综合 数据放大器

综合    数据放大器
综合    数据放大器

模电实验报告

综合实验三数据放大器

实验原理:

放大电路比较简单的实现方法是集成运放组成的反相或同相等比例电路,虽然这些电路可以达到较高的精度,但仍不能满足某些特殊要求。例如,在测量技术中常需把桥路的双端输出差模小信号放大并把它转换成单端输出信号,而且要求电路对共模信号具有相当强的抑制能力。这种情况下,需采用图6-3-1所示的数据放大器。

图6-3-1 数据放大器

图中虚线的右边是数据放大器,左边是桥路,其中电路R(1+δ)是电阻型传感器(例如热敏电阻)的等效电阻,它的阻值(或者说δ)随被测物理量的大小变化,因

而U X也随之改变。U X和参考电压U R分别送到数据放大器的两个输入端,作为数据放大器的输入信号,它含有差模成分,也含有共模成分,而已后者往往大于前者,因此数据放大器的共模抑制比必须足够大,才能将误差减小到足够小的程度。

由于本电路最后一级的差动电路在R f/R1和R3/R2不精确相等时,共模抑制比急剧下降。所以必须在前级即A1、A2组成的电路中,设法将差模信号放大若干倍(例如1000倍)而对共模输入信号只起跟随作用,那么送到后级的差模信号与共模信号的幅值之比将得到提高。因此,会降低后级差放电路对电阻匹配精度及芯片性能的要求。图6-3-1电路可以实现上述意图。

电阻R1上的电流是:

运放A1与A2输出电压之差是:

则:

若取(R1=100Ω,R2=50kΩ),则U12=1000U Id(U Id=U i1-U i2),即可将差模信号放大1000倍。

对于共模信号U IC=(U i1+U i2)/2=U I1=U I2,电阻R1的电流等于零(设A1和A2的特性一致),因此U01=U02=U IC。

以上结果表明,A1和A2组成的电路能够将差模信号与共模信号之比提高了2R2/R1倍。所以即使后一级电路的共模抑制比不高,电阻的匹配也不很好,仍然可以很好地抑制共模信号。

实验结果:

在multisim 中连接电路,得到的电路图如下:

一.仿真时,Vcc=5mV

1.在差模情况下,测得三个运放的输入和输出电压分别如下表(10p R K =Ω,接入15%):

Ui1 Uo1 Ui2 Uo2 Uo 2.472mV

-238.851mV

2.966mV

253.494mV

4.936V

由表中数据可得,前级差模电压放大倍数为

()o21

ud121253.494238.851U A 9972.966 2.472

o i i U U U ---=

==--。整个数据放大器的差模放大倍数为321 4.936

A 1099922.966 2.472

o ud i i U U U =

=?=--。

2.调节滑变,使Ui1=Ui2,测得其在共模情况下时的输入和输出电压分别如下(10p R K =Ω,接入20%):

Ui1 Uo1 Ui2 Uo2 Uo 2.472mV

7.074mV

2.472mV

7.074mV

12.951mV

由表中数据可得,前级共模电压放大倍数为1uc117.074

A 2.862.472

o i U U =

==。后级共模电压放大倍数为2112.951

A 1.837.074

o uc o U U =

==,整个数据放大器的共模放大倍数为12A 2.86 1.83 5.23uc uc uc A A =?=?=。

则综上,电路的共模抑制比为K /9992/5.231911CMRR ud uc A A ===。 二.实际电路操作, Vcc=5mV

1.在差模信号作用下,测得三个运放的输入和输出电压分别如下表: Ui1 Uo1 Ui2 Uo2 Uo

2.3mV

-321.2mV

3.0mV

313.3mV

6.16V

由表中数据可以得到,其前级差模电压放大倍数为

()o21ud121313.3321.2U A 9063.0 2.3

o i i U U U ---=

==--。整个数据放大器的放大倍数为3021U 6.16

A 1088003.0 2.3

i i U U =

=?=--.

2.调节滑变,,使21i U i U =,测得其在共模作用下的输入输出电压值分别如下表所示: Ui1 Uo1 Ui2 Uo2 Uo 182mV

198mV

187mV

202mV

582mV

由表中数据可得,前级共模电压放大倍数为1uc11198

A 1.09182

o i U U =

==。后级共模

电压放大倍数为21582

A 2.94198

o uc o U U =

==,整个数据放大器的共模放大倍数为12A 1.09 2.94 3.20uc uc uc A A =?=?=。

则综上,电路的共模抑制比为K /8800/3.202750CMRR ud uc A A ===。 从整个输入输出来看,该数据放大器仍然有较好的差模放大能力和共模抑制能力。

