中考数学圆的综合(大题培优)及详细答案

中考数学圆的综合(大题培优)及详细答案
中考数学圆的综合(大题培优)及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)

1.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .

(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD =

1

2

,求AB 和FC 的长.

【答案】(1)见解析;(2) ⑵AB=20 , 403

CF = 【解析】

分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;

(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解. 详解:⑴证明:连结OC ∵AB 是⊙O 的直径 ∴∠ACB=90° ∴∠B+∠BAC=90° ∵OA=OC ∴∠BAC=∠OCA ∵∠B=∠FCA ∴∠FCA+∠OCA=90° 即∠OCF=90° ∵C 在⊙O 上 ∴CF 是⊙O 的切线

⑵∵AE=4,tan ∠ACD 1

2

AE EC = ∴CE=8

∵直径AB ⊥弦CD 于点E ∴AD AC = ∵∠FCA =∠B ∴∠B=∠ACD=∠FCA ∴∠EOC=∠ECA ∴tan ∠B=tan ∠ACD=1

=2

CE BE ∴BE=16 ∴AB=20 ∴OE=AB÷2-AE=6 ∵CE ⊥AB ∴∠CEO=∠FCE=90° ∴△OCE ∽△CFE

∴OC OE

CF CE = 即

106=8

CF ∴40CF 3

=

点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.

2.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动. (1)当t =0时,点F 的坐标为 ; (2)当t =4时,求OE 的长及点B 下滑的距离; (3)求运动过程中,点F 到点O 的最大距离;

(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.

【答案】(1)F (3,4);(2)8-43;(3)7;(4)t 的值为245

或325. 【解析】

试题分析:(1)先确定出DF ,进而得出点F 的坐标; (2)利用直角三角形的性质得出∠ABO =30°,即可得出结论;

(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论; (4)分两种情况,利用相似三角形的性质建立方程求解即可.

试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°, ∴∠ABO =30°,点E 是AB 的中点,OE =

1

2

AB =4,BO =43,∴点B 下滑的距离为843-.

(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.

(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF 22FD AD +,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853

t

=,∴t 1=

245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=32

5

综上所述:当以点F为圆心,FA为半径的圆与坐标轴相切时,t的值为24

5

32

5

点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO=30°,解(3)的关键是判断出当O、E、F三点共线时,点F到点O的距离最大,解(4)的关键是判断出Rt△FAE∽Rt△ABD,是一道中等难度的中考常考题.

3.已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC

画图操作:

(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)

理解应用:

(2)在(1)的条件下,

①若tan∠APB

1

2

=,求点P的坐标

②当点P的坐标为时,∠APB最大拓展延伸:

(3)若在直线y

4

3

=x+4上存在点P,使得∠APB最大,求点P的坐标

【答案】(1)图形见解析(2)(0,2),(0,4)(0,3395

3

-,

125

5

【解析】

试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;

(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);

②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;

试题解析:解:(1)∠APB如图所示;

(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=1

2

=

AB

BC

.∵A(2,0),B

(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).

②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,

∴BC22

AC AB

3,∴C(6,3∴K(4,2),∴P(0,3

案为:(0,3

(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=4

3

x+4交x轴于M

(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA?MB,∴MP5

PK⊥OA于K.∵ON∥PK,∴ON

PK

=

OM

MK

=

NM

MP

,∴

4

PK

=

3

MK35

,∴PK

125

MK=95

5

,∴OK=

5

5

﹣3,∴P(

95

5

﹣3,

125

5

).

点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.

4.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.

(1)求证:CE是⊙O的切线;

(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.

【答案】(1)证明见解析;(2)

【解析】

【分析】

(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;

(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.

【详解】

(1)证明:连接OC,AC.

∵CF⊥AB,CE⊥AD,且CE=CF.

∴∠CAE=∠CAB.

∵OC=OA,

∴∠CAB=∠OCA.

∴∠CAE=∠OCA.

∴OC∥AE.

