习题一

练习题二

练习题三

练习题四

练习题五

练习题六

练习题七

练习题八

练习题答案

练习题一

一、是非题

1.*x=–1

2.0326作为x的近似值一定具有6位有效数字,且其误差限

4

10

2

1

-

?

。( )

2.对两个不同数的近似数,误差越小,有效数位越多。( )

3.一个近似数的有效数位愈多,其相对误差限愈小。( )

4. 用

2

12x -近似表示cos x 产生舍入误差。 ( ) 5. 3.14和3.142作为π的近似值有效数字位数相同。 ( )

二、填空题

1. 为了使计算()()2334912111y x x x =+-+---的乘除法次数尽量少,应将该表达式改写为 ;

2. *x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限

为 ,相对误差限为 ;

3. 误差的来源是 ;

4. 截断误差为 ;

5. 设计算法应遵循的原则

是 。

三、选择题

1.*x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。

(A) 7; (B) 3;

(C) 不能确定 (D) 5.

2.舍入误差是( )产生的误差。

(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值

(C) 观察与测量 (D) 数学模型准确值与实际值

3.用 1+x 近似表示e x 所产生的误差是( )误差。

(A). 模型 (B). 观测 (C). 截断 (D). 舍入

4.用s *=21

g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是

在时间t 内的实际距离,则s t s *是( )误差。

(A). 舍入 (B). 观测 (C). 模型 (D). 截断

5.1.41300作为2的近似值,有( )位有效数字。

(A) 3; (B) 4; (C) 5; (D) 6。

四、计算题

1. 3.142,3.141,22

7分别作为π的近似值,各有几位有效数字?

2. 设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?

3. 利用等价变换使下列表达式的计算结果比较精确: (1)1||,11211<<+-++x x x x , (2) 1||1112<<+?+x dt t x x

(3) 1||,1<<-x e x , (4) 1)1ln(2>>-+x x x

4.真空中自由落体运动距离s 与时间t 的关系式是s =21

g t 2,g 为重力加速度。现设g 是精确的,而对t 有0.1±秒的测量误差,证明:当t 增加时,距离的绝对误差增加,而相对误差却减少。

5*.

,取

??

???+==+)

7(21210k k k x x x x k =0,1,…, 若k x

的具有n 位有效数字的近似值,求证1k x +

的具有2n 位有效数字的近似值。

练 习 题 二

一、是非题

1. 单点割线法的收敛阶比双点割线法低。 ( )

2. 牛顿法是二阶收敛的。 ( )

3. 求方程310x x --=在区间[1, 2]内根的迭代法总是收敛的。 ( )

4. 迭代法的敛散性与迭代初值的选取无关。 ( )

5. 求非线性方程 f (x )=0根的方法均是单步法。 ( )

二、填空题

1. 1. 用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误

差限为 ;

1. 2. 设)(x f 可微,求方程)(x f x =的牛顿迭代格式是 ;

2. 3. 用二分法求方程310x x +-=在区间[0,1]内的根,进行一步后根的所在区

间为 ,要求准确到3

10-,则至少应二分 次; 3. 4.

2()(5)x x x ?α=+-,要使迭代格式1()k k x x ?+=

局部收敛到*x =则

α的取值范围是 ;

4. 5. 求方程340x x +-=根的单点割线法是 ,其收敛阶

为 ;双点割线法是 ,其收敛阶为 。

三、计算题

1. 用二分法求方程210x x --=的正根,使误差小于0.05。

2. 求方程3210x x --=在0 1.5x =附近的一个根,将方程改写为下列等价形

式,并建立相应迭代公式。 (1) 211x x =+,迭代公式1211k k x x +=+;

(2) 321x x =+,迭代公式()12311k k x x +=+;

(3) 211x x =-,迭代公式1k x +=;

试分析每种迭代公式的收敛性,并选取收敛最快的方法求具有4位有效数字的近似值。

3. 用牛顿切线法求的近似值。取02x =, 计算三次,保留三位小数。

4. 用割线法求方程3310x x --=的在0 1.5x =附近的一个根,精确到小数

点后第二位。

四*、证明题

已知方程()0f x =,试导出求根公式

122()()

2[()]()()k k k k k k k f x f x x x f x f x f x +'=-'''-

并证明:当*x 是方程()0f x =的单根时,公式是3阶收敛的。

练 习 题 四

一、是非题

1.矩阵

??????????--=521352113A 具有严格对角优势。 ( ) 2.