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

DSP数字前级放大器G1说明书

DSP数字前级放大器 整机特点: ■高质量的数字效果器,尽显专业水平; ■音乐信号激励,增强音乐的动感,更有身临其境的感觉;■话筒输入三段均衡,中频扫描; ■全平衡话筒输入,抗干扰能力更强;■话筒音色调整; ■重低音输出,并带扫频功能; ■多功能遥控,可外接专用功能控制器。 前面板控制: 1.话筒输入插口 MIC,MIC2,MIC3为全平衡6.3mm标准输入插口。2.话筒输入增益控制 调节对应的电位器,可分别控制MIC1,MIC2,MIC3的输入增益。 3.话筒EQ 低频音调:调节该电位器,可改变话筒低频的提升/衰减量,变化量为±15dB。 中频音调:调节该电位器,可改变话筒中频的提升/衰减量,变化量为±15dB。 中频扫描:调节该电位器,可改变中频扫描的频率,频率范围250HZ-6KHZ。 高频音调:调节该电位器,可改变话筒高频的提升/衰减量,变化量为±15dB。 4.低通滤波器(DSP)显示部分 低通滤波器频率范围为8KHZ~18KHZ连续可调。 5,12.DSP效果上下滚动按键 内含55种常用OK效果 6.变调处理 按下对应的开关,可对音乐信号进行降调,原调,升调处理。 7.主音量声象控制:调节该电位器,可将信号以不同量分配到左、右声道上。 主音量高频音调:调节该电位器,可改变主音量高频的提升/衰减量,变化量为±15dB。 主音量低频音调:调节该电位器,可改变主音量低频的提升/衰减量,变化量为±15dB。8.MIC输出音量控制 调节该电位器,可改变话筒输出信号大小。9.DSP效果输出音量控制 调节该电位器,可改变DSP效果输出信号大小。10.主音量输出控制 调节该电位器,可改变主音量输出信号大小。 1

数据放大器

姓名: 学号: 班级: 数据放大器 实验目的:1.学习简单的数据放大电路实现方法。 2.熟悉运放在电路中的各种功能和用法。 实验原理: 放大电路比较简单地实现方法是集成运放组成的反相或同相等比例电路,虽然这些电路可以达到较高的精度,但仍不满足一些特殊需求。例如,在测量技术中常需要把桥路的双端输出差模信号放大并 XMM1 XMM2 把它转换成单端输出信号,而且要求电路对共模信号有相当强的抑制力。这种情况下,需采用上图虽是数据放大器电路。 图中虚线的右边是数据放大器,左边是桥路,其中电阻(1)R δ+是电阻型传感器的等效电阻,它的阻值随被测物理量的大小变化,因而X U 也随之改变。X U 和参考电压R U 分别送到数据放大器的两个输入端,作为数据放大器的输入信号,它含有差模成分,也含有共模成分,而且后者往往大于前者,因此数据放大器的共模抑制比必须足够大,才能将误差减小到足够小的程度。 由于本电路最后一级的差动电路在1/f R R 和32/R R 不精确相等时,共模抑 制比急剧下降。所以必须在前级即1A 、2A 组成的电路中,设法将差模信号放大若干倍而对共模输入信号只起跟随作用,那么送到后级的差模信号与共模信号的

幅值之比将得到提高。因此,会降低后级差放电路对电阻匹配精度及芯片性能的要求。在上述电路图中: 电阻1R 上的电流是: 12 11 i i R U U I R -= 运放1A 与2A 输出电压之差是: 1212121(2)o o R U U U R R I =-=+ 则:22121211 22(1)()(1)i i id R R U U U U R R =+ -=+ 若取2 121 2(1)1000(100,50)R R R k R + ==Ω=Ω,则 2121000()i id id i i U U U U U ==-, 即可将差模信号放大1000倍。 对于共模信号1212()/2ic i i i i U U U U U =+==,电阻1R 的电流等于零,因此 12o o ic U U U ==。 以上结果表明, 1A 和 2A 组成的电路能够将差模信号与共模信号之比提高了212/R R 倍。所以即使后一级电路的共模抑制比不高,电阻的匹配也不很好,任然可以很好的抑制共模信号。 实验内容: 1.设计图如图A 所示,合理选取参数,完成电路的设计及调试。电路图连接如上,参数的选取过程中,应将电压选取在1mV 以下合适。 1、 记录实验数据,完成实验报告。 差模信号的测量:数据记录如下 当(1)R δ+取值为1.8k Ω,则数据记录结果为:

