一阶线性微分方程解的存在唯一性证明

一阶线性微分方程解的存在唯一性证明
一阶线性微分方程解的存在唯一性证明

一阶线形微分方程解的存在唯一性定理的证明)()(x q y x p dx dy +=摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一?

首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:上的连续函数.b y y a x x ≤-≤-00,函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 对于所有的 都成立,L 称

2121),(),(y y L y x f y x f -≤-R y x y x ∈),(),,(21为利普希兹常数下面我们给出一阶线形微分方程(1)解的存在唯一性)()(x q y x p dx dy +=定理:如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹条件,则方程(1)存在唯一的解,定义于区间上,连续)(x y ?=h x x ≤-0且满足初始条件: 这里 00)(y x =?),min(M b a h =),(max y x f M =R y x ∈),(我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见,只

就区间来讨论,对于的讨论完全一样.h x x x +≤≤0000x x h x ≤≤-现在简单叙述一下运用逐步逼近法证明定理的主要思想,首路习题到位。在管路敷对设备进行调整使其在正限度内来确保机组高中

先证明求微分方程的初值问题的解等价于求积分方程 的连续解这里我们用f(x,y)=p(x)y+q(x)来[]?++=x x dx x q y x p y y 0

)()(0替代,因此也就等价于求积分方程 的连续解,然?+=x x dx y x f y y 0),(0后去证明积分方程的解的存在唯一性.任取一个连续函数 代入上面的积分方程右端的y 就得)(0x ?到函数 dx x x f y x x x ))(,()(0001?+≡??显然也是连续解,如果那么就是积分方)(1x ?)(1x ?≡)(0x ?)(0x ?程的解.否则,我们又把代入积分方程右端的y 得到)(1x ? dx x x f y x x x ))(,()(0102?+≡??如果 ,那么就是积分方程的解,否则我们继≡)(2x ?)(1x ?)(1x ?续这个步骤.一般地做函数 (2)dx x x f y x x x n n ))(,()(010?-+≡??这样就得到连续函数序列,……

)(0x ?)(1x ?)(x n ?如果那么就是积分方程的解,如果始终不发生这种≡+)(1x n ?)(x n ?)(x n ?情况,我们可以证明上面的函数序列有一个极限函数即)(x ? 存在因此对(2)取极限就得到)()(lim x x n n ??=∞

→dx x x f y x x x n n n n ))(,(lim )(lim 010?-∞→∞→+=?? =dx x x f y x x n n ))(,(lim 010?-∞→+? =dx x x f y x x ))(,(00?+?即 dx x x f y x x x ))(,()(00?+≡??这就是说是积分方程的解,这种一步一步地求出方程的解的方法)(x ?

就成为逐步逼近法,由(2)所确定的函数称为问题(1)的n 次近)(x n ?似解,在定理的假设条件下以上步骤是可以实现的下面我们分四个命题来证明这个定理.

命题1,设是一阶线形微分方程(1)的定义于区间)(x y ?=上的,且满足初始条件的解,则是积分方h x x x +≤≤0000)(y x =?)(x y ?=程()的定义于上的连续解,反

?+=x x dx y x f y y 0),(0h x x x +≤≤00h x x x +≤≤00之亦然.

因为是一阶线形微分方程(1)的解故有)(x y ?= ))(,()(x x f dx x d ??=两边从到x 取定积分得到0x dx x x f x x x x ))(,()()(00?≡-???h

x x x +≤≤00把代上式,即有00)(y x =? dx x x f y x x x ))(,()(00?+≡??h x x x +≤≤00因此, 是积分方程定义于上的)(x y ?=?+=x x dx y x f y y 0),(0h x x x +≤≤00连续解反之如果是积分方程的连续解,则有)(x y ?=?+=x x dx y x f y y 0),(0 (3)dx x x f y x x x ))(,()(00?+≡??h x x x +≤≤00微分之,得到 ))(,()(x x f dx

x d ??=又把代入(3)得到0x x =00)(y x =?因此是方程(1)的定义于 上且满足初始条件)(x y ?=h x x x +≤≤00

的解.命题1证毕.00)(y x =?现在取,构造皮卡逐步逼近函数序列如下:00)(y x =? ?????+==?-x x n n d f y x y x 0))(,()()(1000ξξ?ξ??h x x x +≤≤00(n=1,2,…)(4)