∴∠OCE+∠AEC=180°,

∵∠AEC=90°,

∴∠OCE=90°即OC⊥CE,

∵OC是⊙O的半径,点C为半径外端,

∴CE是⊙O的切线.

(2)解:∵AD=CD,

∴∠DAC=∠DCA=∠CAB,

∴DC∥AB,

∵∠CAE=∠OCA,

∴OC∥AD,

∴四边形AOCD是平行四边形,

∴OC=AD=a,AB=2a,

∵∠CAE=∠CAB,

∴CD=CB=a,

∴CB=OC=OB,

∴△OCB是等边三角形,

在Rt△CFB中,CF=,

∴S四边形ABCD=(DC+AB)?CF=

【点睛】

本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.

5.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.

(1)求证:DF为⊙O的切线;

(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.

【答案】(1)详见解析;(2)32π.

【解析】

【分析】

(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的

判定定理证明;

(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,OB=BD=23,根据勾股定理求出PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.

【详解】

证明:(1)连结OD,

∵AD平分∠BAC交⊙O于D,

∴∠BAD=∠CAD,

∴BD CD,

∴OD⊥BC,

∵BC∥DF,

∴OD⊥DF,

∴DF为⊙O的切线;

(2)连结OB,连结OD交BC于P,作BH⊥DF于H,

∵∠BAC=60°,AD平分∠BAC,

∴∠BAD=30°,

∴∠BOD=2∠BAD=60°,

∴△OBD为等边三角形,

∴∠ODB=60°,3,

∴∠BDF=30°,

∵BC∥DF,

∴∠DBP=30°,

在Rt△DBP中,PD=1

2

3,3,

在Rt△DEP中,∵37

∴22

(7)(3)

=2,

∵OP⊥BC,

∴BP=CP=3,

∴CE=3﹣2=1,

∵∠DBE=∠CAE,∠BED=∠AEC,

∴△BDE∽△ACE,

∴AE:BE=CE:DE,即AE:5=17,

∴AE=

57

7

∵BE ∥DF ,

∴△ABE ∽△

AFD ,

∴BE AE

DF AD

= ,即

57571257

DF = , 解得DF=12, 在Rt △BDH 中,BH=

1

2

BD=3, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣

△BOD 的面积)=22160(23)3

123(23)23604

π???--? =93﹣2π.

【点睛】

考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.

6.如图,□ABCD 的边AD 是△ABC 外接圆⊙O 的切线,切点为A ,连接AO 并延长交BC 于点E ,交⊙O 于点F ,过点C 作直线CP 交AO 的延长线于点P ,且∠BCP =∠ACD . (1)求证:PC 是⊙O 的切线;

(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .

【答案】(1)见解析;(2)14

π

- 【解析】

【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;

(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE =

1

2

BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE =CE =1,PC =OC 22OE CE 2+部分的面积.

【详解】(1)过C点作直径CM,连接MB,∵CM为直径,

∴∠MBC=90°,即∠M+∠BCM=90°,

∵四边形ABCD是平行四边形,

∴AB∥DC,AD∥BC,

∴∠ACD=∠BAC,

∵∠BAC=∠M,∠BCP=∠ACD,

∴∠M=∠BCP,

∴∠BCP+∠BCM=90°,即∠PCM=90°,

∴CM⊥PC,

∴PC与⊙O相切;

(2)连接OB,

∵AD是⊙O的切线,切点为A,

∴OA⊥AD,即∠PAD=90°,

∵BC∥AD,∠AEB=∠PAD=90°,∴AP⊥BC.∴BE=CE=1

2

BC=1

∴AB=AC,∴∠ABC=∠ACB=67.5°,

∴∠BAC=180°-∠ABC-∠ACB=45°,

∴∠BOC=2∠BAC=90°,

∵OB=OC,AP⊥BC,∴∠BOE=∠COE=∠OCE= 45°,∵∠PCM=90°,∴∠CPO=∠COE=∠OCE= 45°,

∴OE=CE=1,PC=OC=22

OE CE2

+=,

∴S=S△POC-S扇形OFC=

()2

45π2

1π221 23604

?