运算放大器输出驱动能力的确定

运算放大器输出驱动能力的确定 上网时间:2007年10月23日 在电路中选择运算放大器(运放)来实现某一特定功能时,最具挑战性的选择标准之一是输出电流或负载驱动能力。运放的大多数性能参数通常都会在数据手册、性能图或应用指南中明确地给出。设计者须根据输出电流并同时参考运放的其他各类参数,以满足数据手册中所规定的产品性能。不同半导体制造商所提供的器件之间,甚至同一家制造商所提供的不同器件之间的输出电流都存在很大区别,这使得运放的设计和应用变得更加复杂。本文将通过一些实例讲解如何根据运放的性能参数对所需进行设计的电路的驱动能力进行评估,从而帮助设计者确保自己所选择的产品,在所有情况下都具有足够的负载驱动能力。 哪些因素影响驱动能力 输出驱动能力是一系列内部和外部设定值或条件的函数。输出级的偏置电流、驱动级、结构和工艺都属于内部因素。一旦选择了一种器件来实现某一特定的功能,设计者就无法再改变这些影响输出驱动能力的内部条件。大多数低功耗运放的输出驱动能力较差,其中一个原因就是它们的输出级的偏置电流较小。另一方面,高速运放通常具有较高的驱动能力,可满足高速电路的低阻要求。高速运放通常具有较高的电源工作电流,这也会提高输出驱动能力。 传统上,集成化PNP级比NPN晶体管的性能要差。在这样的工艺下,PNP输出晶体管与NPN相比,越低的β值,意味着输出驱动能力会不平衡。满摆幅输出的运放通常会将晶体管的集电极作为输出管脚,性能较差的PNP 管会导致提供源电流(source current)的能力比提供阱电流(sink current)的能力差。对于非满摆幅器件,情况恰好相反,由于大多数器件使用PNP晶体管的发射极输出,大大地影响了阱电流特性,因此它们输出阱电流的能力较差。而且,当估计器件的输出电流能力时,器件之间的性能波动也应考虑在内。因此设计者在基于"典型的"数据手册规范选择器件的同时,还必须考虑"限值"和"最小"规范,以确保所使用的每个器件在生产时都具有足够的驱动能力。 除上面所列的内部因素之外,一些外部因素也会影响驱动能力。其中一些能够被控制,以优化输出驱动能力,而其余的就很难控制。下面列出了影响输出驱动能力的外部因素:相对于相应电源电压的输出电压余量(相对于电源电压的差值);输入过驱动电压;总电源电压;直流与交流耦合负载;结温。 输出驱动能力通常以输出短路电流的形式给出。此时,制造商指定当输出接地(在单电源供电的情况下为1/2电源电压,称作"V s/2")时所能提供的电流值。制造商可能会提供两个数值,一个代表源电流(通常前面会有"+"),另一个代表阱电流(通常前面会有"-")。在负载上电压摆幅很小的应用中,输出级驱动器相对于电源电压(源电流为V+,漏电流为V-)会有很大的电压差,此时用户能够使用这一数据来有效地预测此运放的性能。试想运放带一个很大负载并且该负载被一个接近地(或在单电源情况下为V s/2)的电压驱动的情况。如果放大级的负载是逐步变化的,能向负载提供的电流将与运放数据手册中"输出短路电流"所给出的电流值一致。一旦输出开始随之改变,将发生两个情况:运放的输出电压余量减小;运放的输入过驱动电压减小。 由于前一个原因所能提供的输出电流将减小,这还与运放的设计有关,如后者中所述,过驱动电压的减小也会引起输出电流的减小。 另一种更有用的确定电流能力的方法,是使用输出电流和输出电压图。图1显示了美国国家半导体公司的 LMH6642的输出电流和输出电压图。对于大多数器件,通常会对源电流(图1a)和阱电流(图1b)这两种情况分别给出一张图。

D类放大器术语以及差分方式与单端方式的比较

D类放大器术语以及差分方式与单端方式的比较 图3示出D类放大器中输出晶体管和LC滤波器的差分实现。这个H桥具有两个半桥开关电路,它们为滤波器提供相反极性的脉冲,其中滤波器包含两个电感器、两个电容器和扬声器。每个半桥包含两个输出晶体管,一个是连接到正电源的高端晶体管MH,另一个是连接到负电源的低端晶体管ML。图3中示出的是高端pMOS晶体管。经常采用高端nMOS晶体管以减小尺寸和电容,但需要特殊的栅极驱动方法控制它们(见深入阅读资料1)。 全H桥电路通常由单电源(VDD)供电,接地端用于接负电源端(VSS)。对于给定的VDD和VSS,H桥电路的差分方式提供的输出信号是单端方式的两倍,并且输出功率是其四倍。半桥电路可由双极性电源或单极性电源供电,但单电源供电会对DC偏置电压产生潜在的危害,因为只有VDD/2电压施加到过扬声器,除非加一个隔直电容器。 “激励”的半桥电路电源电压总线可以超过LC滤波器的大电感器电流产生的标称值。在V DD和VSS之间加大的去耦电容器可以限制激励dV/dt的瞬态变化。全桥电路不受总线激励的影响,因为电感器电流从一个半桥流入,从另一个半桥流出,从而使本地电流环路对电源干扰极小。 音频D类放大器设计因素 虽然利用D类放大器的低功耗优点有力推动其音频应用,但是有一些重要问题需要设计工程师考虑,包括: *输出晶体管尺寸选择; *输出级保护; *音质; *调制方法; *抗电磁干扰( EMI); *LC滤波器设计; *系统成本。 输出晶体管尺寸选择 选择输出晶体管尺寸是为了在宽范围信号调理范围内降低功耗。当传导大的IDS时保证VD S很小,要求输出晶体管的导通电阻(RON)很小(典型值为0.1W~0.2W)。但这要求大晶体管具有很大的栅极电容(CG)。开关电容栅极驱动电路的功耗为CV2f,其中C是电容,V是充电期间的电压变化,f是开关频率。如果电容或频率太高,这个“开关损耗”就会过大,所以存在实际的上限。因此,晶体管尺寸的选择是传导期间将IDS×VDS损失降至最小与将开关损耗降至最小之间的一个折衷。在高输出功率情况下,功耗和效率主要由传导损耗决定,而在低输出功率情况下,功耗主要由开关损耗决定。功率晶体管制造商试图将其器件的RO N×CG减至最小以减少开关应用中的总功耗,从而提供开关频率选择上的灵活性。

