初三-几何证明之中位线题型

初三-几何证明之中位线题型
初三-几何证明之中位线题型

学员编号: 年 级:初三 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师: 授课类型 T-同步讲解

C-专题 T-能力提升 星 级

★★

★★★

★★★

教学目标

1.巩固复习三角形,梯形之中位线相关知识;

2.学会添恰当的辅助线解决中位线题型;

3.掌握中位线题型的综合应用。 授课时间

教学内容

——几何证明之中位线题型

1.巩固复习三角形,梯形之中位线相关知识;

2.学会添恰当的辅助线解决中位线题型;

3.掌握中位线题型的综合应用。

知识结构

1. 三角形中位线平行于第三边,并且等于第三边的一半。

梯形中位线平行于两底,并且等于两底和的一半。

2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关

系。

3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。

4. 中位线性质定理,常与它的逆定理结合起来用。它的逆定理就是平行线截比例线段定理及推论, ①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等; ②经过三角形一边中点而平行于另一边的直线,必平分第三边; ③经过梯形一腰中点而平行于两底的直线,必平分另一腰。

5. 有关线段中点的其他定理还有:

①直角三角形斜边中线等于斜边的一半;

②等腰三角形底边中线和底上的高,顶角平分线互相重合;

③对角线互相平分的四边形是平行四边形;

④线段中垂线上的点到线段两端的距离相等。

?因此如何发挥中点作用必须全面考虑。

例1.已知:ABC

?中,分别以AB、AC为斜边作等腰直角三角形ABM和CAN,P是BC的中点。求证:PM PN

=。

M A

C

B

N

P

A

B C

M

N

P

E F

【证明】:作ME AB

⊥,NF AC

⊥,垂足E,F

∵ABM

?、CAN

?是等腰直角三角形

∴AE EB ME

==,AF FC NF

==,

根据三角形中位线性质

1

2

PE AC NF

==,

1

2

PF AB ME

==

PE AC

∥,PF AB

∴PEB BAC PFC

∠=∠=∠

即PEM PFN

∠=∠

∴PEM PFN

??

∴PM PN

=

例题1

例2.已知ABC

?中,10

AB=,7

AC=,AD是角平分线,CM AD

⊥于M,且N是BC的中点。求MN的长。【分析】:N是BC的中点,若M是另一边中点,

则可运用中位线的性质求MN的长,

根据轴称性质作出AMC

?的全等三角形即可。

辅助线是:延长CM交AB于E(证明略)

例3.求证梯形对角线的中点连线平行于两底,且等于两底差的一半。

已知:梯形ABCD中,AB CD

∥,M、N分别是AC、BD的中点

求证:MN AB CD

∥∥,

1

()

2

MN AB CD

=-。

【分析一】:因为M是AC中点,构造一个三角形,使N为另一边中点,以便运用中位线的性质。所以连结CN并延长交AB于E(如图1),证BNE DNC

??

≌可得N是CE的中点。(证明略)

【分析二】:图2与图1思路一样。

【分析三】:直接选择ABC

?,取BC中点P连结MP和NP,证明M、N、P三点在同一直线上,方法也是运用中位线的性质。

1.已知E、F、G、H是四边形ABCD各边的中点

则①四边形EFGH是_______________形

②当AC BD

=时,四边形EFGH是______________形

③当AC BD

⊥时,四边形EFGH是______________形

例题3

例题2

7

10

12

A

B

C

D

M

N

3

2

1

N

A B

C

D

E

A B

C

D E

A B

C

D

M N M

M N

E

5.如图已知ABC ?中,AD BE =,DM EN BC ∥∥,求证:BC DM EN =+。 提示:ABC ?的中位线也是梯形'

BCD D 中位线。

A B

C

D M

E N

6.如图,已知:从平行四边形ABCD 的各顶点向形外任一直线a 作垂线段AE ,BF ,CG ,DH 。求证:AE CG BF DH +=+。 提示:同上,有公共中位线。