??-=-.

【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.

7.如图,已知△ABC,23

BC=,∠B=45°,点D在边BC上,联结AD,以点A 为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.

(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;(2)如果E是DF的中点,求:

BD CD的值;

(3)联结CF,如果四边形ADCF是梯形,求BD的长.

【答案】(1) 2442y x

x (0≤x≤3); (2)

45; (3) BD 的长是1或1+5. 【解析】 【分析】

(1)过点A 作AH ⊥BC ,垂足为点H .构造直角三角形,利用解直角三角形和勾股定理求得AD 的长度.联结DF ,点D 、F 之间的距离y 即为DF 的长度,在Rt △ADF 中,利用锐角三角形函数的定义求得DF 的长度,易得函数关系式. (2)由勾股定理求得:AC=

22AH DH +.设DF 与AE 相交于点Q ,通过解Rt △DCQ 和

Rt △AHC 推知

1

2

DQ CQ =.故设DQ=k ,CQ=2k ,AQ=DQ=k ,所以再次利用勾股定理推知DC 的长度,结合图形求得线段BD 的长度,易得答案.

(3)如果四边形ADCF 是梯形,则需要分类讨论:①当AF ∥DC 、②当AD ∥FC .根据相似三角形的判定与性质,结合图形解答. 【详解】

(1)过点A 作AH ⊥BC ,垂足为点H .

∵∠B =45°,AB 2∴·cos 1BH AH AB B ===. ∵BD 为x ,∴1DH x =-.

在Rt △ADH 中,90AHD ∠=?,∴22222AD AH DH x x =

+=-+.

联结DF ,点D 、F 之间的距离y 即为DF 的长度.

∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=?. 在Rt △ADF 中,90DAF ∠=?,∴2442cos AD

DF x x ADF

==-+∠

∴2442y x x =-+.()03x ≤≤ ;

(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF .

∵BC=3

,∴312HC =-=.∴

AC =.

设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=?,tan DQ

DCQ CQ

∠=. 在Rt △AHC 中,90AHC ∠=?,1

tan 2

AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴

1

2

DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==,

3k =k =

,∴53DC ==.

∵43BD BC DC =-=

,∴4

:5

BD CD =. (3)如果四边形ADCF 是梯形

则①当AF ∥DC 时,45AFD FDC ∠=∠=?.

∵45ADF ∠=?,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =. ②当AD ∥FC 时,45ADF CFD ∠=∠=?. ∵45B ∠=?,∴B CFD ∠=∠.

∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠. ∴ABD ?∽DFC ?.∴AB AD

DF DC

=. ∵

DF =

,DC BC BD =-.

∴2

AD BC BD =-.即

2

3x =-,

整理得 210x x --=,解得 x =

综上所述,如果四边形ADCF 是梯形,BD 的长是1或2

. 【点睛】

此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.

8.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径,BD AD =,DE ⊥BC ,垂足为E .

(1)判断直线ED 与⊙O 的位置关系,并说明理由; (2)若CE =1,AC =4,求阴影部分的面积.

【答案】(1)ED 与O 相切.理由见解析;(2)2

=33

S π-阴影.

【解析】 【分析】

(1)连结OD ,如图,根据圆周角定理,由BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;

(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可. 【详解】

(1)直线ED 与⊙O 相切.理由如下:

连结OD ,如图,∵BD AD =,∴∠BAD =∠ACD . ∵∠DCE =∠BAD ,∴∠ACD =∠DCE .

∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;

(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .

∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD

26023360π??=-

?22

2

3

=

π3-.

【点睛】

本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证

某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.

9.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.

(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;

(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.

①试猜想∠AFG和∠B的数量关系,并证明;

②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.

【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=3

【解析】

【分析】

(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.

(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作

⊙F.因为AG AG

,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.

②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.

【详解】

(1)证明:连接OC.