综合 数据放大器

模电实验报告 综合实验三数据放大器 实验原理: 放大电路比较简单的实现方法是集成运放组成的反相或同相等比例电路,虽然这些电路可以达到较高的精度,但仍不能满足某些特殊要求。例如,在测量技术中常需把桥路的双端输出差模小信号放大并把它转换成单端输出信号,而且要求电路对共模信号具有相当强的抑制能力。这种情况下,需采用图6-3-1所示的数据放大器。 图6-3-1 数据放大器 图中虚线的右边是数据放大器,左边是桥路,其中电路R(1+δ)是电阻型传感器(例如热敏电阻)的等效电阻,它的阻值(或者说δ)随被测物理量的大小变化,因

而U X也随之改变。U X和参考电压U R分别送到数据放大器的两个输入端,作为数据放大器的输入信号,它含有差模成分,也含有共模成分,而已后者往往大于前者,因此数据放大器的共模抑制比必须足够大,才能将误差减小到足够小的程度。 由于本电路最后一级的差动电路在R f/R1和R3/R2不精确相等时,共模抑制比急剧下降。所以必须在前级即A1、A2组成的电路中,设法将差模信号放大若干倍(例如1000倍)而对共模输入信号只起跟随作用,那么送到后级的差模信号与共模信号的幅值之比将得到提高。因此,会降低后级差放电路对电阻匹配精度及芯片性能的要求。图6-3-1电路可以实现上述意图。 电阻R1上的电流是: 运放A1与A2输出电压之差是: 则: 若取(R1=100Ω,R2=50kΩ),则U12=1000U Id(U Id=U i1-U i2),即可将差模信号放大1000倍。 对于共模信号U IC=(U i1+U i2)/2=U I1=U I2,电阻R1的电流等于零(设A1和A2的特性一致),因此U01=U02=U IC。 以上结果表明,A1和A2组成的电路能够将差模信号与共模信号之比提高了2R2/R1倍。所以即使后一级电路的共模抑制比不高,电阻的匹配也不很好,仍然可以很好地抑制共模信号。 实验结果:

运算放大器的工作原理

运算放大s得工作原理 放大器得作用:仁能把输入讯号得电压或功率放人得装置,由电了管或晶体管■电源变压器与其她电器元件组成。用在通讯、广播.需达、电视、自动控制等各种装置中。原理:高频功率放人器用于发射机得末级,作用就是将高频已调波信号进行功率放大,以满足发送功率得炎求,然后经过天线将其辐射到空间,保证在?定区域内得接收机可以接收到满意得信号 电平,并且不干扰相邻信道得通信。高频功率放大器就是通信系统中发送装置得重要组件。 按其工作频带得宽窄划分为窄带简频功率放人器与宽带高频功率放人器两种,窄带周频功率放人器通常以具有选频滤波作用得选频电路作为输出回路,故又称为调谐功率放人器或谐振功率放人器:宽带简频功率放人器得输出电路则就是传输线变圧器或其她宽带匹配电路,W此又称为非调谐功率放大器?高频功率放人能就是?种能量转换器件,它将电源供给得直流能量转换成为高频交流输出在“低频电r 线路噪程中己知倣人器可以按照电流导通角得不同, 运算放人器原理 运算放人器(Op e r atio n a 1 AmpI i Pier-简称OP、OPA、OPAMP)就是?种直 流耦合,差模(差动模式)输入、通常为单端输出(D 1 ffere ntial—in, sing 1 e—ended o utput)得高增益(gain)电压放人器阴为刚开始主耍用于加法,乘法等运算电路中? W而得名??个理想得运算放大器必须具备下列特性:无限人得输入阻抗.等于零得输出阻抗、无限人得开回路 增益、无限大得共模計#斥比得部分.无限人得频宽。最基本得运算放人器如图1-1- 一个运算放人器模组?般包括?个正输入端(OP_P〉、?个负输入端(OP_N〉与?个输出端(0 P_0)。 图1?1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node )连接,形成一负反馈(negative feedback)组态。原因就是运算放人器得电压増益非常大,范 圉从数百至数万倍不等,使用负反馈方可保证电路得稳定运作。但就是这并不代衣运算放人器不能连接成正回馈(positive f e edbac k ),相反地,在很多需要产生震荡讯号得系统中,正回馈组态得运算放大器就是很常见得组成元件。 开环回路

