地震波阻抗反演方法综述

地震波阻抗反演方法综述
地震波阻抗反演方法综述

地震波阻抗反演方法综述

一、地震反演技术研究现状

地震反演方法是一门综合运用数学、物理、计算机科学等学科发展起来的新技术新方法,每当数学方法、物理理论有了新的认识和发展时,就会有新的地震反演技术、方法的提出。随着计算机技术的不断发展、硬件设施的不断升级,这些方法技术得到了实践验证和提升,反过来地震反演技术运用中出现的新问题、新思路又不断促使数学方法、地球物理学理论的再次发展。时至今日,地震反演技术仍然是一个不断发展、不断成熟、不断丰富着的领域。

反演是正演的逆过程,在地震勘探中正演是已知地下的地质构造情况、岩性物性分布情况,根据地震波传播规律和适当的数学计算方法模拟地震波在地下传播以及接收地震波传输到地表信息的过程。地球物理反演就是使用已知的地震波传播规律和计算方法,将地表接收到的地震数据通过逆向运算,预测地下构造情况、岩性物性分布情况的过程。地震波阻抗正演是对反演的理论基础和实现手段。

1959年美国人Edwin Laurentine Drake在宾夕法尼亚州开凿的第一口钻井揭开了世界石油工业的序幕。从刚开始的查看地质露头、寻找构造高点寻找石油,到通过地震剖面的亮点技术寻找石油,再到现在运用多种科学技术手段进行油气资源的预测,石油勘探经历了一个飞速的发展历程。

声波阻抗(AI)是介质密度和波在介质中传播速度的乘积,它能够反映地下地质的岩性信息。声波阻抗反演技术是20世纪70年代加拿大Roy Lindseth博士提出的,通过反演能够将反映地层界面信息的地震数据变为反映岩性变化的波阻抗(或速度)信息。由于波阻抗与地下岩石的密度、速度等信息紧密联系,又可以直接与已知地质、钻井测井信息对比,因此广泛应用于储层的预测和油藏描述中,深受石油工作者的喜爱。70年代后期,从地震道提取声波资料的合成声波技术得到了快速发展,以此为基础发展的基于模型的一维有井波阻抗反演技术,提高了反演结果的可靠性。进入80年代,Cooke等人将数学中的广义线性方法运用于地震资料反演,提出了广义线性地震反演。此后Seymour等人又提出了测井声波资料和地震数据正反演相结合求取地下声波阻抗的测井约束反演,大大拓宽了反演结果的纵向分辨能力。

90年代,在基于前人对地质统计学研究的基础上Bortoli和Haas提出了地质统计学反演,Dubrule等人对该方法进行了改进和推广。在国内随着油田对地震反演技术的广泛应用,以周竹生为主提出的地震、地质和测井资料联合反演方法,将地质信息引入地震反演中,提高的反演结果与地质认识的联系,克服了线性反演存在的缺陷。1996年,李宏兵等人将宽频带约束方法应用于递推反演并对其进行改进,减弱了噪音对反演结果的影响。

1999年,任职于英国石油公司的Connolly在《弹性波阻抗》一文中介绍了弹性波阻抗(EI)的概念和计算方法,阐述了不同入射角度(偏移距)地震道集部分叠加反演波阻抗随入射角之间的关系,但是该方法求取的弹性阻抗随入射角变化很大,无法与常规叠后反演波阻抗直接比较,因此推广应用较为困难。2002年,Whitcombe通过修正Patrick Connolly的计算公式,得到了弹性波阻抗的归一化求取方法,消除了弹性阻抗随入射角变化大的难题。2003年,西北大学马劲风教授从Zoeppritz方程简化出发提出了广义弹性波阻抗的概念,克服了以往波阻抗反演要求地震波垂直入射到地表的假设条件,推导出了任意入射角下纵波反射系数的递推公式,提高了中等入射角度下弹性波阻抗反演的精度。

二、地震反演基本原理

正问题和反问题就像物理学中的作用力和反作用力一样是同时存在的。地球物理学中的正问题一般是已知我们容易直接测量或者获取的物理量,通过两者内在关系求解未知的不容易获取物理量问题,反问题是已知我们不容易获取的物理量求解问题应该满足的条件或物理量。求解正问题的过程称为正演,求解反问题的过程称为反演。一般情况下正演相对简单,求解结果唯一,而反演的求解大多是欠定的,求解过程较为复杂,其结果也可能出现多解性,因此减少反演结果多解性是反演问题的一个重要研究内容。

在油气地震勘探中,当地下地质体的岩性、物性发生变化时,经常会引起岩石密度和地震波传播速度的变化,导致波阻抗产生变化,波阻抗在岩性、物性界面处的变化会生成一个反射系数脉冲,当地震波传播到波阻抗界面时,就会在其界面处产生反射波。因此,若已知地下介质的波阻抗,通过求取反射系数与并地震子波褶积运算得到地震波通过地下介质后观测记录的过程就是地震波阻抗正演。当我们根据观测到的地震记录,通过地震波反射的褶积理论等求取反映地下介质的岩性、物性信息的波阻抗等信息的过程就是地震波阻抗反演。广义的波阻抗反演包括地震资料的处理、解释以及波阻抗求取,一般讨论的波阻抗反演是在地震资料处理和解释的基础上通过反演方法对波阻抗的求取。

地震资料是反射界面的表现,是一种界面型信息,只能间接表达地下地层的地质特征,不能直接进行储层的描述。而作为储层预测重要工具的地震反演技术可以将地震数据转换成波阻抗数据,波阻抗数据由于是地层型剖面,可以和测井地质信息直接对比,可以直观的进行储层的识别和描述。

地震反演方法有多种分类方法,主要分类方法有按使用的地震资料分类、按反演结果分类、按测井在地震反演中的作用大小来分和按反演方法的实现方式来分等。表2-1是四种分类方法对应的主要反演方法。

2.1 直接反演

直接反演方法是在反褶积理论的基础上,通过对地震道进行数学计算求取地下波阻抗体的反演方法。假设地震记录褶积模型为

()()*()()S t W t R t N t =+ (2-1)

式中,()S t 为地震记录,()W t 为地下介质中传播的地震子波,()R t 为地下波阻抗界面的反射系数,()N t 为采集等原因产生的噪音,一般认为是白化的。这就是地震记录的褶积模型,由模型可以看出,地震记录由地下波阻抗界面反射系数与地震子波的褶积加上一定的白化噪音构成。

地震道直接反演是根据地震波传播理论,用数学计算工具消除地震记录中的子波()W t 、弱化白化噪音()N t ,反射界面的反射系数序列()R t ,再通过积分或递推等方法求取地下波阻抗。道积分反演和递推反演是最常见的直接反演方法。

2.1.1 道积分

道积分反演是最简单的波阻抗反演方法,该方法在地下地层波阻抗是深度变量连续且可微函数的假设条件下,通过地震道自相关方法求取地层反射系数,再对反射系数进行深度积分计算出地层波阻抗。由于道积分反演实际上只是对反射系数的积分,反演波阻抗数据体是相对值。

地震波垂直入射到波阻抗界面时,反射系数的表达式为

111111i i i i i i i i i i i i i

v v AI AI R v v AI AI ρρρρ++++++--==++ (2-2) 式中i R 为第i 、1i +层波阻抗界面的反射系数,i ρ、1i ρ+和i v 、1i v +分别是第i 、1i +层的密度和速度,i AI 、1i AI +为第i 、1i +层的波阻抗。根据地层波阻抗是深度连续可微函数的假设,可以将地层看成是很多很薄的地层,因此相邻地层的波阻抗差异不会太大1i i AI AI +≈,所以1i i AI AI AI +-≈?、12i i AI AI AI ++≈,公式(2-2)可以改写成

2AI R AI

?≈ (2-3) 对反射系数在深度t 上进行积分,可得地层相对波阻抗()AI t

001[ln ()ln (0)]22t

t

AI Rdt dt AI t AI AI ?≈=-?? (2-4) 02()(0)t

Rdt AI t AI e ?= (2-5)

式中R 为地层反射系数,t 为地层深度,()AI t 为地层波阻抗。

道积分反演通过积分方法把地震道记录直接转换为波阻抗数据,反演过程具有积分误差小、计算简单、对计算机要求较低的优点,但是道积分反演过程仅仅依赖于地震资料,地震资料的品质和带宽对反演结果影响很大。因为地震资料由于采集、处理等原因,缺失低频和高频信息,频带较窄,所以该方法求取的波阻抗纵向分辨率低、精度小。道积分反演方法无法使用测井等资料约束,因此反演结果是相对值、纵向分辨率不高,仅适用于地震勘探初期以及没有井数据的研究区。由于反演结果不能反映地层的真实波阻抗,所以道积分反演不能定量计算地层的岩性、物性参数。

2.1.2 递推反演

递推反演是在地下波阻抗界面的反射系数为稀疏分布的假设条件下,首先利用实际地震记录估算波阻抗界面的反射系数序列,然后用递推方法求取地层波阻抗的反演方法。地下介质波阻抗的递推公式推导如下:

公式(2-2)中当第0层反射系数0R 和波阻抗(0)AI 已知时,可以导出第1层的波阻抗(1)AI 为

00

1(1)(0)1R AI AI R +=- (2-6) 当第0层反射系数0R 、第1层波阻抗(1)AI 已知时,可推导出第0层(0)AI 为

00

1(0)(1)1R AI AI R -=+ (2-7) 当已知第(0)m m n ≤<层波阻抗()AI m 和m 到n 层间波阻抗界面的反射系数序列(0,1,2,...,1)i R i n =-时,第n 层地层波阻抗()AI n 为

()(1)AI n AI n =-·1111n n R R --+-=(2)AI n -·1111n n R R --+-·22

11n n R R --+- ...()AI m ==·

1111n n R R --+-·2211n n R R --+-·...·1111m m R R --+-·11m m R R +- 1

1()1n i i m i R AI m R -=+=∏- (0m n ≤<) (2-8) 当已知第n 层波阻抗()AI n 和m 到n 层间波阻抗界面的反射系数(0,1,2,...,1)i R i n =-时,第(0)m m n ≤<层地层波阻抗()AI m 为

()(1)AI m AI m =+·11m m R R -+=(2)AI m +·11m m R R -+·11

11m m R R ++-+ ...()AI n ==·

11m m R R -+·1111m m R R ++-+·...·2211n n R R ---+·1111n n R R ---+ 1

1()1n i i m i R AI n R -=-=∏+ (0m n ≤<) (2-9) 通过公式(2-8)和(2-9)可知,当已知第k 层地层波阻抗()AI k 和该层与待求层第n 层的间各层界面的反射系数序列时,可以递推出k 和n 层间各层的波阻抗值。实际应用中一般选取大套泥岩层作为标准层求取其波阻抗,然后根据反射系数序列递推出所有地层的波阻抗值。

递推反演中最重要的部分是反射系数序列的求取,反射系数的稀疏程度对反演结果影响很大,求取合适的反射系数序列关乎反演的成败。

稀疏脉冲反褶积是实际生产中常用的求取递推反演反射系数的方法。图2-1是稀疏脉冲反褶积求取反射系数序列流程图。首先采用最大似然反褶积等方法估算波阻抗界面的反射系数序列,并经褶积求取合成地震记录与实际地震资料的差异反馈给反射系数序列求取过程,根据反馈结果适当修正反射系数序列,当合成地震记录与实际地震资料的残差满足预设条件时,反射系数序列既是波阻抗界面的稀疏反射系数,然后利用公式(2-8)和(2-9)就可以计算出波阻抗。

图2-1 稀疏脉冲反褶积反射系数求取流程图

递推反演结果能够反映地下波阻抗的分布规律,而且递推算法使得反演结果不存在多解现象;递推反演采用简单的递推计算方法,计算速度快、对计算机要求较低;递推反演纵向分辨率高于道积分反演,反演结果是绝对波阻抗,能够用于储层预测与和砂体雕刻。但是递推反演采用的递推计算可以导致波阻抗误差的层层累计,反演结果受地震资料固有频带宽度的影响,对薄储层的识别能力有限,不能满足薄储层的识别和分析,因此主要用于勘探开发前期。

2.2 模型反演

基于模型的反演是充分利用地震、地质、测井等资料建立研究区的宽频带波阻抗模型,根据地震波传播原理在该模型上进行正演模拟求取合成地震记录,对比其与实际地震资料差异并将两者残差反馈到模型上,根据残差不断修正波阻抗模型再次正演,直到正演模拟结果与实际地震资料匹配较好、残差满足预定要求时,正演模型就是我们要求的反演结果。基于模型的反演是一个不断正演、不断修改模型再次正演的过程,图2-2是模型反演的流程图。

图2-2 模型反演流程图

根据模型反演的思路,适当的初始波阻抗模型和子波以及合理的残差是模型反演的关键,它们决定着反演结果的模型化程度和模型修改次数。因此,基于模型的反演中要注意以下几个方面:

(1)波阻抗模型的建立,模型反演是在初始波阻抗模型的基础上进行正演模拟计算,模型对反演结果影响很大,因此建立一个好的波阻抗模型是进行模型反演的基础。在建立波阻抗模型之前,一般需要对测井数据进行标准化处理,对地质信息(构造发育史、地层断层接触关系、地层岩性信息)有一个充分的理解,搭建合适的地层框架,在建模时需要选择合适的内插函数。

(2)地震子波的求取,进行高精度的地震记录标定是求取子波的关键,只有选取合适的地震子波(包括频率和相位),正演结果和实际地震资料才能匹配。

(3)残差的大小,合成记录与地震资料的残差决定了模型修改次数,只有设定一个合理的残差范围才能使反演结果真实反映地下波阻抗情况,又不会进行过多的迭代次数。

基于模型的反演相比于地震道直接反演方法有很多优点:首先,它不需要假设波阻抗反射截面的反射系数为深度的连续可微函数或者稀疏分布,使得反演结果上更能反映地下真实信息;其次,地震子波可以通过精细层位标定求取,使得子波更接近真实情况;该反演方法充分利用了地震、地质和测井等资料建立地质模型,一定程度上约束了反演结果,使反演误差不随深度累计;最后,模型反演使用测井资料建模,一定程度上拓宽了反演结果频带宽度,提高了纵向分辨率。模型反演方法也有其致命的缺点:由于反演是在模型基础上进行的正演计算,反演结果的模型化严重;不同的地下地质情况可能产生相似的地震记录,反演过程对地质模型有很高的依赖性,使得反演结果具有多解性。

2.3 约束稀疏脉冲反演

约束稀疏脉冲反演是波阻抗模型约束下的地震道递推反演方法,它与稀疏脉冲反演的区别就是初始波阻抗模型和测井资料的约束,约束稀疏脉冲反演既能像递推反演一样快速的求解出反演结果,又不会使递推的误差不随深度累积。

约束稀疏脉冲反演的实现方法是将测井资料中声波和密度曲线生成的波阻抗通过地质框架内插得到一个初始波阻抗模型,然后用波阻抗模型以及测井曲线的趋势来约束反演结果,求取地下地层反射系数序列。约束稀疏脉冲反演得到的波阻抗数据体既与地震资料匹配又与测井数据吻合,更能反映地下地质体的真实分布。

约束稀疏脉冲反演的关键是求取稀疏反射系数序列,在满足合成地震记录与实际地震资料精度的前提下,最少脉冲数目反射系数序列的目标函数为

22()()p q q i i i i i J r d s t z λα=+-+-∑∑∑ (2-10)

式中J 是目标函数,i r 是估算的反射系数序列,i d 为原始地震资料,i s 为合成地震记录,λ是合成地震记录与实际地震资料残差的权重系数,i t 是测井波阻抗变化趋势,i z 是反演选取的以井上波阻抗变化趋势为中心的硬约束范围内的反演值,α为测井波阻抗趋势对反演结果的约束程度。一般情况下取1α=、1p =、2q =。

通过式(2-10)可知,约束稀疏脉冲反演最优化目标函数J 由三部分组成,第一项p i r ∑是反射系数序列i r 的p 次方之和,第二项()q q i i d s λ

-∑是反演合成地震记录i s 与实际地质资料i d 残差q 次方之和,第三项22()i i t z α-∑是反演波阻抗与测井趋势均方差之和。式中前两项是互相制约、互相影响的,两者对反演结果的影响依靠λ值大小调控:λ值太大时,过分强调合成地震记录与实际地震资料的残差小,反演结果会引入地震噪声、忽略了反射系数序列的稀疏性;λ值太小时,又过分强调反射系数序列的稀疏性、反射系数个数太少,使得反演结果缺失细节、降低反演结果分辨率,此时合成地震记录与地震资料的吻合性太低,残差太大。因此为了使反演结果分辨率较高,又不引入太多噪音,需要正确选择λ值的大小。 测井曲线以及初始波阻抗模型的约束使得约束稀疏脉冲反演结果的频带宽度较地震资料有所提高,但是地震资料在反演中还是起着主要作用,反演结果的频带没有太大提高,而且容易产生窗帘效应。为了提高反演结果的可靠性及分辨率,需要将地质、钻井测井和地震资料建立的波阻抗模型的低频、高频成分通过滤波补偿到反演结果中,这样才能获得相对宽频带的反演波阻抗体。

约束稀疏脉冲反演结合了直接反演和模型反演的优点,有很广泛的应用,在勘探期可用于储层预测,指导井位部署;在开发期可预测储层的横向变化规律,指导地质统计学反演参数的选择、反演结果的优选。

2.4 地质统计学反演

不管是地震道直接反演还是模型反演,反演过程都依赖于实际地震资料,反演结果受地

震资料品质影响很大。由于地震资料频带宽度大部分都只有十几~几十赫兹,因此反演结果的纵向分辨率较低,对薄储层、薄互层识别能力有限,不能直接应用到精细储层识别的工作中。

以地质统计学和随机模拟为基础的地质统计学反演,将研究区井上资料分析的地质统计学特征应用到随机模拟过程生成井间随机波阻抗数据体,分析合成地震记录与实际地震资料的差异,反过来约束随机模拟过程再次模拟,直至模拟结果满足预设条件,模拟结果就是反演结果。地质统计学反演的优点是利用了地震数据连续性和井上资料纵向高分辨率,因此反演结果能用于薄储层的储层预测。

地质统计学反演由于地质统计学的统计规律和随机模拟的随机性,使得反演结果具有不确定性和多解性,因此一般地质统计学反演会求出多个等概率的数据体,根据前期地质认识和确定性反演结果分析,优选最符合实际情况的结果。