∵OA=OC,EC=EA,

∴OF⊥AC,

∴FC=FA,

∴∠OFA=∠OFC,

∵∠CFA=2∠BAC,

∴∠OFA=∠BAC,

∵∠OEA=90°,

∴∠EAO+∠EOA=90°,

∴∠OFA+∠AOE=90°,

∴∠FAO=90°,

∴AF⊥AB.

(2)①解:结论:∠GFA=2∠ABC.

理由:连接FC.

∵OF垂直平分线段AC,

∴FG=FA,

∵FG=FA,

∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG

∴∠GFA=2∠ACG,

∵AB是⊙O的直径,

∴∠ACB=90°,

∵CD⊥AB,

∴∠ABC+∠BCA=90°,

∵∠BCD+∠ACD=90°,

∴∠ABC=∠ACG,

∴∠GFA=2∠ABC.

②如图2﹣1中,连接AG,作FH⊥AG于H.

∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),

∴CD=AE,

∵EC=EA,

∴AC=2CD.

∴∠BAC =30°,∠ABC =60°, ∴∠GFA =120°, ∵OA =OB =2, ∴OE =1,AE =,BA =4,BD =OD =1,

∵∠GOE =∠AEO =90°,

∴OG ∥AC ,

323

DG OG ∴=

=

, 22221

AG DG AD ∴=+=

, ∵FG =FA ,FH ⊥AG , ∴AH =HG 21

∠AFH =60°, ∴AF =

27

sin 603

AH ?=

, 在Rt △AEF 中,EF 221

3

AF AE -=,

∴OF =OE +EF =43

, ∵PE ∥OG , ∴

PE EF

OG 0F

=, ∴

134

233=, ∴PE 3. 【点睛】

圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

10.已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.

【答案】(1)见解析(2)332 23

π

-

【解析】

试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;

(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.

试题解析:

(1)证明:连接DO.

∵△ABC是等边三角形,

∴∠A=∠C=60°.

∵OA=OD,

∴△OAD是等边三角形.

∴∠ADO=60°,

∵DF⊥BC,

∴∠CDF=90°﹣∠C=30°,

∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,

∴DF为⊙O的切线;

(2)∵△OAD是等边三角形,

∴AD=AO=AB=2.

∴CD=AC﹣AD=2.

Rt△CDF中,

∵∠CDF=30°,

∴CF=CD=1.

∴DF=,

连接OE,则CE=2.

∴CF=1,

∴EF=1.

∴S直角梯形FDOE=(EF+OD)?DF=,

∴S扇形OED==,

∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.

【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

中考数学各类经典大题集锦

25. (6分) 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨 x 元(x 为正整数),每个月的销售利润为 y 元. (1)求 y 与 x 的函数关系式,并直接写出自变量的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润最大的月利润是多少元 (3)每件商品的售价定为多少元时,每个月的利润恰为2200元根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元 23.(本小题满分12分)某电厂规定,该厂家属区每户居民如果一个月的用电量不超过a 千 瓦·时,那么这户居民这个月只需交10元电费;如果超过a 千瓦·时,则这个月除了仍要交10元的用电费以外,超过的部分还要按每千瓦·时 100 a 元交费. (1)该厂某户居民2月份用电90千瓦·时,超过了规定的a 千瓦·时,则超过的部分应交电费___*___元.(用含a 代数式表示) (2)下表是这户居民3月、4月用电情况和交费情况:

23、(12分)已知一元二次方程2 40x x k -+=有两个不相等的实数根. (1)求k 的取值范围; (2)如果 k 是符合条件的最大整数,且一元二次方程 240 x x k -+=与 210x mx +-=有一个相同的根,求此时m 的值. 22、(12分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容,南沙区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿化面积不断增加(如图所示) (1)根据图中所提供的信息,回答下列问题:2011年的绿化面积为 公顷,比2010年增加了 公顷。 (2)为满足城市发展的需要,计划到2013年使城区绿化地总面积达到公顷,试求这两年(2011~2013)绿地面积的年平均增长率。 _ _ 60 _ 56_ 51_ 48 _ _ 2011 _ 2010 _ 2009 _ 2008

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

2018中考数学圆(大题培优)

(2018?福建A卷)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E. (1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小. (12.00分)(2018?福建B卷)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB. (1)求证:BG∥CD; (2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.