集成运算放大器练习题及答案

第十章 练习题 1. 集成运算放大器是: 答 ( ) (a) 直接耦合多级放大器 (b) 阻容耦合多级放大器 (c) 变压器耦合多级放大器 2. 集成运算放大器的共模抑制比越大, 表示该组件: 答 ( ) (a) 差模信号放大倍数越大; (b) 带负载能力越强; (c) 抑制零点漂移的能力越强 3. 电路如图10-1所示,R F2 引入的反馈为 : 答 ( ) (a) 串联电压负反馈 (b) 并联电压负反馈 (c) 串联电流负反馈 (d) 正反馈 图10-1 4. 比例运算电路如图10-2所示,该电路的输出电阻为: 答 ( ) (a) R F (b) R 1+R F (c) 零 图10-2 5. 电路如图10-3所示,能够实现u u O i =- 运算关系的电路是: 答 ( ) (a) 图1 (b) 图2 (c) 图3 图10-3 6. 电路如图10-4所示,则该电路为: 答 ( )

(a)加法运算电路; (b)反相积分运算电路; (c) 同相比例运算电路 图10-4 7. 电路如图10-5所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 O u i 1 u i2 图10-5 8. 电路如图10-6所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 u O u i 1u i2 图10-6 9. 电路如图10-7所示,该电路为: 答 ( ) (a)比例运算电路 (b) 比例—积分运算电路 (c) 微分运算电路 O u 图10-7 10. 电路如图10-8所示 ,输入电压u I V =1,电阻R R 1210==k Ω, 电位器R P 的阻值为20k Ω 。 试求:(1) 当R P 滑动点滑动到A 点时,u O =? (2) 当R P 滑动点滑动到B 点时,u O =? (3) 当R P 滑动点滑动到C 点(R P 的中点)时 , u O =?

放大器应用实例

基于DSP和USB的三维感应测井数据采集系统研究 Logging Data Acquisition System Research of Three-Dimensional Induction Based on DSP and USB 西安石油大学徐飞 陕西能源职业技术学院聂熙雅 引言 数据采集是DSP最基本的应用领域,本文设计的数据采集系统利用TI公司的TMS320F2812 DSP芯片。该芯片的主要特点有:150 MI/s(百万条指令/秒)的执行速度使得指令周期减小到6.67ns,从而提高了控制器的实时控制能力;采用哈佛总线结构,具有高性能的32位的CPU,在一个周期内能够实现32位×32位或两个16位×16位的乘法累加操作,具有快速中断响应与处理能力;TMS320F2812应用大量外设接口简化了电路设计;提供了足够的处理能力,使一些复杂的实时控制算法的应用成为可能。 USB是现在应用广泛的一种高速通用串行总线协议。本文利用Philips公司的PDIUSBD12芯片。将USB协议应用于以DSP为核心的嵌入式系统,可以大大提高DSP系统与计算机的通信能力,从而拓宽DSP的应用范围。本文利用DSP和USB设计的数据采集系统,符合三维感应测井多通道数据采集的需要。 数字采集系统设计 数据采集系统的结构框图如图1所示,主要包括DSP、前置放大电路、信号调理电路、USB通讯接口,由于三维感应测井有3个Z轴向接收线圈和7组三分量接收线圈构成,所以采用了7组多路开关。在一个数据采集系统中,A/D转换器是采集系统的核心。在基于TMS320F2812的数据采集系统中,选用了芯片嵌入式的ADC模块。 图1 三维感应测井数据采集系统结构框图 信号调理电路 由于本采集系统用于三维感应测井中,它对信号采集的精度要求高,因为被采信号频率较高,采样通道多,所以结果分析对原始数据的依赖性强。本设计信号调理电路分为前置放大器、带通滤波器、程控增益放大器、陷波器四部分。