2.4.1 地质统计学

地质统计学(Geostatistics )是法国G . Matheron 教授通过大量理论实验研究提出的一种统计学方法。地质统计学通过分析样本数据的变差函数和概率密度函数,研究区域化变量的空间分布规律,地质统计学考虑了传统统计学中样本值,同时又考虑了样本间的空间关系。

2.4.1.1 区域化变量

以往我们认为空间中点x 是坐标(,,)u v w x x x 的函数(,,)()u v w x x x z x =,是一个确定的值,只是空间坐标(,,)u v w x x x 的函数,但是在现在我们认为区域化变量是随机变化的,只有进行一次观测我们才能得到它的一个实现()z x ,在进行观测之前我们不能通过空间函数来确定。因此,区域化变量既是随机函数又是空间场的函数。区域化变量的随机性在资源勘查中能够有效的反映地质体的空间局限性、连续性和各向异性。

区域化变量的特征可以用方差函数、协方差函数以及变差函数等进行描述。

2.4.1.2 协方差函数

在地质统计学中,可以用协方差来描述区域化变量的差异。随机向量X 与X 的协方差为

(,)[()()]Cov X Y E X EX Y EY =-- (2-11)

区域化变量()(,,)u v w z x x x x =的(自)协方差可是变量()z x 在空间x 和x h +两点处()z x 和()z x h +的二阶混合中心矩,即

((),())[()()][()][()]Cov z x z x h E z x z x h E z x E z x h +=+-+ (2-12)

由公式可知,区域化变量()z x 的协方差是空间点x 和偏移量h 的函数。假设()i z x 为()z x 在空间位置i x 处的一个观测值(实现),()i z x h +是()z x 在i x +h 的观测值(实现)

[1,2,...,()]i N h =,由式(2-12)可得:

()

11()[()()][()()]()N h i i i i i c h z x z x z x h z x h N h ?

==-+-+∑ (2-13) 式中()i z x 、()]i z x h +为空间x 和x h +两点的平均期望,假设()()i i z x z x h m =+=(m 为常数),()c h ?

可简化为 ()

211()[()()]()N h i i i c h z x z x h m N h ?

==+-∑ (2-14) 2.4.1.3 变差函数

地质统计学分析中,以直方图和变差函数的形式来反映地质变量空间分布的随机性和相关性。

变差函数是一种能定量表示空间相关关系或地质变量连续性的数学方法。它是指地质变量()z x 在x 和x h +两点处的增量的方差之半,即区域变化量在相距为h 的任意两点处的平方差值的一半。其数学表达式为

21()[()()]2

h E z x z x h γ=-+ (2-15)

对于()z x 的观测值(实现),()i z x 是离散的,表达式(2-15)可改写为 ()

21

1()[()()]2()N h i i i h z x z x h N h γ==-+∑ (2-16) 在地震储层反演中,变差函数中有三个重要参数:块金值0c 、基台值c 和变程a 。图2-3为变差函数示意图,当两个点距离较小h 时,变差函数随距离h 增大而增大,当距离h 过大时,变差函数不再增大。变差函数两点间距离增大临界距离称为变程a ,变差函数到达稳定是的值称为基台值c ,两点重合距离为零时的变差函数为块金值0c 。

图2-3 变差函数示意图

从图上不难理解:变程a 代表了研究区内任意两点观测值是否具有相关性的最大距离,也反映了在某个方向储层参数变化的快慢,当距离h a <时,观测值有相关性,当h a ≥时,观测值没有相关性;基台值c 是变差函数达到平稳时对应的值(,)x h γ,反映了储层参数在某个方向变化的幅度。因此,储层参数在不同方向上的不同变化规律以通过求取变差函数来体现。

测井曲线等数据是区域化变量的观测值,由于测量误差等原因导致观测数据产生混乱,为了较好的反映地下储层参数的真实规律、便于定量研究,实际生产中采用理论变差函数模型拟合观测数据。采用变差函数模型既可以用数学工具研究空间规律,又可以求得连续的变差函数。常用的变差函数类型及其表达式如下:

(1)高斯模型

()0010220>=??

???

???? ??-+=-h h e c c h a h γ

(2-17) (2)球状模型 ()a h a h h c c a h a h c c h >≤≤=???

????+???? ??-+=00212300330γ (2-18)

(3)指数模型 ()00100>=????????? ??-+=-h h e c c h a h γ (2-19)

2.4.2 反演过程

通过地质统计分析测井曲线、地震、地质等数据分析,可以获得地下储层的统计特征。在随机模拟过程中,可以根据储层统计特征进行模拟计算。

地质统计学模拟从储层参数开始,以变差函数和概率密度分布为基础,运用随机模拟算法预测储层的过程。现在最常用的随机模拟算法是序贯模拟算法和马尔科夫链-蒙托卡罗模拟算法。序贯模拟需要对地质体进行网格划分,对各个节点进行随机模拟,而且序贯模拟要求概率密度函数呈正态分布,因此模拟结果对模型依赖较为严重,容易出现局部最优化解;马尔科夫链-蒙托卡罗模拟算法可以根据实际的概率密度分布函数得到统计意义上真正的随机样点分布,通过类似于优化算法的增量调整算法实现全局优化。

地质统计学反演是将随机模拟的波阻抗数据体或者其他属性数据体通过相关变换或云变换转换成波阻抗数据体,进而求取反射系数序列合成地震记录,根据合成地震记录与实际地震资料的残差约束随机过程,求取反演数据体。

ept软件模块培训教材_弹性波阻抗反演

EPT软件/功能模块 培训系列教材 GMAX v1.0 – Elastic Impedance Inversion 弹性波阻抗反演 1.模块功能 2.原理和方法 3.参数和使用说明 4.应用注意事项 EPT公司 https://www.360docs.net/doc/2a9519161.html,, https://www.360docs.net/doc/2a9519161.html,

1.模块功能 弹性波阻抗反演(EI)是叠前地震反演重要方法之一。基于流体置换模型技术,应用纵波声波时差、密度、泥质含量、孔隙度、含水饱和度和骨架、流体的各种弹性参量,反演井中横波速度。根据井中纵波速度、横波速度和密度计算井中弹性波阻抗,在复杂构造框架和多种储层沉积模式的约束下,采用地震分形插值技术建立可保留复杂构造和地层沉积学特征的弹性波阻抗模型,使反演结果符合研究区的构造、沉积和异常体特征。采用广义线性反演技术反演各个角度的地震子波,得到与入射角有关的地震子波。在每一个角道集上,采用宽带约束反演方法反演弹性波阻抗,得到与入射角有关的弹性波阻抗。最后对不同角度的弹性波阻抗反演纵横波阻抗,进而获得泊松比等弹性参数, 对储层的几何、物性和含流体特性进行精细描述。叠前地震弹性参数反演的关键技术包括: ◆基于流体替换模型的井中横波速度反演技术 ◆与偏移距有关的子波反演 ◆复杂地质构造情况下弹性阻抗建模 ◆纵横波阻抗、泊松比、拉梅系数和剪切模量反演 2.原理和方法 地震反射振幅不仅与分界面两侧介质的地震弹性参数有关,而且随入射角变化而变化。叠前弹性波阻抗反演技术利用不同炮检距的地震数据及横波、纵波、密度等测井资料,联合反演出与岩性、含油气性相关的多种弹性参数,综合判别储层物性及含油气性。正是由于叠前弹性波阻抗反演利用了大量地震及测井信息,所以进行多参数分析的结果较叠后声阻抗反演在可信度方面有很大提高,可对含油气性进行半定量—定量描述。 传统的A VO 和岩石物理分析是提取和分析纵横波速度的异常变化来确定孔隙流体和岩性的变化。纵横波速度和密度对反射系数的重要性,可以从平面波的Zoeppritz方程中看出。但是,在波动方程中,Md2U/dX2= d2U/dX2,(U是位移),其表达式并不与地震波速度直接相关,而与岩石密度和弹性模量相关。因此,直接考虑泊松比、拉梅系数和岩石剪切模量比采用地震波速度能更好地反映岩石物理特征。地震的纵波速度与含孔隙流体岩石特征的关系是靠体变模量K

地球物理反演成像方法综述

地球物理反演概述 地球物理反演是近年来发展很快的地球物理学中利用地球表面及钻孔中观测到的物理数据推测地球内部介质物理参数分布和变化的方法。其目的就是根据观测数据等已知信息求取地球物理模型。众所周知,地球物理学中有地震学、电磁学、重力学、地磁学、地热学、放射性学和井中地球物理等学科。尽管地球物理学家研究地球所依据的物性参数不同,方法各异,但就工作程序而言,一般都可分为数据采集,资料处理和反演解释等三个阶段。 数据采集就是按照一定的观测系统、一定的测线、测网布置,在现场获得第一手、真实可靠的原始资料。所以数据采集是地球物理工作的基础,是获得高质量地质成果的前提和条件;资料处理的目的是通过各种手段,去粗取精,去伪存真,压制干扰,提高信噪比,使解释人员能从经过处理的资料(异常或响应)中,较准确的提取出测区的地质、地球物理信息。所以,资料处理是从原始观测数据到地球物理模型之间的必不可少的手段和过渡阶段;反演解释的目的,用地球物理的术语来说,就是实现从地球物理异常(或响应)到地球物理模型的映射,使解释人员能从经过处理的地球物理资料(异常或响应)中提取出获得最接近真实情况的地质、地球物理模型,圆满的完成提出的地质任务。 虽然各种地球物理方法的原理、使用的仪器设备和资料采集方式有很大的不同,但是它们资料处理和反演解释的基础确有许多共同之处。前者的基础是时间(空间)序列分析,后者的基础是反演理论。在本文中只涉及地球物理资料的反演解释,地球物理反演是地球物理资料定量解释的理论和算法基础,也是地球物理资料处理技术的基础之一。 1 地球物理反演概述 地球物理反演理论是近二三十年来才发展起来的地球物理学的一门重要分支,它是研究从地球物理观测数据向量,到地球物理模型参数向量映射理论和方法的一门学科。虽然地球物理问题千差万别,但把地球物理观测数据和地球物理模型参数联系起来的数学表达式,却只有线性和非线性两大类。如以d 表示观测数据向量,m 表示模型参数向量,f 是表示联系d 和m 的函数或泛函表达式,则凡满足 (1)d m f m f m m f =+=+)()()(2121