25.(10.00分)(2018?河北)如图,点A在数轴上对应的数为26,以原点O为 圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP. (1)若优弧上一段的长为13π,求∠AOP的度数及x的值; (2)求x的最小值,并指出此时直线l与所在圆的位置关系; (3)若线段PQ的长为12.5,直接写出这时x的值. 23.(10.00分)(2018?恩施州)如图,AB为⊙O直径,P点为半径OA上异于O 点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点. (1)求证:DE为⊙O切线; (2)若⊙O的半径为3,sin∠ADP=,求AD; (3)请猜想PF与FD的数量关系,并加以证明.

2020中考数学经典题型汇总

2020中考数学经典题型汇总 1.中点 ①中线:D为BC中点,AD为BC边上的中线 () 有全等 平行线中有中点,容易 是斜边的一半 直角三角形的斜边中线 ,可得 使得 到 延长 .6 .5 BD AD 2 c b.4 CDE ABD DE AD E AD .3 S S.2 CD BD .1 2 2 2 2 ACD ABD + = + ? ? ? = = = ? ? 1.例.如图,在菱形ABCD中,tan∠ABC=,P为AB上一点,以PB 为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则的值为() A.B.C.D. 2.角平分线 ②角平分线:AE平分∠BAC 有等腰三角形 平行线间有角平分线易 作全等三角形 有相同角有公共边极易 .5 .4 .3 .2 BAE .1 CE BE AC AB DF DE CAE = = ∠ = ∠

3.高线 ③垂线:AF ⊥BC 角形 多个直角,易有相似三充分利用求高线可用等面积法 即.4Rt .3.290AFC BC AF .1? ? =∠⊥ ②直角三角形:AD 为中线AE 为垂线 ?????=?==+?=?====? =∠+∠?Rt AE BC AB AC S BC CD ABC ,构造充分利用特殊角;勾股定理:等面积法:: 斜边中线为斜边的一半两角互余:,60,45305.BC CE AC BC BE AB BC AB AC .42 121.32 1BD AD .290C B .122222

4.函数坐标公式 公式 1:两点求斜率k 2 121x x y y k AB --= 1 135312033 303 601 45-=?-=?=?=?=?k x k x k x k x k x 时,轴正方向夹角为⑤与时,轴正方向夹角为④与时,轴正方向夹角为③与时,轴正方向夹角为②与时,轴正方向夹角为①与 公式2:两点之间距离 221221)()(AB y y x x -+-= 应用:弦长公式

中考数学圆的综合-经典压轴题及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数. 【答案】(1)证明见解析;(2)25°. 【解析】 试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论. (2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数. 试题解析:(1)∵∠AOC=∠BOD ∴∠AOC -∠COD=∠BOD-∠COD 即∠AOD=∠BOC ∵四边形ABCD 是矩形 ∴∠A=∠B=90°,AD=BC ∴AOD BOC ??? ∴AO=OB (2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB , ∴∠A=90°. 又∵∠OPA=40°, ∴∠AOP=50°, ∵OB=OC , ∴∠B=∠OCB. 又∵∠AOP=∠B+∠OCB , ∴1 252 B OCB AOP ∠=∠= ∠=?. 2.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形 (性质探究)如图1,试探究圆外切四边形的ABCD 两组对边AB ,CD 与BC ,AD 之间的数

中考数学经典习题(50题)

中考数学经典大题 1.已知在△ABC中,∠ABC=90°,AB=6,BC=8.点Q是线段AC上的一个动点,过点Q作AC 的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P. (1)当点P在线段AB上时,求证:△APQ△ACB; (2)当△PQB是等腰三角形时,求AP的长. 2.如图,对称轴为的抛物线()与轴相交于A、B两点,其中 点A的坐标为(-3,0). (1)求点B的坐标; (2)已知,C为抛物线与轴的交点. ①若点P是抛物线上第三象限内的点,是否存在点P,使得S△POC=4S△BOC,若存在,求点P 的坐标;若不存在,请说明理由. ②设点Q是线段AC上的动点,作QD轴交抛物线于点D,求线段QD长度的最大值. ③若M是轴上方抛物线上的点,过点M作MN轴于点N,若△MNO与△OBC相似,求 M点的坐标. 3.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙ O的直径,且交BP于点E. (1)求证:PA是⊙O的切线; (2)过点C作CF AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长; (3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径.