运算放大器11种经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

(完整版)集成运算放大器练习题

集成运算放大器测试题 指导老师:高开丽班级:11机电姓名: _____________ 成绩: 一、填空题(每空1分,共20分) 1、集成运放的核心电路是__________ 电压放大倍数、_________ 输入电阻和_______ 输出电阻的电路。(填“低”、“高”) 2、集成运由_____________ 、______________ 、________________ 、___________ 四个部分组成。 3、零漂的现象是指输入电压为零时,输出电压_________________ 零值,出现忽大忽小得现象。 4、集成运放的理想特性为:________________ 、______________ 、_________ 、_____________ 。 5、负反馈放大电路由__________________ 和__________________ 两部分组成。 6、电压并联负反馈使输入电阻__________ ,输出电阻___________ 。 7、理想运放的两个重要的结论是_______________ 和_____________ 。 &负反馈能使放大电路的放大倍数________________ ,使放大电路的通频带展宽,使输出信号波形的非线性失真减小,__________ 放大电路的输入、输出电阻。 二、选择题(每题3分,共30分) 1、理想运放的两个重要结论是() A 虚断VI+=VI-,虚短i l+=il- B 虚断VI+=VI-=O ,虚短i l+=il-=O C 虚断VI+=VI-=O ,虚短i I+=iI- D 虚断i I+=iI-=0 ,虚断VI+=VI- 2、对于运算关系为V0=10VI的运算放大电路是() A反相输入电路B同相输入电路C电压跟随器D加法运算电路 3、电压跟随器,其输出电压为V0,则输入电压为() A VI B - VI C 1 D -1 4、同相输入电路,R仁10K,Rf=100K ,输入电压VI为10mv,输出电压V0为 () A -100 mv B 100 mv C 10 mv D -10 mv

高精度数据采集放大器AD522及其应用

高精度数据采集放大器AD522及其应用 摘要:AD522是AD公司推出的高精度数据采集放大器,利用它可在恶劣工作环境下获得高精度数据。文中介绍了其主要特点,给出了AD522的典型应用电路,并对AD522在特殊应用情况下漂移、增益、共模拟制比的调整方法作了说明,最后还指出了AD522的误差形成原理及调整方法。 关键词:数据采集放大器共模抑制比漂移 AD522 1 概述 AD522集成数据采集放大器可以在环境恶劣的工作条件下进行高精度的数据采集。它线性好,并具有高共模抑制比、低电压漂移和低噪声的优点,适用于大多数12位数据采集系统。AD522通常用于电阻传感器(电热调节器、应变仪等)构成的桥式传感器放大器以及过程控制、仪器仪表、信息处理和医疗仪器等方面。 AD522具有如下特性: ●低漂移:2.0μV/℃(AD522B); ●非线性低:0.005%(G=100); ●高共模抑制比:>110dB(G=1000); ●低噪声:1.5μVp-p(0.1~100Hz); ●单电阻可编程增益:1≤G≤1000; ●具有输出参考端及远程补偿端; ●可进行内部补偿; ●除增益电阻外,不需其它外围器件; ●可调整偏移、增益和共模抑制比。 AD511采用14脚DIP封装,其结构外形和常用的AD521相似。图1给出了AD522的引脚排列。表1是各引脚的功能说明。 表1 引脚功能说明

2 AD522的主要特性 AD522可以提供高精度的信号调理,它的输出失调电压漂移小于1V/℃,输入失调电压漂移低于 2.0μV/℃,共模抑制比高于80dB(在G=1000时为110dB),G=1时的最大非线性增益为0.001%,典型输入阻抗为10 9Ω。 AD522使用了自动激光调整的薄膜电阻,因而公差小、损耗低、体积小、性能可靠。同时,AD522还具有单片电路和标准组件放大器的最好特性,是一种高性价比的放大器。 为适应不同的精确度要求和工作温度范围,AD522提供有三种级别。其中“A”和“B”为工业级,可用于-25~+85℃。“S”为军事级,用于-55~+125℃。AD522可以提供四种漂移选择。输出失调电压的最大漂移随着增益的增加而增加。失调电流漂移所引起的电压误差等于失调电流漂移和不对称源电阻的乘积。另外,AD522的非线性增益将随关闭环增益的降低而增加。 AD522放大器的共模抑制比的测量环境条件为±10V,使用阻值为1kΩ的不对称电阻。在低增益情况下,共模抑制比主要取决于薄膜电阻的稳定性,但由于增益带宽的影响,AD522在60Hz以下频率时相对比较恒定。但在有限的带宽中,AD522的相移将随着直流共模抑制比的升高而增加。 在动态性能方面,AD522的稳定时间、单位增益带宽和增益成正比。 3 应用 3.1 典型应用 图2是AD522应用于桥型放大电路时的典型电路图。该电路可在低电压、高阻抗、大噪声的环境中获得最佳性能。当然,这需要正确的屏蔽和接地。在图2电路中,信号地和AD522直接连接,从而形成了输入放大器的偏置电流回路。用户在设计时,可以像图2所给电路那样直接连接,也可以通过小于1MΩ的电阻间接连接。 为了降低噪音,输入管脚和增益电阻应被屏蔽。利用自举电路可实现无源数据的保护以改善交流共模抑制比。这种方法可减小差分相移,同时也可抑制系统带宽下降。 利用图2这种平衡设计不需使用外部旁路电容就可以获得较理想的性能。但如果信号源被置于远处(10英尺或更远)或者携带超过几千毫伏的噪声时,就需要使用旁路电容来获得更好的性能。