地震资料反演技术概论

地震资料反演技术概论(波阻抗、岩性反演处理技术) 一九九八年九月 辽河油藏工程培训班材料 编写人:钟俊

地震资料反演技术概论 前言 一.反演的概念、目的 二.反演的发展历史及趋势 三.反演的基本方法 四.反演的限制条件 五.反演的基本流程 六.反演实例

前言 地震、测井、钻井是石油工作者认识地下地质构造、地层、岩性、物性、含油气性的最重要的信息来源。虽然测井、钻井仅能提供井孔附近的有关信息,尤其是有关岩性、物性、含油气性的信息,但是这些信息往往具有很高的分辨率,可信度、准确性,能确切地指出含油气层的位置,定量化分析与储层、油藏有关的参数。然而一个油气田勘探、开发方案的设计、实施、调整仅靠测井、钻井资料是远远不够的,必须与地震资料相结合进行综合分析才能取得良好效果。 地震资料的分辨率虽然远远不及测井、钻井,但是随着地震勘探技术的发展,从光电记录、模拟记录到数字记录,从二维到三维,地震资料的信噪比、分辨率、成像的准确性都获得了极大的提高,由于地震资料包含大量地下地质信息,覆盖面积广,具有三维特性,所以这项技术的使用越来越受到石油工作者的重视,如何利用地震资料研究地下地质构造、地层?如何进行储层预测、油藏描述?如何进行油藏、含油气层的预测? 这些问题促使地球物理学家、地质学家开发应用了一系列地震资料特殊处理技术,如地震资料反演技术、地震属性分析技术、AVO分析技术,这些技术充分利用测井、钻井、地震的长处,使人们对地下储层、油藏的研究从点到面、从二维到三维、从三维可视化研究到油藏动态监测、从定性研究到定量化研究,大大提高了钻探成功率,有效地指导了油田开发,

地震波阻抗反演方法综述

地震波阻抗反演方法综述 一、地震反演技术研究现状 地震反演方法是一门综合运用数学、物理、计算机科学等学科发展起来的新技术新方法,每当数学方法、物理理论有了新的认识和发展时,就会有新的地震反演技术、方法的提出。随着计算机技术的不断发展、硬件设施的不断升级,这些方法技术得到了实践验证和提升,反过来地震反演技术运用中出现的新问题、新思路又不断促使数学方法、地球物理学理论的再次发展。时至今日,地震反演技术仍然是一个不断发展、不断成熟、不断丰富着的领域。 反演是正演的逆过程,在地震勘探中正演是已知地下的地质构造情况、岩性物性分布情况,根据地震波传播规律和适当的数学计算方法模拟地震波在地下传播以及接收地震波传输到地表信息的过程。地球物理反演就是使用已知的地震波传播规律和计算方法,将地表接收到的地震数据通过逆向运算,预测地下构造情况、岩性物性分布情况的过程。地震波阻抗正演是对反演的理论基础和实现手段。 1959年美国人Edwin Laurentine Drake在宾夕法尼亚州开凿的第一口钻井揭开了世界石油工业的序幕。从刚开始的查看地质露头、寻找构造高点寻找石油,到通过地震剖面的亮点技术寻找石油,再到现在运用多种科学技术手段进行油气资源的预测,石油勘探经历了一个飞速的发展历程。 声波阻抗(AI)是介质密度和波在介质中传播速度的乘积,它能够反映地下地质的岩性信息。声波阻抗反演技术是20世纪70年代加拿大Roy Lindseth博士提出的,通过反演能够将反映地层界面信息的地震数据变为反映岩性变化的波阻抗(或速度)信息。由于波阻抗与地下岩石的密度、速度等信息紧密联系,又可以直接与已知地质、钻井测井信息对比,因此广泛应用于储层的预测和油藏描述中,深受石油工作者的喜爱。70年代后期,从地震道提取声波资料的合成声波技术得到了快速发展,以此为基础发展的基于模型的一维有井波阻抗反演技术,提高了反演结果的可靠性。进入80年代,Cooke等人将数学中的广义线性方法运用于地震资料反演,提出了广义线性地震反演。此后Seymour等人又提出了测井声波资料和地震数据正反演相结合求取地下声波阻抗的测井约束反演,大大拓宽了反演结果的纵向分辨能力。 90年代,在基于前人对地质统计学研究的基础上Bortoli和Haas提出了地质统计学反演,Dubrule等人对该方法进行了改进和推广。在国内随着油田对地震反演技术的广泛应用,以周竹生为主提出的地震、地质和测井资料联合反演方法,将地质信息引入地震反演中,提高的反演结果与地质认识的联系,克服了线性反演存在的缺陷。1996年,李宏兵等人将宽频带约束方法应用于递推反演并对其进行改进,减弱了噪音对反演结果的影响。 1999年,任职于英国石油公司的Connolly在《弹性波阻抗》一文中介绍了弹性波阻抗(EI)的概念和计算方法,阐述了不同入射角度(偏移距)地震道集部分叠加反演波阻抗随入射角之间的关系,但是该方法求取的弹性阻抗随入射角变化很大,无法与常规叠后反演波阻抗直接比较,因此推广应用较为困难。2002年,Whitcombe通过修正Patrick Connolly的计算公式,得到了弹性波阻抗的归一化求取方法,消除了弹性阻抗随入射角变化大的难题。2003年,西北大学马劲风教授从Zoeppritz方程简化出发提出了广义弹性波阻抗的概念,克服了以往波阻抗反演要求地震波垂直入射到地表的假设条件,推导出了任意入射角下纵波反射系数的递推公式,提高了中等入射角度下弹性波阻抗反演的精度。