命题2 函数序列在上是一致收敛的{})(x n ?h x x x +≤≤00证明:我们考虑级数 (5)[]∑∞=--+110)()()(k k k x x x ???h x x x +≤≤00它的部分和为=[]∑=--+n k k k x x x 110)()()(???)(x ?因此,要证明序列在上一致收敛,只需证明级数(5)在{})(x n ?h x x x +≤≤00上一致收敛.为此,我们进行如下估计.由(4)有h x x x +≤≤00 (6))())(,()()(0

0001?-≤≤-x

x x x M d f x x ξξ?ξ??及 ?-≤-x x d f f x x 0))(,())(,()()(0112ξξ?ξξ?ξ??利用利普希兹条件及(6)得到 ?-≤-x x d L x x 0)()()()(0112ξξ?ξ??? =ξξd x M L x x ?-≤0)(020)(!

2x x ML -设对于正整数n,不等式 n n n n x x n ML x x )(!)()(011-≤---??成立,则有利普希兹条件,当时,有h x x x +≤≤00 ?-+-≤-x x n n n n d f f x x 0))(,())(,()()(11ξξ?ξξ?ξ??

?--≤x x n n d L 0)()(1ξξ?ξ?100)()!1()(!0+-+=-≤?n n x x n

n x x n ML d x n ML ξξ于是,由数学归纳法得知,对于所有的正整数k,有如下的估计 (7)k k k k x x k ML x x )(!)()(011-≤---??h x x x +≤≤00从而可知,当时h x x x +≤≤00 (8)k k k k h k ML x x !)()(11--≤-??(8)的右端是正项收敛级数 ∑∞=1!k k k k h ML 的一般项,由维尔斯特拉斯判别法级数(5)在上一h x x x +≤≤00致收敛,因而序列也在上一致收敛,命题2证毕.

{})(x n ?h x x x +≤≤00命题3 是积分方程(2)的定义于上的连续解.)(x ?h x x x +≤≤00证明: 由利普希兹条件)()())(,())(,(x x L x x f x x f n n ????-≤-以及在上一致收敛于,即知序列{})(x n ?h x x x +≤≤00)(x ? {}{})(,()(x x f x f n n ?≡在上一致收敛于.因而对于(4)两边取极h x x x +≤≤00{})(,(x x f ?限,得到 dx x x f y x x x n n n n ))(,(lim )(lim 010?-∞→∞→+≡?? =?-∞→+x x n n d f y 0))(,(lim 10ξξ?ξ即

?+=x x d f y x 0))(,()(0ξξ?ξ?这就是说是积分方程(2)的定义于上的连续解.命

)(x ?h x x x +≤≤00题3证毕.

命题4 设是积分方程(2)的定义于上的一个连)(x φh x x x +≤≤00续解,则 , )()(x x ?φ≡h

x x x +≤≤00证明:我们首先证明也是序列的一致收敛极限函数.)(x φ{})(x n ?为此,从 0

0)(y x =? (n=1,2,…)?+=x

x n d f y x 0

))(,()(0ξξ?ξ? ξξφφd x f y x x x ))(,()(0

0?+≡我们可以进行如下估计)()(,()()(000

x x M d f x x x

x -≤≤-?ξξφξφ?ξξφξξ?ξφ?d f f x x x x ?-≤-0))(,())(,()()(01 ξξφξ?d L x

x ?-≤0

)()(0 200)(!2)(0x x ML d x ML x x -=-≤?ξξ现设,则有n n n x x n ML x x )(!)()(011-≤---φ? ξξφξξ?ξφ?d f f x x x

x n n ?-≤--0

))(,())(,()()(1 ξξφξ?d L x

x n ?-≤-0)()(1 100)()!1()(!0+-+=

-≤?n x x N x x n ML d x n ML ξξ故有数学归纳法得知,对于所有的正整数n,有下面的估计式 (10)10)()!1()()(+-+≤-n n n x x n ML x x φ?,不仅可以解决吊顶层配料试卷要求,对电气设备配置技术是指机组在进行

因此,在上有h x x x +≤≤00 (11)1)!