放大器的种类及作用

放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。 原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。 高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 2、画图的时候,放大或缩小图形的用具。也叫放大尺。 原理:利用光的折射 一、集成运算放大器的分类介绍 下面对不同特性的集成运算放大器进行介绍。 1.通用型集成运算放大器 通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。通用型集成运算放大器又分为Ⅰ型、型和型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。 2.高精度集成运算放大器 高精度集成运算放大器是指那些失调电压小,温度漂移非常小,以及增益、共模抑制比非常高的运算放大器。这类运算放大器的噪声也比较小。其中单片高

CMOS运算放大器设计毕业设计

目录 摘要 (5) Abstract (6) 0 文献综述 (6) 0.1 集成电路概述 (7) 0.2 集成电路的发展 (7) 0.3 集成电路应用领域 (8) 0.4 CMOS集成电路 (11) 0.5 运算放大器 (11) 0.6 CMOS运算放大器 (12) 1 引言 (13) 1.1 运算放大器简介 (13) 1.2 本文研究内容 (14) 2 CMOS运算放大器 (14) 2.1 CMOS运算放大器简介 (14) 2.2 CMOS运算放大器的设计流程 (14) 3 CMOS运算放大器电路设计 (15) 3.1 电路的PSpice模拟及理论计算 (15) 3.2 电路结构分析及参数调试 (17) 3.3 电路仿真 (17) 4 CMOS 运算放大器版图设计 (27) 4.1 版图设计流程 (27) 4.2 工艺设计规则 (28) 4.3 单元器件的绘制——图元 (29) 4.4 CMOS放大器的版图设计 (34) 4.5 T-Spice仿真 (37) 5 总结 (41) 参考文献 (42)

致谢 (44)

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

运算放大器选型

RBW 滤波器中运算放大器的确定: 首先,我们先了解一下什么是压摆率(Slew rate ,SR ): 定义:闭环放大器输出电压变化的最快速率。用 V/μs 表示。 理解:此值显示运放正常工作时,输出端所能提供的最大变化速率,当输出信号欲实现比这个速率还快的变化时,运放就不能提供了,导致输出波形变形——原本是正弦波就变成了三角波。 这里以正弦波为例进行分析。对一个正弦波来说,其最大变化速率发生在过零点处, 且与输出信号幅度、频率有关。设输出正弦波幅度为m A ,频率为out f , 过零点变化速率为V D ,则 =2V m out D A f π 要想输出完美的正弦波,则正弦波过零点变化速率必须小于运放的压摆率。 即 =2V m out SR D A f π? 这个指标与满功率带宽有关。 接下来,我们先看一下ADA4817的数据手册。 ADA4817带宽达到1GHz ,满足我们的要求,但是压摆率为870V/μs ,因此,我们需要选择一种高带宽且压摆率同样高的产品。 根据AD 选型表,选择带宽和压摆率,得到如下表格:

选择差分放大器AD8003,其参数指标有: 3db带宽为1.65GHz,压摆率达到3.8k V/μs,远远大于ADA4817,偏置电流和噪声都较小,相对稳定,满足要求。 选择AD8000,其参数指标有: 3db带宽为1.58GHz,满足要求,压摆率4.1k V/μs,较大,噪声较小,但偏置电流最大值为45uA,对于微小信号来说,过大的输入偏置电流可能会分掉被测电流使测量失准,但是对于本课题,该滤波器偏置电流可忽略,基本符合要求。 选择AD8045,其参数指标有: 3db带宽为1GHz,压摆率达到1.35k V/μs,偏置电流和噪声都较小,相对稳定,满足要求。 选择AD8009,其参数指标有: 3db带宽为1GHz,压摆率达到5.5k V/μs,相对来说较高,噪声较小,但偏置电流最大值为150uA。基本符合要求。 选择ADA4857-2,其参数指标有: 3db带宽为850MHz,压摆率达到2.8k V/μs,噪声较小,偏置电流为3.3uA。基本符合要求。

放大器常用芯片

放大器常用芯片 ISO106高压,隔离缓冲放大器 ISO106同ISO102性能基本相同,主要区别要以下两点:①ISO106的连续隔离电压3500;②ISO106封装为40引脚DIP组件;主要引脚定义可参看ISO102。 LF147/347四JFET输入运算放大器 输入失调电压1mV(LF147)、5mV(LF347);温度漂移10μV/℃;偏置电流50pA增益带宽4MHz;转换速率13V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流7.2mA。±22V电源(LF147)、±18V电源(LF347);差模输入电压±38V(LF147)、±30V(LF347);共模输入电压±19V(LF147)、±15V(LF347);功耗500mW。 LF155/255/355JFET输入运算放大器 输入失调电压1mV(LF155/355)、3mV(LF255);温度漂移3μV/℃(LF155/355)、5μV/℃(LF255);偏置电流30pA增益带宽GB=2.5MHz;转换速率5V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流2mA。±40V电源(LF155/255)、±30V电源(LF355);共模输入电压±20V(LF155/255)、±16V(LF355);输入阻抗10^12Ω共模抑制比100dB;电压增益106dB。 LF353双JFET输入运算放大器 输入失调电压5mV;温度漂移10μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率13V/μs;噪声16nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。±18V电源;差模输入电压±30V;共模输入电压±15V;功耗500mW。 LF411/411A低失调、低漂移、JFET输朐怂惴糯笃?br> 输入失调电压800μV (LF411)、300μV(LF411A);温度漂移7μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率15V/μs;噪声23nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。±18V 电源(LF411)、±22V(LF411A);差模输入电压±30V(LF411)、±38V(LF411A); 共模输入电压±15V(LF411)、±19V(LF411A)。