地震波层析成像反演方法及其研究综述

No.13,2010 现代商贸工业 Modern Bus iness Trade Industry2010年第13期 地震波层析成像反演方法及其研究综述 冯 微 (长江大学物理科学与技术学院,湖北荆州434025) 摘 要:通过研究利用初至波走时的层析反演方法建立近地表速度模型,提供近地表地下介质的速度信息,进一步为静校正或浅层工程勘探服务。 关键词:速度建模;层析成像;初至波 中图分类号:TB 文献标识码:A 文章编号:1672 3198(2010)13 0368 01 地震勘探是利用人工在地表激发和接收地震波,再对地震波作分析处理以及解释而得到地下构造信息和岩性信息的一种方法。在整个地震勘探过程中,精确的求取地震波在地下介质中的传播速度,一直是地震勘探的核心问题之一。尤其在地表条件较复杂的区域,地表速度的横向剧烈变化会严重影响中深层目的层的成像效果。近地表速度不准确,将会直接影响到速度分析、偏移成像的质量以及静校正的精度等地震勘探的各个环节和最终的勘探成果。 1 地震面波及波形反演 利用面波进行结构反演一直是了解地球介质结构的重要途径。近几年来,在面波理论和面波反演方面做了大量工作。陈蔚天和陈晓非(2001)提出了一种求解水平层状海洋-地球模型中面波振型问题的新算法,它简洁、高效,彻底消除了高频情况下数值计算的精度失真问题。张碧星等(2000,2002)对瑞利波勘探中 之字形频散曲线形成的物理机理和多模性问题进行了理论分析,研究了诸波模的传播特性及相互关系,以及地表下低速层介质的位置、厚度及其它参数对 之字形频散曲线的相互影响.在面波反演理论方面,朱良保等(2001)通过保角变换,把面波群速度的反演变成了球谐系数的线性化反演,使其计算速度快,等值线光滑,构造界限清晰。众多研究者根据从面波资料求出的频散曲线,对不同地区的地下速度结构作了反演,揭示了横向结构差异的广泛存在。 根据走时反演地下结构是获取结构信息的经典做法。刘伊克等(2001)根据三维地震观测的初至走时数据,利用最小平方与QR分解相结合的算法,在三维空间重建近地表低降速带速度模型。同时,采用分形算法克服了初至波波形差异以及折射波相位反转导致的拾取误差,实现了三维初至拾取的大规模全自动化运算。李录明等(2000)针对地震勘探中的复杂地表问题,提出了一套地震初至波表层模型层析反演方法.它利用地震直达波、回折波、折射波以及三者组合的初至波和层析反演方法具有的纵、横向变速优势,实现适应速度任意变化的复杂表层模型反演。 在利用远震体波接收函数反演地下结构方面。钱辉等(2001)对接收函数反演地壳结构速度的算法作了分析,使之适应正演参数的变化,并利用天然地震接收函数揭示了青藏高原东部地壳结构。 近年来,非线性反演越来越受到重视,许多研究者把新的最优化理论引入地震学反演中。孟洪鹰和刘贵忠(1999)提出了多尺度地震波形反演的小波变换方法。对于一维非线性地震波形反演问题,此方法和已有的简单迭代法及多重网格法比较表明,此方法更为有效。杨峰和聂在平(2000)提出了用于二维轴对称非均匀介质结构的反演和成像的一种新的反演迭代方法变分玻恩迭代方法.与传统的玻恩迭代方法相比,其收敛速度和成像质量均有较大改善。 2 地震勘探、测井问题中的地震波研究及其它 在地震勘探和测井方面,许多研究者针对实际问题,提出了新的方法。沈建国和张海澜(2000)计算了井内靠近井壁的偏心声源激发的声场,得到了在井壁不同位置的接收波形,分析了直达波、井壁反射波、纵波、横波和面波在这些波形中的反映。为了处理横向强变速介质中的深度成像问题,程玖兵等(2001)提出一种基于共炮道集的优化系数的傍轴近似方程叠前深度偏移算子,在基于反射系数估算的成像条件下,可实现叠前深度偏移成像。陈生昌等(2001)实现了一种基于拟线性Born近似的叠张海明等:地震波研究前深度偏移方法,扩大了拟线性Born近似的应用范围,使其能够适应更强的横向速度变化。张美根和王妙月(2001)利用有限元法和最小走时射线追踪的界面点法,实现了各向异性弹性波的叠前逆时偏移.陈志德等(2002)利用叠前深度域地震成像对速度模型变化的敏感性,采用偏移迭代逐次逼近最佳成像速度,研究开发了一套快捷有效的三维叠前深度偏移深度域速度模型建立技术。顾汉明等(2002)在频率-波数域中采用解析法,解出多层条件下海底实测的多分量地震数据分解成上行和下行P波和S波的算法,导出海底各层地震反射系数随入射角变化(简称RVA)的递推计算公式。金胜汶等(2002)给出了一种高效率、高精度的炮检距域叠前深度偏移方法,并得到各个不同照射角下的成像结果。 3 讨论和结论 地震波理论是固体地球物理学研究的重要基础.地震波研究领域的任何实质性进展都会促进固体地球物理学的发展.在过去的4年里,中国地球物理学家在该领域做了很多有意义的研究工作,其中不乏创新性的理论工作.当前地震波研究领域的重要课题包括: (1)复杂地球介质中地震波激发与传播理论; (2)高效计算三维介质中地震波传播的数值方法; (3)利用先进的地震波数值模拟方法,开展设定地震与强地面运动的数值模拟研究,为精细的地震危险分析与预测奠定基础。 参考文献 [1]周庆凡.我国天然气发展前景广阔[J].中国石化,2009. [2]刘英祥.我国天然气价格与天然气发展问题研究[J].企业经济, 2009. [3]牛建娣.我国天然气市场供需状况及发展对策分析[D].对外经济 贸易大学,2007. ! 368 !

磁性界面反演方法

第九节 磁性界面反演方法 具有一定磁性差异的地质界面,如结晶基底面、大岩体的上顶面等,是找矿勘探与基础地质研究中常见的地质现象。磁性界面反演方法是确定这一类地质模型界面深度的方法。磁性界面反演方法有空间域和频率域两大类。在磁性界面反演中,常常把磁性界面划分成大量的离散二度水平棱柱体或三度直立棱柱体组合模型,由于未知参数太多不能采用直接解法,往往采用迭代法或其他方法。空间域方法未知参数多、计算时间长、效率低。Parker (1972,1973,1974)采用了连续模型,得出了频率域重磁位场正反演的理论公式,Oldenburg (1974)把它推广成迭代形式并做了二维计算。由于引入快速傅立叶变换,在相同精度下,频率域方法比空间域方法反演速度至少要快一个数量级以上。因此,频率域磁性界面的反演方法成为界面反演的一种常用方法,用于区域磁测资料解释与油气勘探中研究基底构造。 一、磁性界面异常的正演 如图7-9-1所示的磁性界面,其上下界面磁化强度差为M ,为简单起见,设M 垂直向下。 图7-9-1 磁性界面示意图 若磁化率为常数,考虑n=0时,即泰勒展开式第一项在空间域为常数项,略去n=0项则有: 01()(,)2!n n Hs n s Z u v M e h n μ∞-=??-?=???? ∑ (7-9-13) 上式表示,当给定了平均深度H 及平均深度上的起伏 (),h ξη,取泰勒展开式 有限项数n=3~8,就可以计算出 n h 和 (,)Z u v ?,利用快速傅立叶变换即可得到空间域的磁异常值Z ?(x,y,0)。 二、磁性界面异常的反演 式(7-9-13)是磁性界面正演计算公式,稍作一下变化,就可以当作反演迭代公式。我们把和式中n=1的项写出并移项得

波阻抗反演及其在隐蔽圈闭预测中的应用

文章编号:1001-6112(2004)01-0063-05 波阻抗反演及其在隐蔽圈闭预测中的应用 柏 涛1,徐志伟2 (1.吉林大学地球科学学院,吉林长春 130026;2.吉林油田,吉林松原 131100) 摘要:笔者应用波阻抗反演地震剖面结合测井、岩心资料研究了松辽盆地南部青山口组和姚家组的层序,共识别出9个层序,20个体系域,建立了该区的层序地层格架。通过对波阻抗反演地震剖面进行层序地层、沉积微相、构造解释,共识别出5种类型的隐蔽圈闭,即地层超覆、砂岩透镜体岩性、构造-岩性、断层-岩性和砂岩上倾尖灭型圈闭,并总结了它们在层序地层格架内的分布规律。 关键词:沉积微相;层序地层;隐蔽圈闭;波阻抗反演中图分类号:TE122.3 文献标识码:A 地震记录中获取具有真实地质意义的地层参 数,一直是石油地质学家和地球物理学家的研究目标。各种地震反演技术正是在这一实际需求的刺激之下兴起的,波阻抗反演是其中最成熟的一种地震反演技术。目前波阻抗反演有多种计算方法,如神经网络算法[1]及地震和测井资料联合反演算法[2]。 本次采用的是宽带约束反演。宽带约束反演是用井中测得的波阻抗作为初始模型和约束条件,应用随机反演理论,与最优化计算技术相结合进行空间外推,从而获得最佳宽带波阻抗剖面[3]。这种技术能很好地将测井垂向上的高分辨率与地震在横向上的连续性结合起来,使地震对储层的预测精度大大提高[4]。理论及实践表明,它是解决砂体展布、沉积微相识别和落实岩性圈闭的重要手段[5]。 1 方法原理 在层状介质条件下,地层波阻抗与反射系数之间的关系为: I i =I i -1×(1+R i )/(1-R i ) 式中,I 和R 分别为地层波阻抗和反射系数。假定给定的N 层地质模型波阻抗初始值为I 0(0),对上式两边取对数并作级数展开,略去高次项有: L (i )=L (0)+Σi j =1 2R j I =1,2,…,N 式中,L (i )为对数波阻抗。这即为约束反演的基本原理。 为确保在实际处理过程中运算稳定并易于加入约束条件,采用共轭梯度法,通过多次迭代修改初始模型,逐步逼近求取地层波阻抗。 2 处理流程 利用F ocus 或ProM AX 系统处理得到高保真纯地震数据,从地质模型出发,通过不断修正、更新地层模型,使模型正演合成地震道与实际地震道达到最佳吻合,得到最终反演结果(图1)。 图1 处理流程图Fig.1 Flow chart of processing 收稿日期:2003-01-27;修订日期:2003-11-05. 作者简介:柏 涛(1976— ),男,(汉族),吉林省松原市人,博士生,主要从事隐蔽油气藏勘探研究.第26卷第1期2004年2月 石 油 实 验 地 质 PETR OLEU M GEOLOG Y &EXPERIMENT V ol.26,N o.1 Feb.,2004