1()()(++≤-n n n h n ML x x φ?是收敛级数的公项,故因而1)!1(++n n h n ML 0)!1(1→+∞→+n n h n ML n 时在上一致收敛于,根据极限的唯一性,即得

{})(x n ?h x x x +≤≤00)(x φ )()(x x ?φ≡h x x x +≤≤00命题4证毕.综合1-4,即得到一阶线性微分方程解的存在唯)()(x q y x p dx dy +=一定理的证明.

微分方程习题及答案

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222 t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1) (22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程

1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3)23xy xy dx dy =-; (4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1)1 ,022=-==x y y x xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-='y x y

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

微分方程复习题(1)

常微分方程复习题 一、填空题 1.微分方程0)(22=+-+x y dx dy dx dy n 的阶数是____________. 答:1 2.形如_ 的方程称为齐次方程. 答: )(x y g dx dy = 3.方程04=+''y y 的基本解组是 . 答:cos 2,sin 2x x . 1. 二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 . 答:线性无关(或:它们的朗斯基行列式不等于零) 2. 方程02=+'-''y y y 的基本解组是 . 答:x x x e ,e 3. 若()t ?和()t ψ都是()X A t X ''=的基解矩阵,则()t ?和()t ψ具有的关系是 。 4.一阶微分方程0),(),(=+dy y x N dx y x M 是全微分方程的充分必要条件是 。 5. 方程0),(),(=+dy y x N dx y x M 有只含x 的积分因子的充要条件是 。有只含y 的积分因子的充要条件是 。 6. 一曲线经过原点,且曲线上任意一点()y x ,处 的切线斜率为y x +2,则曲线方程为 。 7. 称为n 阶齐线性微分方程。 8. 常系数非齐线性方程()(1)11()n n x n n m y a y a y a y e P x α--'+++=(其中()m P x 是m 次多项式)中,则方程有形如 的特解。 9. 二阶常系数线性微分方程32x y y y e '''-+=有一个形如 的特解。

10. 微分方程4210y y y ''''''+-=的一般解为 。 9. 微分方程4 230xy y y ''''++=的阶数为 。 10. 若()(0,1,2, ,)i x t i n =为齐次线性方程的n 个线性无关解,则这一齐线性方程的 通解可表为 . 11. 设()x t 为非齐次线性方程的一个特解, ()(0,1,2, ,)i x t i n =是其对应的齐次线性 方程的一个基本解组, 则非齐线性方程的所有解可表为 . 12. 若()(0,1,2, ,)i x t i n =是齐次线性方程()(1)11()()()0 n n n n y a x y a x y a x y --'+++=的n 个解,)(t w 为其朗斯基行列式,则)(t w 满足一阶线性方程 。 答:1()0w a x w '+= 13. 函数 是微分方程02=-'-''y y y 的通解. 14. 方程02=+'-''y y y 的基本解组是 . 15. 常系数方程有四个特征根分别为11,0,1λ=-(二重根),那么该方程有基本解组 . 16. ()Y A x Y '=一定存在一个基解矩阵()x Φ,如果()x ψ是()Y A x Y '=的任一解,那么()x ψ= 。 17.若)(t Φ是()X A t X '=的基解矩阵,则向量函数)(t ?= 是 ()()X A t X F t '=+的满足初始条件0)(0=t ?的解;向量函数)(t ?= 是()()X A t X F t '=+的满足初始条件η?=)(0t 的解。 18. 设12(),()X t X t 分别是方程组1()()X A t X F t '=+,2()()X A t X F t '=+的解,则满足方程12()()()X A t X F t F t '=++的一个解可以为 。 19. 设* X 为非齐次线性方程组()()X A t X F t '=+的一个特解, )(t Φ是其对应的齐次线性方程组()X A t X '=的基解矩阵, 则非齐线性方程组()()X A t X F t '=+的所有解可表为 . 20.方程组()X A t X '=的n 个解12(),(), ,()n X t X t X t 线性无关的充要条件