4.如图,已知函数与坐标轴分别交于A、D、B三点,顶点为C. (1)求△BAD的面积; (2)点P是抛物线上一动点,是否存在点P,使S△ABP=S△ABC?若存在,求出点P的坐标; 若不存在,请说明理由; (3)在轴上是否存在一点Q,使得△DOQ与△ABC相似,如果存在,求出点P的坐标,如 果不存在,请说明理由. 5.如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A、B 在轴上,△MBC是边长为2的等边三角形。过点M作直线与轴垂直,交⊙M于点E,垂足为点M,且点D平分. (1)求过A、B、E三点的抛物线的解析式; (2)求证:四边形AMCD是菱形; (3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有 的点P的坐标;若不存在,请说明理由. 6.如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,取CB的中点E, DE的延长线与AB的延长线交于点P. (1)求证:PD是⊙O的切线; (2)若OB=BP,AD=6,求BC的长; (3)如图2,连接OD,AE相交于点F,若,求的值.

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学压轴题专题圆与相似的经典综合题附答案解析

中考数学压轴题专题圆与相似的经典综合题附答案解析 一、相似 1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证: (1)∠OAE=∠OBE; (2)AE=BE+ OE. 【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点, ∴OB⊥AC, ∴∠AOB=90°, ∵∠AEB=90°, ∴A,B,E,O四点共圆, ∴∠OAE=∠OBE (2)证明:在AE上截取EF=BE, 则△EFB是等腰直角三角形, ∴,∠FBE=45°, ∵在等腰Rt△ABC中,O为斜边AC的中点, ∴∠ABO=45°, ∴∠ABF=∠OBE, ∵, ∴, ∴△ABF∽△BOE,

∴ = , ∴AF= OE, ∵AE=AF+EF, ∴AE=BE+ OE. 【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。 (2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由; (4)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:证明:∵四边形是矩形, 在中, 分别是的中点,

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

推荐--中考数学经典题(部分)

各地中考数学经典题(部分) 1.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形 EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm . 2 .5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( ) 3 如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论 中:①EF AB ∥且1 2 EF AB =;②BAF CAF ∠=∠; A D C E F G B s 80 O v t 80 O v t 80 O v O B. C . D . 80 A D B E 第20题图

O G F B D A C E ③1 2 ADFE S AF DE = g 四边形; ④2BDF FEC BAC ∠+∠=∠,正确的个数是( ) A .1 B .2 C .3 D .4 4 如图,在四边形ABCD 中,动点P 从点A 开始沿A B C D 的路径匀速前进到D 为止。在这个过程中,△APD 的面积S 随时间t 的变 化关系用图象表示正确的是( ) 5如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G .连接GF.下列结论:①∠AGD=112.5°;②tan ∠AED=2;③S △AGD=S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG .其中正确结论的序号是 . 6 福娃们在一起探讨研究下面的题目: 参考下面福娃们的讨论,请你解该 s t O A s t O B s t O C s t O D 函数2 y x x m =-+(m 为常数)的图象如左图, 如果x a =时,0y <;那么1x a =-时, 函数值( ) A .0y < B .0y m << C .y m > D .y m = x y O x 1 x 2