岩体参数的反演方法综述

岩体参数的反演方法综述1 费文平,马亢 四川大学水利水电学院,成都 (610065) E-mail:wpfei7206@https://www.360docs.net/doc/2a9519161.html, 摘要:岩体参数的反演分析是水电工程的设计与数值计算的基础,直接影响到计算结果的真实性。归纳总结了岩体参数的各种反演方法,分析比较了其优缺点和适用条件,提出了岩体参数反演分析方法的发展趋势。 关键词:岩体,参数,反演方法 1.引言 岩体参数(如弹模、泊松比等)的反演分析是根据少数的已知测点的位移值或应力值等,来反演分析岩体的材料参数的过程,是水电工程的设计与数值计算的基础。岩体力学参数的确定是岩土工程数值计算中的关键问题。由于岩体的参数往往难以确定,对数值计算的结果会造成很大的影响,而实验室内对岩体参数的测定均存在尺度效应问题,且考虑到经济成本,现场取样的数量往往不多,因而无法得到整个工程区的岩体真实参数。采用反演分析的方法可以综合考虑诸多地质因素的影响,更加经济准确地得到岩体的参数[1-3]。 岩体参数反演计算的方法主要有[4-30]:①正反分析法;②逆反分析法;③局部最优化方法;④人工神经网络法;⑤遗传算法;⑥粒子群算法;⑦梯度类方法;⑧混合算法。 2.岩体参数反演分析方法的分类及特点 2.1 正反分析法 正反分析法先假定待反演的岩体参数,通过正演分析得到岩体结构的位移或应力等,然后将其与实际观测值相比较,并按一定方式修改调整待反演参数,逐步逼近实测值,从而确定待反演的岩体参数。正反分析法程序编制简单,计算方法灵活,可适用于线性或非线性的岩体参数反演问题,但需要大量的调整试算。 2.2 逆反分析法 逆反分析法通过求逆直接建立待反演参数与实测值之间的关系式,求解这些关系式组成的方程组就可得到反演计算结果。该法计算原理直观简明,但程序编制复杂,只适用于线性的岩体参数反演分析。 2.3 局部最优化方法 优化分析法致力于寻找使计算结果与观测结果之间的误差为最小的解答。局部最优化方法包括单纯形法、模式搜索法、鲍威尔法、变量轮换法、混合罚函数法、复合形法等,它们对初值的依赖性较强,在选用时应注意参数先验信息的确定,因而需要有一定的工程经验。否则,需采用以下的优化反演分析方法。 2.4 人工神经网络法 人工神经网络法对人类大脑的一种物理结构上的模拟,通过网络训练,调整网络内部权1本课题得到高等学校博士学科点专项科研基金(项目编号:20040610095)的资助。

波阻抗反演

波阻抗反演通常指利用叠后地震资料进行反演的一种技术,它将地震资料、测井数据、地质解释相结合,充分利用测井资料具有较高的垂向分辨率和地震剖面有较好的横向连续性的特点,将地震剖面“转换”成波阻抗剖面,不仅便于解释人员将地震资料与测井资料连接对比,而且能有效地对地层物性参数的变化进行研究,从而得到物性参数在空间的分布规律,指导油气的勘探开发,地震反演的方法主要有两种,一种是叠前反演,一种是叠后反演,叠前反演主要有旅行时反演和振幅反演,叠后反演主要分为振幅反演和波场反演。而我们这里所说到的波阻抗反演属叠后振幅反演,主要有递归反演、稀疏脉冲反演和基于模型的反演这三种方法。 二、波阻抗反演方法介绍 1、波阻抗反演的基本假设前提 1、波阻抗反演的基本假设前提 目前我们常用的波阻抗反演软件所用方法基本都是基于褶积模型的基础上建立的,因此要求资料都要满足褶积模型的假设前提,基本可概括为下面的四个方面: (1)、地震模型 假设地层是水平层状介质,地震波为平面波法向入射,其地震剖面为正入射剖面,并且假设地震道为地震子波与地层反射系数的褶积。 (2)、反射系数序列 在普通递归反演中,假设反射系数为完全随机的序列,而在稀疏脉冲反演中,假设反射系数为由一系列大的反射系数叠加在高斯分布的小反射系数的背景上构成的。 (3)、地震子波 假设反射系数剖面中的每一道都可以看作是地下反射率与一个零相位子波的褶积。实际情况下往往需要对地震剖面进行相位校正处理 (4)、噪音分量 通常假设波阻抗反演输入的地震数据其振幅信息反映了地下波阻抗变化情况,地震剖面没有多次波和绕射波的噪音分量。因此,在资料处理时可以考虑的处理流程是反褶积、噪音剔除,尤其是多次波,处理的最终目标是得到真振幅剖面。类似二维滤波和多道混波这样可以改变地震振幅和特征的处理模块应当避免使用。 有许多反演技术都存在两个问题:一是多解性,即存在多个反演结果与地震数据相吻合;另一个问题是地震数据的带限问题。 2、递归反演 基本原理:递归反演是基于反射系数的计算公式而得到的,当和地震子波褶积时,反射系数的带限非常严重,低频分量和高频分量都损失了。低频分量的损失是递归反演面临的最严重的问题,因此如何补充低频分量是个很重要的问题,通常可以得到低频分量的方法主要有两种:直接从测井资料中得到,或从速度分析如叠加速度等的分析中得到。

时频分析方法综述

几种时频分析方法简介 1.傅里叶变换(Fourier Transform) 1 2/ 2 1 22/ ()() ()() 1 ()()()( : : ::) N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT π π ππ - - ∞- -∞ ∞- -∞ ? = ??=??? ???????→ ?? ??=?= ?? ? ∑ ? ?∑ 离散化(离散取样) 周期化(时频域截断) 2.小波变换(Wavelet Transform) a.由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f)只能反映其在整个实轴的性态,不能反映h(t)在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t∈[a,b]与函数 [] [] 1 1,t, () 0,t, a b t a b χ ?∈ ? =? ∈ ?? ,然后考察 1 ()() h t t χ傅里叶变换。但是由于 1 ()t χ在t= a,b处突然 截断,导致中 1 ()() h t t χ出现了原来h(t)中不存在的不连续,这样会使得 1 ()() h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点,D.Gabor在1944年引入了“窗口” 傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 2 2 (,)()() ()()(,) ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T π π ττ τττ +∞- -∞ +∞+∞ -∞-∞ =- =- ? ?? : : 图:STFT示意图 STFT算例

地震反演方法概述

地震反演方法概述 地震反演:由地震信息得到地质信息的过程。 地震反射波法勘探的基础在于:地下不同地层存在波阻抗差异,当地震波传播有波阻抗差异的地层分界面时,会发生反射从而形成地震反射波。地震反射波等于反射系数与地震子波的褶积,而某界面的法向入射发射系数就等于该界面上下介质的波阻抗差与波阻抗和之比。也就是说,如果已知地下地层的波阻抗分布,我们可以得到地震反射波的分布,即地震反射剖面。即由地层波阻抗剖面得到地震反射波剖面的过程称为地震波阻抗正演,反之,由地震反射剖面得到地层波阻抗剖面的过程称为地震波阻抗反演。 叠前反演主要是指AVO反演,通过AVO反演,可以获得全部的岩石参数,如:岩石密度、纵横波速度、纵横波阻抗、泊松比等。叠前反演与叠后反演的根本区别在于叠前反演使用了未经叠加的地震资料。多道叠加虽然能够改善资料的品质,提高信噪比,但是另一方面,叠加技术是以东校正后的地震反射振幅、波形等特征不随炮检距变化的假设为基础的。实际上,来自同一反射点的地震反射振幅在不同炮检距上是不同的,并且反射波形也随炮检距的变化而发生变化。这种地震反射振幅、波形特征随炮检距的变化关系很复杂,主要原因就在于不同炮检距的地震波经过的地层结构、弹性性质、岩性组合等许多方面都是不同的。叠加破坏了真实的振幅关系,同时损失了横波信息。叠前反演通过叠前地震信息随炮检距的变化特征,来揭示岩性和油气的关系。叠前反演的理论基础是地震波的反射和透射理论。理论上讲,利用反射振幅随入射角的变化规律可以实现全部岩性参数的反演,提取纵波速度、横波速度、纵横波速度比、岩石密度、泊松比、体积模量、剪切模量等参数。 叠后地震剖面相当于零炮检距的自激自收记录。与叠前反演不同,叠后反演只能得到纵波阻抗。虽然叠后反演与叠前反演想必有很多不足之处,但由于其技术方法成熟完备,到目前为止,叠后反演仍然是主流的反演类型,是储层预测的核心技术。 介绍几种叠后反演方法: 1)道积分:利用叠后地震资料计算地层相对波阻抗(速度)的直接反演方法。因为它是在地层波阻抗随深度连续可微的条件下推导出来的,因而又称为连续反演。 原理简述: 上述公式表示,反射系数的积分正比于波阻抗Z的自然对数,这是一种简单的相对波阻抗概念。 适用条件及优缺点 与绝对波阻抗反演相比,道积分的优点:1.递推时累积误差较小;2.计算简单,不需要反射系数标定;3.无需钻井控制,在勘探储气即可推广使用。 缺点:1.由于这种方法受到地震固有频宽的限制,分辨率低,无法适用于薄层解释的需要;2.需要地震记录经过子波零相位化处理;3.无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数;4.这种方法在处理过程中不能用地质或测井资料对其进行约束控制,因而结果比较粗略。 2)递推反演方法:根据反射系数进行递推计算地层波阻抗或层速度,其关键在于由原始地震记录估算反射系数和波阻抗,测井资料不直接参入反演,只起到标定和质量控制的作用。因此又称为直接反演。 原理简述: 利用以上公式,可以从声波时差曲线及密度曲线上(没有密度曲线时可以利用Gardnar 公式进行换算)选择标准层波阻抗作为基准波阻抗,将反褶积得到的反射系数转为波阻抗。

推理方法综述

智能控制导论大作业 学院:电子工程学院 专业:智能科学与技术

推理方法综述 一、推理的定义: 推理是人类求解问题的主要思维方法。所谓推理就是按照某种策略从已有事实和知识推出结论的过程。通过一个或几个被认为是正确的陈述、声明或判断达到另一真理的行动,而这真理被相信是从前面的陈述、声明或判断中得出的直接推理。 二、推理方式及其分类: 1.演绎推理、归纳推理、默认推理 (1). 演绎推理:一般→个别 演绎推理是从全称判断推出特称判断或单称判断的过程,即从一般到个别的推理。最常用的形式是三段论法。 例如: 1)所有的推理系统都是智能系统; 2)专家系统是推理系统; 3)所以,专家系统是智能系统。 (2). 归纳推理: 个别→一般 是从足够多的事例中归纳出一般性结论的推理过程,是一种从个别到一般的推理过程,分为完全归纳推理,又称为必然性推理,不完全归纳推理,又称为非必然性推理。 例如:

(3). 默认推理: 默认推理又称缺省推理,它是在知识不完全的情况下假设某些条件已经具备所进行的推理。 例如: 2.确定性推理、不确定性推理 如果按推理时所用的知识的确定性来分,推理可分为确定性推理与不确定性推理。 (1)确定性推理(精确推理)。 如果在推理中所用的知识都是精确的,即可以把知识表示成必然的因果关系,然后进行逻辑推理,推理的结论或者为真,或者为假,这种推理就称为确定性推理。(如归结反演、基于规则的演绎系统等) (2)不确定性推理(不精确推理)。 在人类知识中,有相当一部分属于人们的主观判断,是不精确的和含糊的。由这些知识归纳出来的推理规则往往是不确定的。基于这种不确定的推理规则进行推理,形成的结论也是不确定的,这种推理称为不确定推理。(在专家系统中主要使用的方法)。 例如: 3.单调推理、非单调推理 如果按推理过程中推出的结论是否单调增加,或者说推出的结论是否越来越接近最终目标来划分,推理又可分为单调推理与非单调推理。 (1)单调推理。(基于经典逻辑的演绎推理) 是指在推理过程中随着推理的向前推进及新知识的加入,推出的结论呈单调增加的趋势,并且越来越接近最终目标。(演绎推理是单调推理。)

时频分析方法综述

几种时频分析方法简介 1. 傅里叶变换(Fourier Transform ) 1 2/201 22/0()()()()1()()()(::::)N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT ππππ--∞ --∞∞--∞?=??=??????????→????=?=??? ∑??∑离散化(离散取样) 周期化(时频域截断) 2. 小波变换(Wavelet Transform ) a. 由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f )只能反映其在整个实轴的性态,不能反映h (t )在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t ∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t ∈[a,b]与函数 [][] 11,t ,()0,t ,a b t a b χ?∈?=? ∈??,然后考察1()()h t t χ傅里叶变换。但是由于1()t χ在t= a,b 处突 然截断,导致中1()()h t t χ出现了原来h (t )中不存在的不连续,这样会使得1()()h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点,D.Gabor 在1944年引入了“窗口”傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 22(,)()()()()(,)ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T ππτττττ+∞ --∞ +∞+∞ -∞ -∞ =-=-??? ::

分频反演方法及应用

分频反演方法及应用 引言 通常进行地震资料反演时,根据研究工区钻井数量确定反演方法。一般来说,井较少时采用稀疏脉冲反演方法,井较多时以模型反演为主。稀疏脉冲反演是在地震主频控制下得到反演结果,而地震资料有效频带中的相对高频和相对低频的潜力没有充分利用,并且子波的提取对反演结果影响很大。由于子波很难提准,它受到标定、子波计算方法、子波时、空变的影响,所以反演中所谓的一些“细节”往往是由子波的旁瓣抖动或相位的变化所引起的,而不是实际地质现象造成的。模型反演的关键是用层位,测井曲线,沉积模式建立准确合理的初始模型,才能得到好的反演结果。但层位解释因人而异,沉积模式先入为主且无法建立复杂的地层接触关系,所以容易抹杀上倾尖灭,地层超覆等地质现象,对隐蔽油气藏的识别非常不利。 反演问题本质上是通过地震资料同时求取子波和反射系数的过程,从数学上讲是一个病态问题,所以稀疏脉冲反演方法需先求一个子波,而模型反演依赖一个初始模型。分频反演则是依靠测井和地震资料研究振幅与频率(AVF)的关系,将AVF作为独立信息引入反演,合理利用地震资料有效频带的低,中,高频信息,减少薄层反演的不确定性,得到一个分辨率较高的反演结果。同时它也是一种无子波提取,无初始模型的高分辨率非线性反演,可以更真实地反映地层接触关系,与井具有更高的吻合度,更准确反映砂体厚度变化及展布关系。 基本原理 1、AVF关系 对于一个楔状模型,用不同主频的雷克子波与其褶积,得到一系列合成地震剖面,从而得到振幅与厚度在不同频率时的调谐曲线,见图1。对图1进行转换,就可以得到在不同时间厚度下振幅随频率变化(AVF)的关系,见图2。 我们知道,某一地震波形是波阻抗(AI)和时间厚度(H)的函数。也就是说,反演时仅根据振幅同时求解AI和H,即已知一个参数求解两个未知数,结果是多解的。AVF向我们展示了一个重要规律:同一地层在不同的主频频率子波下会展现不同的振幅特征。但从图2中可以看出AVF关系非常复杂,很难用一个显示函数表示,需用支持向量机(SVM)非线性影射的方法在测井和地震子波分解剖面上找到这种关系,利用AVF信息进行反演。

地震波阻抗反演方法综述

地震波阻抗反演方法综述、地震反演技术研究现状 地震反演方法是一门综合运用数学、物理、计算机科学等学科发展起来的新技术新方法,每当数学方法、物理理论有了新的认识和发展时,就会有新的地震反演技术、方法的提出。随着计算机技术的不断发展、硬件设施的不断升级,这些方法技术得到了实践验证和提升,反过来地震反演技术运用中出现的新问题、新思路又不断促使数学方法、地球物理学理论的再次发展。时至今日,地震反演技术仍然是一个不断发展、不断成熟、不断丰富着的领域。 反演是正演的逆过程,在地震勘探中正演是已知地下的地质构造情况、岩性物性分布情况,根据地震波传播规律和适当的数学计算方法模拟地震波在地下传播以及接收地震波传输到地表信息的过程。地球物理反演就是使用已知的地震波传播规律和计算方法,将地表接收到的地震数据通过逆向运算,预测地下构造情况、岩性物性分布情况的过程。地震波阻抗正演是对反演的理论基础和实现手段。 1959 年美国人Edwin Laurentine Drake 在宾夕法尼亚州开凿的第一口钻井揭开了世界石油工业的序幕。从刚开始的查看地质露头、寻找构造高点寻找石油,到通过地震剖面的亮点技术寻找石油,再到现在运用多种科学技术手段进行油气资源的预测,石油勘探经历了一个飞速的发展历程。 声波阻抗(AI )是介质密度和波在介质中传播速度的乘积,它能够反映地下地质的岩性信息。声波阻抗反演技术是20 世纪70 年代加拿大Roy Lindseth 博士提出的,通过反演能够将反映地层界面信息的地震数据变为反映岩性变化的波阻抗(或速度)信息。由于波阻抗与地下岩石的密度、速度等信息紧密联系,又可以直接与已知地质、钻井测井信息对比,因此广泛应用于储层的预测和油藏描述中,深受石油工作者的喜爱。70 年代后期,从地震道提取声波资料的合成声波技术得到了快速发展,以此为基础发展的基于模型的一维有井波阻抗反演技术,提高了反演结果的可靠性。进入80 年代,Cooke 等人将数学中的广义线性方法运用于地震资料反演,提出了广义线性地震反演。此后Seymour 等人又提出了测井声波资料和地震数据正反演相结合求取地下声波阻抗的测井约束反演,大大拓宽了反演结果的纵向分辨能力。 90 年代,在基于前人对地质统计学研究的基础上Bortoli 和Haas 提出了地质统计学反演,Dubrule等人对该方法进行了改进和推广。在国内随着油田对地震反演技术的广泛应用, 以周竹生为主提出的地震、地质和测井资料联合反演方法,将地质信息引入地震反演中,提高的反演结果与地质认识的联系,克服了线性反演存在的缺陷。1996 年,李宏兵等人将宽 频带约束方法应用于递推反演并对其进行改进,减弱了噪音对反演结果的影响。 1999 年,任职于英国石油公司的Connolly 在《弹性波阻抗》一文中介绍了弹性波阻抗 (EI)的概念和计算方法,阐述了不同入射角度(偏移距)地震道集部分叠加反演波阻抗随入射角之间的关系,但是该方法求取的弹性阻抗随入射角变化很大,无法与常规叠后反演波阻抗直接比较,因此推广应用较为困难。2002 年,Whitcombe 通过修正Patrick Connolly 的计算公式,得到了弹性波阻抗的归一化求取方法,消除了弹性阻抗随入射角变化大的难题。2003 年,西北大学马劲风教授从Zoeppritz 方程简化出发提出了广义弹性波阻抗的概念,克服了以往波阻抗反演要求地震波垂直入射到地表的假设条件,推导出了任意入射角下纵波反 射系数的递推公式,提高了中等入射角度下弹性波阻抗反演的精度。

反演技术原理

反演技术 前言 一. 反演的概念、目的 二. 反演的发展历史及趋势 三. 反演的基本方法 四. 地震反演难题的解决方案 五. 反演的实质 六. 反演的基本流程 七. AVO反演处理简介 地震、测井、钻井是石油工作者认识地下地质构造、地层、岩性、物性、含油气性的最重要的信息来源。虽然测井、钻井仅能提供井孔附近的有关信息,尤其是有关岩性、物性、含油气性的信息,但是这些信息往往具有很高的分辨率,可信度、准确性,能确切地指出含油气层的位置,定量化分析与储层、油藏有关的参数。然而一个油气田勘探、开发方案的设计、实施、调整仅靠测井、钻井资料是远远不够的,