【习题】第二章一阶微分方程的初等解法

第二章 一阶微分方程的初等解法 x 2-1已知f(x) f(t)dt 1, x 0,试求函数f (x)的一般表达式。 0 x 解 对方程f(x) f (t)dt 1,两边关于x 求导得 x f (x) f (t)dt f 2(x) 0, f (X)丄 f(x) f 2(x) 0 , 分离变量,可求得 代入原方程可得 C 0,从而f(x)的一般表达式为f (x) 评注:本题中常数的确定不能直接通过所给积分方程得到, 确定。 解由导数的定义可得 x(t s) x(t) x (t) lim s 0 s 2 |im x(s) x (t)x(s) s 0 [1 x(t)x(s)]s lim 丄辿型 s 01 x(t)x(s) s 显然可得x(0) 0,故 分离变量,再积分可得 x(t) [1 2 x (t)] !i 叫 x(s) x(0) s x (0) [1 x 2(t)] f(x) 、2(x C)' 1 2x 。 而是需将通解代回原方程来 2-2求具有性质x(t S) x(t) x(s) 1 x(t)x(s) 的函数x(t),已知x (0)存在。

x(t) tan[x(O)t C], 再由x(0) 0,知C 0,从而x(t) ta n[x(0)t]。 评注:本题是函数方程的求解问题,利用导数定义建立微分关系,转化为求解常微分方程的初值问题。 2-3 若M(x,y)x N(x,y)y 0,证明齐次方程M (x, y)dx N(x,y)dy 0 有积分因 1 xM(x,y) yN(x, y) 证方法1用凑微分法求积分因子。 我们有恒等式 M (x, y)dx N (x, y)dy 1 dx dv 2 {(M(x,y)x N(x,v)v)U 寺(M(x,v)x 鱼din (xy), x y 空翌din仝, x y y 所以原方程变为 -{( M (x, y)x N (x, y)y)d ln(xy) (M (x, y)x N (x, y)y)d ln —} 0。 2 y 1 1 M (x, y)x N(x, y)y「x -d ln(xy) d in 0, 2 2 M(x,y)x N(x,y)y y 由于M( x ,y) x N(x, y)y 为零次齐次函数,故它可表成仝的某一函数,记为f (上),M (x,y)x N(x, y)y y y I X MX" N(x,y)y % 巧F(in^), M(x,y)x N(x,y)y y y N (x,y)y)(¥3)} y 用(x,y) 1 M(x,y)x 乘上式两边,得 N(x,y)y

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

高等数学微分方程练习题

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程、 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数、 1、不就是一阶微分方程. A、正确 B、不正确 2、不就是一阶微分方程. A、正确 B、不正确 一阶线性微分方程:未知函数及其导数都就是一次的微分方程d ()() d y P x y Q x x +=称为一阶 线性微分方程、 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解、通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解、 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解、 1、就是微分方程的解. A、正确 B、不正确 2、就是微分方程的解. A、正确 B、不正确 3、就是微分方程的通解. A、正确 B、不正确 4、微分方程的通解就是( ). A、 B、 C、 D、

(二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法就是: (1)分离变量:1221()()()()g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解、 1、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 2、微分方程的通解就是( ). A 、 B 、 C 、 D 、 3、微分方程的通解就是( ). A 、 B 、 C 、 D 、 4、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 5、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 6、微分方程的通解( ). A 、 B 、 C 、 D 、 7、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 8、 x y dy e dx -=就是可分离变量的微分方程. A 、正确 B 、不正确

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

【典型例题】 第三章 一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 例3-1 求方程 22y x dx dy += 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。 解 函数2 2 ),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域 b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0 )0(22y y x dx dy 的解在],[h h -上存在唯一,其中)(max ),, min(22),(y x M M b a h D y x +==∈。 因为逐次逼近函数序列为 ?-+=x x n n dx x y x f y x y 0 ))(,()(10, 此时,2 200),(,0,0y x y x f y x +===,所以 0)(0=x y , ?=+=x x dx x y x x y 03 2 02 13 )]([)(, | 63 3)]([)(7 032 12 2x x dx x y x x y x +=+=?, ?? +++=+=x x dx x x x x dx x y x x y 0 14 1062 2 223)3969 18929()]([)( 59535 20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),, min(2 2b a b a h += 对任给的正数b a ,,ab b a 22 2 ≥+,上式中,当 b a = 时, 2 2b a b +取得最大值