??????????---=521351113A 是弱对角优势矩阵。 ( ) 3.高斯—塞德尔迭代法一定比雅可比迭代法收敛快。 ( )

4.1||||

(1)()k k M +=+x x f 收敛的必要条件。 ( ) 5*. 逐次超松弛迭代法是高斯—赛德尔迭代法的一种加速方法。 ( )

二、填空题

1. 解方程组 ???=+=+021532121x x x x 的雅可比迭代格式(分量形式)为 , 该迭代矩阵的谱半径=)(1B ρ ;

2. 解方程组???=+=+021532121x x x x 的高斯—赛德尔迭代格式(分量形式)

为 ,迭代矩阵=2B , 该迭代矩阵

的谱半径=)(2B ρ ;

3. 幂法的迭代公式为 ;

4*.QR 算法是用来求 矩阵的全部特征值的一种方法。 5*.雅可比方法是用来求 矩阵的全部特征值及特征向量的一种变

换方法。

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

计算方法——第二章——课后习题答案刘师少

2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过3102 1-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(2 11 a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211 a b k 即可,亦即 7287.1312 lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f + =,则3 2)(x x f -=',由于 159.05.112)(33<≈≤='x x f ,因而迭代收敛。 (2)令321)(x x f +=,则322)1(3 2)(-+='x x x f ,由于

计算方法引论课后答案.

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产生 的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位 4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字? 解: 已知4311 d 10,d 1022 a b --

数值计算方法三套试题及答案

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l )(( ),∑== n k k j k x l x 0 )(( ),当2≥n 时= ++∑=)()3(20 4x l x x k k n k k ( )。 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族, 其中1)(0=x ?,则?=1 04)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时, SOR 迭代法收敛。 9、解初值问题00(,)()y f x y y x y '=??=?的改进欧拉法?????++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设 ?? ????????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯 一的。 二、 二、选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ? ∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,

计算方法习题答案

计算方法第3版习题答案 习题1解答 1.1 解:直接根据定义得 *411()102x δ-≤?*411()102r x δ-≤?*3*12211 ()10,()1026 r x x δδ--≤?≤?*2*5331()10,()102r x x δδ--≤?≤ 1.2 解:取4位有效数字 1.3解:433 5124124124 ()()() 101010() 1.810257.563 r a a a a a a a a a δδδδ----++++++≤≤=?++? 123()r a a a δ≤ 123132231123 ()()() a a a a a a a a a a a a δδδ++0.016= 1.4 解:由于'1(),()n n f x x f x nx -==,故***1*(())()()()n n n f x x x n x x x δ-=-≈- 故** * ***(()) (())()0.02()r r n f x x x f x n n x n x x δδδ-= ≈== 1.5 解: 设长、宽和高分别为 ***50,20,10l l h h εεωωεεεε=±=±=±=±=±=± 2()l lh h ωωA =++,*************()2[()()()()()()]l l l h h l h h εδωωδδδωδδωA =+++++ ***4[]320l h εωε=++= 令3201ε<,解得0.0031ε≤, 1.6 解:设边长为x 时,其面积为S ,则有2()S f x x ==,故 '()()()2()S f x x x x δδδ≈= 现100,()1x S δ=≤,从而得() 1 ()0.00522100 S x x δδ≈ ≤ =? 1.7 解:因S ld =,故 S d l ?=?,S l d ?=?,*****()()()()()S S S l d l d δδδ??≈+?? * 2 ()(3.12 4.32)0.010.0744S m δ=+?=, *** ** * () () 0.0744 ()0.55%13.4784 r S S S l d S δδδ= = = ≈ 1.8 解:(1)4.472 (2)4.47 1.9 解:(1) (B )避免相近数相减 (2)(C )避免小除数和相近数相减 (3)(A )避免相近数相减 (3)(C )避免小除数和相近数相减,且节省对数运算 1.10 解 (1)357sin ...3!5!7!x x x x x =-+-+ 故有357 sin ..3!5!7! x x x x x -=-+-, (2) 1 (1)(1)1lnxdx ln ln ln N+N =N N +-N N +N +-? 1 (1)1ln ln N +=N +N +-N 1.11 解:0.00548。 1.12解:21 16 27 3102 ()()() -? 1.13解:0.000021