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

低频功率放大器

学科分类号 本科学生电子课程设计论文 题目:低频功率放大器 姓名罗清 学号2006180824 院(系)工学院 专业、年级 0 6 电子技术教育 指导教师兰浩老师 2008年9月5日

指导教师评定成绩 评审基元评审要素评审内涵满分 指导教师 实评分 选题质量15% 目的明确 符合要求 选题符合专业培养目标,体现学科、专业特点和教学 计划的基本要求,达到课程设计论文综合训练的目的。 5 理论意义或 实际价值 符合本学科的理论发展,有一定的学术意义;对经济建 设和社会发展的应用性研究中的某个理论或方法问题进 行研究,具有一定的实际价值。 5 选题恰当题目规模适当,难易度适中;有一定的科学性。 5 能力水平50% 查阅文献 资料能力 能独立查阅相关文献资料,归纳总结本论文所涉及的 有关研究状况及成果。 10 综合运用 知识能力 能运用所学专业知识阐述问题;能对查阅的资料进行整 理和运用;能对其科学论点进行论证。 10 研究方案的 设计能力 整体思路清晰;研究方案合理可行。 5 研究方法和手 段的运用能力 能运用本学科常规研究方法及相关研究手段(如计算机、 实验仪器设备等)进行实验、实践并加工处理、总结信 息。 20 外文应用 能力 能阅读、翻译一定量的本专业外文资料、外文摘要和外 文参考书目(特殊专业除外)体现一定的外语水平。 5 设计论文35% 写作水平论点鲜明;论据充分;条理清晰;语言流畅。15 写作规范 符合学术论文的基本要求。用语、格式、图表、数据、量 和单位、各种资料引用规范化、符合标准。 10 论文篇幅5000字左右。10 实评总分成绩等级 指导教师评审意见: 指导教师签名:说明:评定成绩分为优秀、良好、中等、及格、不及格五个等级,实评总分90—100分记为优秀,80—89分记为良好,70—79分记为中等,60—69分记为及格,60分以下记为不及格。

程控放大器设计报告

程控放大器设计报告 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

《电子线路》课程设计 设 计 报 告 题目:程控放大器的设计 班级:电子工程 姓名:XXXXXXXXXXXXXXXX 指导教师:XXXXXX 2012年6月 摘要 本次课程设计的目的是通过设计与实验,了解实现程控放大器的方法,进一步理解设计方案与设计理念,扩展设计思路与视野。 对微弱信号的程控放大,传统的方法是采用可软件设置增益的放大器如芯片,但该类放大器价格较高且选择档位较少。采用数字电位器或者模拟开关和AD组成的多档位、低成本的程控放大器可克服以上缺点,但是模拟开关具有较大的噪声且存在偏置电阻,精度不高使用D/A内部

电阻实现可变电阻也是较为常用的方法,利用DAC内部精密电阻网络作为运放的反馈电阻提高了放大精度,但这种方案难以实现连续调节。 关键字:程控放大模拟开关DAC 目录 程控放大器设计 一、内容提要 随着计算机的应用,为了减少硬件设备,可以使用可编程增益放大器 (PGA:PmgrammableGainAmplifier)。它是一种通用性很强的放大器,其放大倍数可以根据需要用程序进行控制。采用这种放大器,可通过程序调节放大倍数,使A/D转换器满量程信号达到均一化,因而大大提高测量精度。所谓量程自动转换就

是根据需要对所处理的信号利用可编程增益放大器进行倍数的自动调节,以满足后续电路和系统的要求。可编程增益放大器有两种——组合PGA和集成PGA。二、设计任务和要求 设计和实现一程控放大器,指标要求: 1、增益在10~60dB之间,以10dB步进可调; 2、当增益为40dB时,-3dB带宽≥40kHz. 3、电压增益误差≤10%; 4、最大输出电压≤10V。 注:不可用专用集成块! 三、总体方案选择的论证 实现程控放大器的方案有多种,如: (1)用继电器改变运算放大器的反馈网络; (2)用模拟开关来控制运算放大器的反馈网络; (3)用数模转换器(D/A)的电阻网络来改变增益。 方案对比: 方案一:采用模拟开关控制运算放大器的反馈网络

相关文档
最新文档