a ab b 21 2= 。 此时,)21,min()2, min(a a ab b a h ==,当且仅当a a 21 = ,即22==b a 时,h 取得最大值为 2 2 。 评注:本题主要考查对初值问题的解的存在唯一定理及其证明过程的基本思想(逐次逼近方法)的理解。特别地,对其中的b y a x D y x f M M b a h D y x ≤≤==∈,:),,(max ),, min(),(等常数意义的理解和对逐次逼近函数列? -+=x x n n dx x y x f y x y 0 ))(,()(10的构造过程的理 解。 例3-2 证明下列初值问题的解在指定区间上存在且唯一。 1) 2 1 0,0)0(cos 2 2≤ ≤=+='x y x y y ,。 2) 32 2 )2 1 (0,0)0(≤≤=+='x y y x y , 。 | 证 1) 以原点为中心作闭矩形区域1,2 1 :≤≤ y x D 。 易验证2 2 cos ),(x y y x f +=在区域D 上满足解的存在唯一性定理的条件,求得 2cos m ax 22),(=+=∈x y M D y x ,则2 1 )21,21min(==h 。 因此初值问题 ?? ?=+='0 )0(cos 2 2y x y y 的解在]21,21[- 上存在唯一,从而在区间]2 1 ,0[上方程 cos 22, x y y +='满足条件0)0( =y 的解存在唯一。 2) 以原点为中心作闭矩形区域b y a x D ≤≤,:。 易验证x y y x f +=2 ),(在D 上满足解的存在唯一性定理的条件,并求得 22),(m ax b a x y M D y x +=+=∈,

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1)(22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程 1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3) 23xy xy dx dy =-; (4)0)22()22 (=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)2 1 ,12= =+'=x y y y y x

3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1) 1 ,0 22=-==x y y x xy dx dy ; (2)1 ,02)3(0 22==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-= 'y x y (4)0)1()1(22=++++dy y x xy x dx xy y 6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常? 9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

微分方程例题选解演示教学

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2x e x xdy y x dx y =+-== 。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+??=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 2 1[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11ln ln 2 y x x =+。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2u u u x u -='+, 分离变量得 dx x u du 12=-, 积分得 C x u +=ln 1, 原方程的通解为 ln x y x C =+。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03223=---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3223--- 4222244 1)(2141dy dy x dx y dx -+-= )2(4 14224y y x x d --=, 得 0)2(4224=--y y x x d , 原方程的通解为 C y y x x =--42242。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222=--r r ,特征根为 i r ±=1,

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

微分方程(习题及解答)0001

2 第十二章 微分方程 § 微分方程基本概念、可分离变 量的微分方程、 、单项选择题 1.下列所给方程中,不是微分方程的是 (A) xy 2y ; (C) y y 0 ; 4 2?微分方程5y y xy (A) 1 ; (B) 2 ; 3. 下列所给的函数,是微分方程 (A) y C i cosx ; (C) y cosx Csinx ; 齐次微分方程 2y (3) ( x 2 (7x (B) (D) 0的阶数是( (C) 3 ; y (B) (D) 4. 下列微分方程中,可分离变量的方程是 (A) y e x y ; (B) xy (C) y xy 1 0 ; (D) (x ). 2 2 y C ; 6y)dx (x y)d y ). (D) 4 ; 0的通解的是( ). C 2 sin x ; G cosx ( ). y x ; y)dx (x 5. 下列微分方程中,是齐次方程是微分方程的是 (A) y (C) y 、填空题 c x y e ; xy x 0 ; (B) xy (D) (x 答(B). 答(C). C 2 si nx 答(D). y)dy 0. 答(A). ( 2 y x y)dx 答(D). 1. 函数y 5x 2是否是微分方程 xy 2y 的解? 答: 是. 2 . 微分方程 dx dy 0, y x 3 4的解是 .答: 2 x 2 y 25 . y x 3 x 2 冬C . 3 . 微分方程 3x 2 5x 5y 0的通解是 . 答: y 5 2 4 . 微分方程 xy y ln y 0的通解是 答: y Cx e . 5 . 微分方程 1 2 x y -1 y 2的通解是 . 答: arcsin y arcsin x 6 . 微分方程 xy y y(ln y ln x)的通解是 . 答: _y x Cx e 三、解答题 y); C . xy a(y 2 (x y)d y 1?求下列微分方程的通解. ⑵ (1) sec xtanydx s ec ytanxdy 0 ; 解: 解: dy 心y ⑶ —10 ; ⑷ dx 解: 解: 2 . 求下列微分方程满足所给初始条件的特解: (1) 2x y y e , y x 0 0 ; (2) 解 : 解: ⑶ xdy 2ydx 0, y x 2 1; ⑷ 解: 解: y (y 2 x 3 o. y si nx yl ny