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

计算方法课后题答案之习题二

习题二 1. 证明方程043 =-+x x 在区间[1,2]内有一个根。如果用二分法求它具有5位有效数字的根,需要 二分多少次。 证明: (1) 不妨令 4)(3-+=x x x f ,求得: 02)1(<-=f 06)2(>=f 又因为4)(3-+=x x x f 在区间[1,2]内是连续的,所以在区间[1,2]内有至少一个根。 又因为 13)(2'+=x x f 在区间[1,2]内013)(2'>+=x x f ,所以4)(3-+=x x x f 单调。 得证,043 =-+x x 在区间[1,2]内仅有一个根。 (2)具有5位有效数字的根,说明根可以表示成 5 4321.a a a a a ,所以绝对误差限应该是 5a 位上的 一半,即: 4105.0-?=ε。由公式: ε≤-+1 2 k a b 可得到, 14=k 迭代次数为151=+k 次。 ---------------------------------------------------------------------------------------------------------------------- 2. 用二分法求方程 0)2 (sin )(2=-=x x x f 在区间[1.5,2]内的近似根(精确到10-3)。 解:043499.05625.099749.0)25.1(5.1sin )5.1(2 >=-=-=f 009070.0190930.0)22(2sin )2(2 <-=-=-=f 所以0)2 (sin )(2 =-=x x x f 在区间[1.5,2]内有根,又 x cos )('-=x x f 在区间[1.5,2]内 0x cos )('<-=x x f 所以 0)2 (sin )(2=-=x x x f 在区间[1.5,2]内有根,且唯一。符合二分条件,可以用二分法,二分的 次数为:

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式就是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差与( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5、9,则二次Newton 插值多项式中x 2系数为( 0、15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式

数值计算方法习题答案(绪论,习题1,习题2)

引论试题(11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 2 11222k k k k k k k k x a x a x x x x x +-??-+=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ??+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为

025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为 00678.07 .20183 .011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 21021 722-?≤-∴ π,具有3位有效数字 6102 1 113255-?≤-π,具有7位有效数字