中考数学必考经典题型

中考数学必考经典题型 题型一 先化简再求值 命题趋势 由河南近几年的中考题型可知,分式的化简求值是每年的考查重点,几乎都以解答题的形式出现,其中以除法和减法形式为主,要求对分式化简的运算法则及分式有意义的条件熟练掌握。 例:先化简,再求值:,1 2)1111( 22+--÷-++x x x x x x 其中.12-=x 分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值带入计算即可求值。 题型二 阴影部分面积的相关计算 命题趋势 近年来的中考有关阴影面积的题目几乎每年都会考查到,而且不断翻新,精彩纷呈.这类问题往往与变换、函数、相似等知识结合,涉及到转化、整体等数学思想方法,具有很强的综合性。 例 如图17,记抛物线y =-x 2+1的图象与x 正半轴的交点为A ,将线段OA 分成n 等份.设分点分别为P 1,P 2,…,P n -1,过每个分点作x 轴的垂线,分别与抛物线交于点Q 1,Q 2,…,Q n -1,再记直角三角形OP 1Q 1,P 1P 2Q 2,…的面积分别为 S 1,S 2,…,这样就有S 1=2312n n -,S 2=23 4 2n n -…;记W=S 1+S 2+…+S n -1,当n 越来越大时,你猜想W 最接近的常数是( ) (A)23 (B)12 (C)13 (D)14 分析 如图17,抛物线y =-x 2+1的图象与x 正半轴的交点为 A(1,0),与y 轴的交点为8(0,1). 设抛物线与y 轴及x 正半轴所围成的面积为S ,M(x ,y )在图示 抛物线上,则 222OM x y =+

中考数学圆综合练习题含答案

数学中考圆综合题附参考答案 1.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线; (2)若点E 是BC 上一点,已知BE =6,tan ∠ABC = 32,tan ∠AEC =3 5 ,求圆的直径. 2. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。 (1)求证:CD 为⊙0的切线; (2)若DC+DA=6,⊙0的直径为l0,求AB 的长度. 1. (1)证明:连接OC, ∵点C 在⊙0上,0A=OC,∴∠OCA=∠OAC ,∵CD ⊥PA ,∴∠CDA=90°, 有∠CAD+∠DCA=90°,∵AC 平分∠PAE ,∴∠DAC=∠CAO 。 ∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。 又∵点C 在⊙O 上,OC 为⊙0的半径,∴CD 为⊙0的切线. (2)解:过0作0F ⊥AB ,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形,∴0C=FD ,OF=CD. ∵DC+DA=6,设AD=x ,则OF=CD=6-x ,∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x , 在Rt △AOF 中,由勾股定理得222AF +OF =OA .即22(5)(6)25x x -+-=,化简得:211180x x -+= 解得2x =或9x =。由AD

中考数学圆的综合-经典压轴题附答案解析

中考数学圆的综合-经典压轴题附答案解析 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD 是直径, ∴∠DBC=90°, ∵CD=4,B 为弧CD 中点, ∴BD=BC= , ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB , ∵∠DBE=∠DBA , ∴△DBE ∽△ABD , ∴ , ∴BE?AB=BD?BD= . 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重 合),且四边形BDCE 为菱形. (1)求证:AC=CE ; (2)求证:BC 2﹣AC 2=AB?AC ; (3)已知⊙O 的半径为3. ①若AB AC =5 3 ,求BC 的长; ②当 AB AC 为何值时,AB?AC 的值最大? 【答案】(1)证明见解析;(2)证明见解析;(3)2;② 32

中考数学经典选择题100题(含答案)