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为x.y的连续函数。 2、形如-的方程,称为伯努利方 程,这里的连续函 数.n 3、如果存在常数-对于所 有函数称为在R 上关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的 任一解- 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x=,在任何不包含原点

的区间a上的基解矩阵。 2.设为方程x=Ax(A为n n常数矩阵)的标准基解矩阵(即(0)=E),证 明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题 2 一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 微分方程是. 2、方程的通解中含有任意常数的个数为. 3、方程有积分因子的充要条件为. 4、连续是保证对满足李普希兹条件的条件. 5、方程满足解的存在唯一性定理条件的区域是. 6、若是二阶线性齐次微分方程的基本解组,则它 们(有或无)共同零点. 7、设是方程的通解,则 . 8、已知是二阶齐次线性微分方程的一个非零解,则与 线性无关的另一解 . 9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线 性无关解是 .

10、线性微分方程组的解是的基本解组的充要条件是 . 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给 出在解的存在区间的误差估计.(10分) 四、求解微分方程组 满足初始条件的解.(10%)五、证明题:(10%) 设,是方程

(整理)微分方程的例题分析及解法

微分方程的例题分析及解法 本单元的基本内容是常微分方程的概念,一阶常微分方程的解法,二阶常微分方程的解 法,微分方程的应用。 一、常微分方程的概念 本单元介绍了微分方程、常微分方程、微分方程的阶、解、通解、特解、初始条件等基 本概念,要正确理解这些概念;要学会判别微分方程的类型,理解线性微分方程解的结构定 理。 二、一阶常微分方程的解法 本单元介绍了三种类型的一阶微分方程的求解方法:变量可分离型,齐次型,线性方程。 对于一阶微分方程,首先要看是否可以经过恒等变形将它的变量分离; 对于一阶线性微分方程,先用分离变量法求解其相应的齐次方程,再用常数变易法求解 非齐次方程;当然也可直接代下列通解公式: ()()?? ????+??=?-C dx e x q e y dx x p dx x p )( 齐次型微分方程 )(x y f y =' 令x y u =,则方程化为关于未知数u 与自变量x 的变量可分离的微分方程。 三、二阶微分方程的解法 1.特殊类型的二阶常微分方程 本章介绍了三种特殊类型的二阶方程的求解方法: (1))(x f y ='',直接积分; (2)),(y x f y '='',令p y =', (3)),(y y f y '='',令p y =',则p dy dp y ='' 这三种方法都是为了“降价”,即降成一阶方程。 2.二阶线性常系数微分方程 二阶线性常系数微分方程求解的关键是:

(1)特征方程 对于相应的齐次方程,利用特征方程 02=++q p λλ 求通解: (2)对于非齐次方程,根据下列形式自由项的特点 )()(x P e x f m x μ= 和 []x x p x x P e x f n l ax ββsin )(~ cos )()(+= 设置特解* y 的形式,然后使用待定系数法。 四、微分方程的应用 求解应用问题时,首先需要列微分方程,这可根据有关科学知识,分析所研究的变量应 该遵循的规律,找出各量之间的等量关系,列出微分方程,然后根据微分方程的类型的用相 应的方法求解,还应注意,有的应用问题还含有初始条件。 一、疑难解析 (一)一阶微分方程 1.关于可分离变量的微分方程 可分离变量的微分方程是一阶微分方程中的一种最简单的方程,形如 0)()()()(2211=+dy y g x f dx y g x f (1) 的微分方程称为变量可分离的微分方程,或称可分离变量的微分方程,若 0)()(12≠y g x f ,则方程(1)可化为变量已分离的方程 dx x f x f dy y g y g ) ()()()(2112-= 两端积分,即得(1)的通解: C x F y G +=)()( (2) (2)式是方程(1)的通解(含有一个任意常数),但不是全部解,用分离变量法可求 出其通解为)sin(c x y +=,但显然1±=y 也是该方程的解,却未包含在通解中,从这个例 子也可以理解通解并不是微分方程的全部解,本课程不要求求全部解。 有些看上去不能分离变量的微分方程,通过变量代换可以化为可分离变量的方程来求 解。如齐次型微分方程。 )(x y f y ='或)(x y f dx dy = (3) 可用代换ux y =化为

相关文档
最新文档