计算机操作系统(第四版)课后习题答案第五章

第五章 7.试比较缺页中断机构与一般的中断,他们之间有何明显的区别? 答:缺页中断作为中断,同样需要经历保护CPU现场、分析中断原因、转缺页中断处理程序进行处理、恢复CPU现场等步骤。但缺页中断又是一种特殊的中断,它与一般中断的主要区别是: ( 1)在指令执行期间产生和处理中断信号。通常,CPU都是在一条指令执行完后去检查是否有中断请求到达。若有便去响应中断;否则继续执行下一条指令。而缺页中断是在指令执行期间,发现所要访问的指令或数据不在内存时产生和处理的。 (2)一条指令在执行期间可能产生多次缺页中断。例如,对于一条读取数据的多字节指令,指令本身跨越两个页面,假定指令后一部分所在页面和数据所在页面均不在内存,则该指令的执行至少产生两次缺页中断。 8.试说明请求分页系统中的页面调入过程。 答:请求分页系统中的缺页从何处调入内存分三种情况: (1)系统拥有足够对换区空间时,可以全部从对换区调入所需页面,提高调页速度。在进程运行前将与该进程有关的文件从文件区拷贝到对换区。 (2)系统缺少足够对换区空间时,不被修改的文件直接从文件区调入;当换出这些页面时,未被修改的不必换出,再调入时,仍从文件区直接调入。对于可能修改的,在换出时便调到对换区,以后需要时再从对换区调入。 (3)UNIX 方式。未运行页面从文件区调入。曾经运行过但被换出页面,下次从对换区调入。UNIX 系统允许页面共享,某进程请求的页面有可能已调入内存,直接使用不再调入。 19.何谓工作集?它是基于什么原理确定的? 答:工作集:在某段时间间隔里,进程实际所要访问页面的集合。 原理:用程序的过去某段时间内的行为作为程序在将来某段时间内行为的近似。 24.说明请求分段式系统中的缺页中断处理过程。 答:在请求分段系统中,每当发现运行进程所要访问的段尚未调入内存时,便由缺段中断机构产生一缺段中断信号,进入操作系统后由缺段中断处理程序将所需的段调入内存。缺段中断机构与缺页中断机构类似,它同样需要在一条指令的执行期间,产生和处理中断,以及在一条指令执行期间,可能产生多次缺段中断。

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

计算方法-刘师少版课后习题答案

1.1 设3.14, 3.1415, 3.1416分别作为π的近似值时所具有的有效数字位数 解 近似值x =3.14=0.314×101,即m =1,它的绝对误差是 -0.001 592 6…,有 31105.06592001.0-*?≤=- x x . 即n =3,故x =3.14有3位有效数字. x =3.14准确到小数点后第2位. 又近似值x =3.1416,它的绝对误差是0.0000074…,有 5-1*10?50≤00000740=-.. x x 即m =1,n =5,x =3.1416有5位有效数字. 而近似值x =3.1415,它的绝对误差是0.0000926…,有 4-1*10?50≤00009260=-.. x x 即m =1,n =4,x =3.1415有4位有效数字. 这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字 1.2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限: 2.0004 -0.00200 9000 9000.00 解 (1)∵ 2.0004=0.20004×101, m=1 绝对误差限:4105.0000049.020004.0-*?≤≤-=-x x x m -n =-4,m =1则n =5,故x =2.0004有5位有效数字 1x =2,相对误差限000025.010******** 1)1(1 =??=??=---n r x ε (2)∵ -0.00200= -0.2×10-2, m =-2 5105.00000049.0)00200.0(-*?≤≤--=-x x x m -n =-5, m =-2则n =3,故x =-0.00200有3位有效数字 1x =2,相对误差限3 110221 -??=r ε=0.0025 (3) ∵ 9000=0.9000×104, m =4, 0105.049.09000?<≤-=-*x x x m -n =0, m =4则n =4,故x =9000有4位有效数字 4 110921-??=r ε=0.000056 (4) ∵9000.00=0.900000×104, m =4, 2105.00049.000.9000-*?<≤-=-x x x m -n =-2, m =4则n =6,故x =9000.00有6位有效数字 相对误差限为6 110921-??=r ε=0.000 00056 由(3)与(4)可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 1.3 ln2=0.69314718…,精确到310-的近似值是多少? 解 精确到310-=0.001,即绝对误差限是ε=0.0005, 故至少要保留小数点后三位才可以.ln2≈0.693 2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过 31021-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f +=,则32)(x x f -=',由于

计算方法引论课后答案

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产生的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 其中 我们取前9项的乘积作为π的近似值,得 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位 4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字? 解: 已知4311 d 10,d 1022 a b --< ?