中考数学经典选择题100题 1、在实数123.0,330tan ,60cos ,7 22,2121121112.0,,14.3,64,3,80032---- π中,无理数有( ) A 、3个 B 、4个 C 、5个 D 、6个 2、下列运算正确的是( ) A 、x 2 x 3 =x 6 B 、x 2+x 2=2x 4 C 、(-2x)2 =4x 2 D 、(-2x)2 (-3x )3=6x 5 3、算式22222222+++可化为( ) A 、42 B 、28 C 、82 D 、16 2 4、“世界银行全球扶贫大会”于2004年5月26日在开幕.从会上获知,我国国民生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为( ) A 、11.69×1410 B 、1410169.1? C 、 1310169.1? D 、14101169.0? 5、不等式2)2(2-≤-x x 的非负整数解的个数为( ) A 、1 B 、2 C 、3 D 、4 6、不等式组? ??-≤-->x x x 28132的最小整数解是( ) A 、-1 B 、0 C 、2 D 、3 7、为适应国民经济持续协调的发展,自2004年4月18日起,全国铁路第五次提速,提速后,火车由到的时间缩短了7.42小时,若到的路程为1326千米,提速前火车的平均速度为x 千米/小时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关系式是( ) A 、x – y = 42.71326 B 、 y – x = 42 .71326 C 、y x 13261326-= 7.42 D 、x y 13261326-= 7.42 8、一个自然数的算术平方根为a ,则与它相邻的下一个自然数的算术平方根为( ) A 、1+a B 、 1+a C 、12+a D 、1+a 9、设B A ,都是关于x 的5次多项式,则下列说确的是( ) A 、 B A +是关于x 的5次多项式 B 、 B A -是关于x 的4次多项式 C 、 AB 是关于x 的10次多项式 D 、B A 是与x 无关的常数 10、实数a,b 在数轴对应的点A 、 B 表示如图,化简a a a b 244-++-||的结果为( ) A 、22a b -- B 、22+-b a C 、2-b D 、2+b

2020中考数学 专题练习:圆的综合题(含答案)

2020中考数学 专题练习:圆的综合题(含答案) 类型一 与全等结合 1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC = 2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵ 上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数; (2)当点P 移动到劣弧CB ︵ 的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等. 第1题图 (1)解:∵AC =2,OA =OB =OC =1 2 AB =2,

∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =1 2∠AOC =30°, 又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°, ∴∠ACD =∠DCO -∠ACO =90°-60°=30°; 第1题解图 (2)证明:如解图,连接PB ,OP , ∵AB 为直径,∠AOC =60°, ∴∠COB =120°, 当点P 移动到CB ︵ 的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形,

∴OC =CP =OB =PB , ∴四边形OBPC 为菱形; (3)证明:∵CP 与AB 都为⊙O 的直径, ∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中, ? ????AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL). 2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ; (3)若sin B =4 5 ,求cos ∠BDM 的值. 第2题图 (1)证明:如解图,连接OD ,

初三数学-有关圆的经典例题

初三数学有关圆的经典例题 1. 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB与AC有不同的位置关系。 解:由题意画图,分AB、AC在圆心O的同侧、异侧两种情况 讨论, 当AB、AC在圆心O的异侧时,如下图所示, 过O作OD⊥AB于D,过O作OE⊥AC于E, ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB、AC在圆心O同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC的顶点A、B在⊙O上,⊙O的半径为R,⊙O与AC交于D, (1)求证:△ABC是直角三角形; 分析: 则AF=FB,OD⊥AB,可证DF是△ABC的中位线;

(2)延长DO交⊙O于E,连接AE,由于∠DAE=90°,DE⊥AB,∴△ADF 解:(1)证明,作直径DE交AB于F,交圆于E 又∵AD=DC ∴AB⊥BC,∴△ABC是直角三角形。 (2)解:连结AE ∵DE是⊙O的直径 ∴∠DAE=90° 而AB⊥DE,∴△ADF∽△EDA 例3. 如图,在⊙O中,AB=2CD,那么() 分析: 解:解法(一),如图,过圆心O作半径OF⊥AB,垂足为E,

∵ 在△AFB中,有AF+FB>AB ∴选A。 解法(二),如图,作弦DE=CD,连结CE 在△CDE中,有CD+DE>CE ∴2CD>CE ∵AB=2CD,∴AB>CE ∴选A。 例 4. 求CD的长。 分析:连结BD,由AB=BC,可得DB平分∠ADC,延长 AB、DC交于E,易得△EBC∽△EDA,又可判定AD是⊙O 的直径,得∠ABD=90°,可证得△ABD≌△EBD,得DE=AD,利用△EBC∽△EDA,可先求出CE的长。 解:延长AB、DC交于E点,连结BD

相关文档
最新文档