必须与地震资料相结合进行综合分析才能取得良好效果。 地震资料的分辨率虽然远远不及测井、钻井,但是随着地震勘探技术的发展,从光电记录、模拟记录到数字记录,从二维到三维,地震资料的信噪比、分辨率、成像的准确性都获得了极大的提高,由于地震资料包含大量地下地质信息,覆盖面积广,具有三维特性,所以这项技术的使用越来越受到石油工作者的重视,如何利用地震资料研究地下地质构造、地层?如何进行储层预测、油藏描述?如何进行油藏、含油气层的预测? 这些问题促使地球物理学家、地质学家开发应用了一系列地震资料特殊处理技术,如地震资料反演技术、地震属性分析技术、AVO 分析技术,这些技术充分利用测井、钻井、地震的长处,使人们对地下储层、油藏的研究从点到面、从二维到三维、从三维可视化研究到油藏动态监测、从定性研究到定量化研究,大大提高了钻探成功率,有效地指导了油田开发,为提高油田最终采收率起到了积极的作用,因此地震技术被列为二十一世纪石油工业发展的首要技术,相信地震资料特殊处理技术(地震资料反演技术、地震属性分析技术、AVO分析技术)也必将在我国油田勘探、开发中起到越来越重要的作用。 一. 反演的概念、目的 地震资料反演技术就是充分利用测井、钻井、地质资料提供的丰富的构造、层位、岩性等信息,从常规的地震剖面推导出地下地层的波阻抗、密度、速度、孔隙度、渗透率、沙泥岩百分比、压力等信息。那么如何理解这个概念?还是让我们看看什么是正演吧! 1.正演的概念 如果我们已知地下的地质模型,它的地震响应如何?通过模拟野外地震采集,得到单炮记录,再通过速度分析、动校正、叠加、偏移得到合成剖面这一过程就是正演。

弹性波阻抗反演在储层预测中的应用

弹性波阻抗反演在储层预测中的应用 发表时间:2019-04-26T17:26:33.000Z 来源:《基层建设》2019年第3期作者:董真真 [导读] 摘要:近年来,我国科学技术的快速发展使得我国各行业发展迅速。 中石化胜利油田分公司东辛采油厂山东东营 257094 摘要:近年来,我国科学技术的快速发展使得我国各行业发展迅速。弹性阻抗反演技术是油气勘探领域正在兴起的一项新技术,利用分角度叠加数据及横波、纵波、密度等测井资料,可以联合反演出与岩性、含油气性相关的多种弹性参数,用于综合判别储层的物性及含油气性。 关键词:弹性波阻抗反演;储层预测;应用 引言 时代的进步,科技的发展使得我国快速进入科学技术现代化发展阶段。随着油气勘探领域不断从构造圈闭向地层岩性圈闭倾斜,储层描述就显得更为重要。 1弹性波阻抗反演在储层预测中的应用 (1)用弹性阻抗反演方法开展储层预测。根据L隆起共反射点道集的实际情况,对叠前道集按照6°、18°和30°三个入射角做部分叠加,在这三个角度的地震数据上进行弹性阻抗反演。子波提取一个子波是由它的振幅谱和相位谱定义的。其中相位谱的类型有:零相位、常相位、最小相位或非最小相位。到目前为止,已经发明了数种提取子波的方法,这些方法基本都是在频率域确定子波的振幅谱和相位谱,在上述两者中,确定相位谱是比较困难的,这也是反演中存在误差的一个主要来源。(2)初始模型建立,弹性阻抗反演可以看作不同入射角地震数据的波阻抗反演,因此,在反演过程中需要建立不同角度弹性阻抗的初始模型,用以补偿地震数据所缺失的低频信息。本文利用校正后的地层纵波速度模型,分别估算横波速度和密度,然后计算不同入射角的弹性阻抗初始模型。由于地震数据是有效带宽的,递归反演结果也是有限带宽的,需要对反演结果进行低频补偿,本文采用低频速度模型根据Gardner公式转换得到低频阻抗模型。即在速度模型基础上,利用Gardner公式,构建低频波阻抗趋势模型。(3)弹性波阻抗反演,相对弹性阻抗反演递归反演属于有限带宽反演,为使反演得到的波阻抗更接近真实地下地层的波阻抗值,必须在反演结果开始前,预先给定一个基准线值。选取在研究区内广泛发育、分布稳定的T2反射界面作为反演基准层。 2实例分析 (1)区域概况X油气区内砂岩发育非常集中,是典型的中孔、中渗储层,储层上覆厚达800-900m的泥岩,这种岩性组合构成了该油田良好的储盖组合。研究区三维地震面积为250km2,面元网格为12.5m×25m,工区3口井均有实测纵横波速度和密度资料,曲线整体质量较好,这为叠前储层预测提供了有利条件。通过X区已钻井岩石物理参数交会分析,从纵波阻抗与泥质含量的交会图看出砂岩阻抗与围岩阻抗叠置,利用纵波阻抗难以区分岩性,但纵横波速度比可以区分砂、泥岩,含气砂岩(1570-1630m)表现为低vP/vS特征,据此揭示弹性参数可识别含气层。利用弹性参数反演进行含气性检测时要求地震资料必须具有A V的特征,所以要将炮检距数据体转化为角道集部分叠加资料。与叠后资料相比,角道集部分叠加资料只是一定角度范围内地震资料的部分叠加,因此角度的确定要保证包含目的层段有足够的振幅信息。针对X区,提取的三个角道集叠加数据为0°-12°、13°-25°、26°-36°(角度平均值分别为6°,18°,30°),从过已钻井的不同炮检距叠加剖面上能够看出,该区地震资料油气层反射振幅随着炮检距的增大而逐渐增强。(2)实施的关键步骤,地震重采样及提频,为了提高初始模型和反演结果的纵向分辨率,增加反映薄层的能力,在4ms采样率的基础上,对原地震数据按1ms进行重采样处理。针对区砂体多、层薄的特点,为进一步提高分辨率,对重采样后的地震数据进行频率扩展处理—谱白化拓频处理,使有效波的主频得到了明显的提高,拓宽了原始数据的频带范围。 3结果应用 实测曲线与EEI曲线对比,可以看出与含水饱和度曲线具有很高的相似度,当含水饱和度逐渐减小,即含气饱和度增加时,对应相对较低的EEI值;反之,对应相对高的EEI值。为了确定含水饱和度下限对应的EEI门槛值,用井资料计算得到的EEI曲线与含水饱和度曲线进行了交汇分析,求得该区含水饱和度下限值对应的EEI(25°)曲线值为-150。从反演得到的EEI(25°)属性沿目的层顶面开10ms时窗提取的算术平均值平面图,绿色到红色对应EEI值小于-150,并且颜色从绿色到红色对应的EEI值逐渐降低。结合本区的钻井情况和构造形态可知,红色异常范围(即EEI值小于-150的范围)与该层钻井证实的含气范围吻合好。 4效果评价 利用扩展弹性阻抗反演预测目的层有利目标的分布,从提取的vP/vS反演剖面上可见X3井在已钻气层处表现为低vP/vS特征,该套气层横向上分布不连续,而预测目标在构造高部位1.50-1.55s范围内表现为低vP/vS特征,与已知气层特征相似,综合分析认为为气层。由图中可看出在已钻井X2、X3井处,目标层呈低vP/vS特征,但范围较小,异常相对较弱;而在强异常区所钻的后续井X4、X5井钻遇高产气层,表明实钻结果与预测结果相吻合,证实了该方法的有效性。该方法预测的异常平面特征与沉积相分析得到的该区为辫状河三角洲前缘外带、扇三角洲前缘砂体发育区的认识基本一致。 5结论与建议 扩展弹性阻抗EEI的储层预测方法深化了常规A VO分析(即截距、梯度属性分析)的应用,并且该方法为计算岩石的弹性参数和储层的物性参数提供了一种新的思路,Y气田的扩展弹性阻抗EEI储层预测研究结果对A9井区的潜力分析提供了有力的支持,并且对南三块S3气藏模式的确定有所启发,为气田进一步挖潜提供了有力的基础资料。在用扩展弹性阻抗EEI进行储层预测时需要注意的是:在A VO分析前尽量在不改变道集各偏移距上的振幅大小(即A VO特征不变)的同时,将不同偏移距或角度的频谱整形为一致的频宽,以对动较拉伸和地层吸收效应进行补偿,提高A VO分析的稳定性;颜色反演中用到的地震数据必须进行零相位化以保证反演结果的有效性;另外,不同的地层、不同岩性可能存在不一样的最佳旋转角度,因此,在对不同的油气田采用扩展弹性阻抗EEI进行储层预测时,都需要重新分析来确定最佳的旋转角度,以保证预测结果的可靠性。 结语 采用递归反演方法对N盆地L隆起进行了弹性波阻抗反演,得到栖霞组碳酸盐储层6°、18°、30°三个角度的弹性波阻抗反演剖面,显示出碳酸盐岩地层沉积特征,与地质研究揭示的地层岩性横向变化大的特征一致。

相关文档
最新文档