《计算方法引论》实验题目3

实验三 数值积分 实验目的: 1、了解数值积分的基本原理和方法; 2、熟练掌握复化梯形公式、复化Simpson 公式及其截断误差的分析; 实验内容:(复化梯形求积公式,根据复化梯形求积公式相关公式和原理自己 填写,以下仅作参考) 由于高阶牛顿--柯特斯公式是不稳定的,因此不可能通过提高阶的方法来提高求积精度,为了提高精度通常可把积分区间分成若干n 等份,再在每个子区间上用梯形公式即当n=2时的Newton-Cotes 公式进行计算,最后将所有区间上的梯形相加即可得该积分的近似值。 )] ()(2)([2)]()([21 1110b f x f a f h x f x f h T n k k k n k k n ++=+=∑∑-=+-=, 它的余项公式是 2 ()()12n b a R f h f η-''=- , 实际上=-=n n T I f R )()()],(12[1,1 3+-=∈''-∑k k n k x x f h ηη, )(1)(1 0∑-=''=''n k k f n f ηη; 具体计算步骤如下 1).给出被积函数f (x )、区间[a ,b ]端点a ,b 和等分数n ; 2).求出 n a b h h k a x k -= +=,*; 3).计算)(a f 、)(b f 、 1 1 ()n k k f x -=∑; 4). 得**21 h T n =?? ? ???+*+∑-=)()(2)(1 1b f x f a f n k k

实验题目1 用复化梯形公式计算由下表数据给出的积分值 1.5 0.3 ()d y x x ? 。 k 1 2 3 4 5 6 7 x k 0.3 0.5 0.7 0.9 1.1 1.3 1.5 y k 0.3895 0.6598 0.9147 1.1611 1.3971 1.6212 1.8325 若已知该表数据为函数y =x +sin x /3所产生,请将计算值与精确值作比较。 1、已知精确积分值为: ()()1.5 222 0.3 1cos 111.50.3cos1.5cos 0.3 1.374866429152632323x x ??-=---= ??? 实验题目2 利用复化梯形求积公式计算圆周率,要求达到10位有效数字(方法可参考课后第三题)。

(完整版)计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–1 2.0326作为x的近似值一定具有6位有效数字,且其误差限 ≤ 4 10 2 1 - ? 。() 2.对两个不同数的近似数,误差越小,有效数位越多。( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。( )

5. 3.14和 3.142作为π的近似值有效数字位数相同。 ( ) 二、填空题 1. 为了使计算 ()()23 34912111y x x x =+ -+ ---的乘除法次数尽量少,应将该 表达式改写为 ; 2. * x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3. 误差的来源是 ; 4. 截断误差为 ; 5. 设计算法应遵循的原则是 。 三、选择题 1.* x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在 时间t 内的实际距离,则s t - s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。 四、计算题

计算机操作系统(第四版)课后习题答案第三章

第三章处理机调度与死锁 1,高级调度与低级调度的主要任务是什么?为什么要引入中级调度? 【解】(1)高级调度主要任务是用于决定把外存上处于后备队列中的那些作业调入内存,并为它们创建进程,分配必要的资源,然后再将新创建的进程排在就绪队列上,准备执行。(2)低级调度主要任务是决定就绪队列中的哪个进程将获得处理机,然后由分派程序执行把处理机分配给该进程的操作。(3)引入中级调度的主要目的是为了提高内存的利用率和系统吞吐量。为此,应使那些暂时不能运行的进程不再占用宝贵的内存空间,而将它们调至外存上去等待,称此时的进程状态为就绪驻外存状态或挂起状态。当这些进程重又具备运行条件,且内存又稍有空闲时,由中级调度决定,将外存上的那些重又具备运行条件的就绪进程重新调入内存,并修改其状态为就绪状态,挂在就绪队列上,等待进程调度。 3、何谓作业、作业步和作业流? 【解】作业包含通常的程序和数据,还配有作业说明书。系统根据该说明书对程序的运行进行控制。批处理系统中是以作业为基本单位从外存调入内存。 作业步是指每个作业运行期间都必须经过若干个相对独立相互关联的顺序加工的步骤。 作业流是指若干个作业进入系统后依次存放在外存上形成的输入作业流;在操作系统的控制下,逐个作业进程处理,于是形成了处理作业流。 4、在什么情冴下需要使用作业控制块JCB?其中包含了哪些内容? 【解】每当作业进入系统时,系统便为每个作业建立一个作业控制块JCB,根据作业类型将它插入到相应的后备队列中。 JCB 包含的内容通常有:1) 作业标识2)用户名称3)用户账户4)作业类型(CPU 繁忙型、I/O芳名型、批量型、终端型)5)作业状态6)调度信息(优先级、作业已运行)7)资源要求8)进入系统时间9) 开始处理时间10) 作业完成时间11) 作业退出时间12) 资源使用情况等 5.在作业调度中应如何确定接纳多少个作业和接纳哪些作业? 【解】作业调度每次接纳进入内存的作业数,取决于多道程序度。应将哪些作业从外存调入内存,取决于采用的调度算法。最简单的是先来服务调度算法,较常用的是短作业优先调度算法和基于作业优先级的调度算法。 7.试说明低级调度的主要功能。 【解】(1)保存处理机的现场信息(2)按某种算法选取进程(3)把处理机分配给进程。8、在抢占调度方式中,抢占的原则是什么? 【解】剥夺原则有:(1)时间片原则各进程按时间片运行,当一个时间片用完后,便停止该进程的执行而重新进行调度。这种原则适用于分时系统、大多数实时系统,以及要求较高的批处理系统。(2)优先权原则通常是对一些重要的和紧急的作业赋予较高的优先权。当这种作业到达时,如果其优先权比正在执行进程的优先权高,便停止正在执行的进程,将处理机分配给优先权高的进程,使之执行。(3)短作业(进程)优先原则当新到达的作业(进程)比正在执行的作业(进程)明显地短时,将剥夺长作业(进程)的执行,将处理机分配给短作业(进程),使之优先执行。 9、选择调度方式和调度算法时,应遵循的准则是什么? 【解】应遵循的准则有(1)面向用户的准则:周转时间短,响应时间快,截止时间的保证,优先权准则。(2)面向系统的准则:系统吞吐量高,处理机利用率好,各类资源的平衡利用。 10、在批处理系统、分时系统和实时系统中,各采用哪几种进程(作业)调度算法? 【解】批处理系统:FCFS算法、最小优先数优先算法、抢占式最小优先数优先算法分时系统:可剥夺调度、轮转调度实时系统:时间片轮转调度算法、非抢占优先权调度算法、基于时钟中断抢占的优先权调度算法、立即抢占的优先权调度。 11、何谓静态和动态优先权?确定静态优先权的依据是什么? 【解】静态优先权是在创建进程时确定的,且在进程的整个运行期间保持不变。动态优先权是指,在创建进程时所赋予的优先权,是可以随进程的推进或随其等待时间的增加而改变的,以便获得更好的调度性能。确定静态优先权的依据是:(1)进程类型,通常系统进程的优先权高于一般用户进程的优先权。(2)进程对资源的需要。(3)用户要求,用户进程的紧迫程度及用户所付费用的多少来确定优先权的。 12、试比较FCFS和SPF两种进程调度算法。 【解】FCFS算法按照作业提交或进程变为就绪状态的先后次序,分派CPU。当前作业或进程占有CPU,直到执行完或阻塞,才让出CPU。在作业或进程唤醒后,并不立即恢复执行,通常等到当前作业或进程让出CPU。FCFS比较有利于长作业,而不利于短作业;有利于CPU繁忙的作业,而不利于I/O繁忙的作业。SPF有利于短进程调度,是从就绪队列中选出一估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时,再重新调度。比FCFS改善了平均周转时间和平均带权周转时间,缩短了作业的等待时

相关文档
最新文档