A

o

B C

D

a

G

H

E

D 1

F

7.如图,已知D 是AB 的中点,F 是DE 的中点,求证:2BC CE =。 提示:取BC 中点G ,连结DG 。

提示:∵COD ?是等边三角形,CR DO ⊥,1

2

RQ BC =

,……

R 60O A B

C

D

P

Q

例4.如图,已知:ABC ?中,AD 是角平分线,BE CF =,M 、N 分别是BC 和EF 的中点。求证:MN AD ∥。

A

B C

D E F

N

M

【证明一】:连结EC ,取EC 的中点P ,连结PM 、PN

MP AB ∥,12MP AB =

,NP AC ∥,1

2

NP AC = ∵BE CF =,∴MP NP =

∴180-3=4=

2

MPN

∠∠∠o

180MPN BAC ∠+∠=o (两边分平行的两个角相等或互补) ∴180-122

MPN

∠∠=∠=o , 23∠=∠

∴NP AC ∥ ∴MN AD ∥

【证明二】:连结并延长EM 到G ,使MG =ME 连结CG ,FG

则MN FG ∥,MCG MBE ??≌

例题4

4

321A B

C D E

F

M

N P

A

∴CG BE CF ==, B BCG ∠=∠ ∴AB CG ∥,180BAC FCG ∠+∠=o

1

(180)2CAD FCG ∠=

-∠o 1(180)2

CFG FCG CAD ∠=-∠=∠o

∴ MN AD ∥

例5.已知,ABC ?中,AB AC =,AD 是高,CE 是角平分线,EF BC ⊥于F , GE CE ⊥交CB 的延长线于G 。求证:1

4

FD CG =

A

B C

G

E F

D

O

21

A B C

G

D

E

F H

M

【证明】:要点是:延长GE 交AC 于H ,可证E 是GH 的中点,

过点E 作EM GC ∥交HC 于M ,设EM 交AD 于点O ,如图示。

则M 是HC 的中点,EM GC ∥,1

2

EM GC =

由矩形EFDO 可得11

24

FD EO EM GC ===

11.已知:ABC ?中,AD 是高,AE 是中线,且AD ,AE 三等分BAC ∠。 求证:ABC ?是直角三角形。

例题5

(**分钟)

今天复习了三角形,梯形之中位线相关知识。要会添加常用的辅助线,熟练使用中位线的有关性质

(临下课前的结束语建议:)

教师:你有哪些收获和感悟?

中考数学几何证明经典题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线 EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

初三数学《几何计算训练题》

F 初三数学《几何计算训练题》 班级: 姓名: 评分: 一、填空题:(每小题3分,共15分) 1、60°的余角等于 。 2、等腰直角三角形的一个锐角的余弦值等于 。 3、△ABC 中,∠A ,∠ B 均为锐角,且有2|tan 2sin 0B A -+=(,则△AB C 是: 。 (填什么三角形) 4、钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针 端转过的弧长是: 。 5、如上图,AC 为正方形ABCD 的对角线,延长AB 到E ,使AE = AC , 为一边作菱 形AEFC ,若菱形的面积为29,则正方形的面积为 。 二、解答题: 6、有一个角是60°的直角三角形,求它的面积Y 与斜边X 的函数关系是式。(6分) 7、某公园中央地上有一个大理石球,小明想测量球的半径,于是找了两块厚10cm 的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm ,聪明的你也能算出这个大石球的半径了吗?请你建立一个用于求大理石球的几何模型,并写出你的计算过程。(6分)

C 8、已知:如图,在△ABC 中,∠C=90,D 是BC 的中点,DE ⊥AB ,垂足为E ,tanB=2 1,AE=7,求DE 的长。(6分) 9、如图,小岛A 在港口P 的南偏西?45方向,距离港口100海里处,甲船从A 出发,沿AP 方向以10海里/时的速度驶向港口,乙船从港口P 出发,沿南偏东?60方向以20海里/时的速度驶离港口。现两船同时出发,出发后几小时乙船在甲船的正东方向?(结果保留根号)(6分)

10、如图,四边形ABCD 为菱形,已知A (0,6),D (-8,0). (1)求点C 的坐标; (2)设菱形ABCD 对角线AC 、BD 相交于点E ,求经过点E 的反比例函数解析式.(8分) 11、如图,在梯形ABCD 中,AD BC ∥,AB AC ⊥,45B ∠=o ,AD =BC =DC 的长.(8分) 12、已知在Rt△ABC 中,∠C=90°,A D 是∠BAC 的角平分线,以AB 上一点O 为圆心,AD 为弦作⊙O. A B C D 10题图

初三数学几何证明题(经典)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 如图;已知:在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O 交AB于点D,过点D作⊙O 的切线DE交BC于点E. 求证:BE=CE 证明:连接CD ∵AC是直径 ∴∠ADC=90° ∵∠ACB=90°,ED是切线 ∴CE=DE ∴∠ECD=∠EDC ∵∠ECD+∠B=90°,∠EDC+∠BDE=90° ∴∠B=∠BDE ∴BE=DE ∴BE=CE 如图,半圆O的直径DE=10cm,△ABC中,∠ABC=90°,∠BCA=30°,BC=10cm,半圆O以2cm/s的速度从左向右运动,在运动过程中,D、E始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧且OB=9cm。(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; (2)当△ABC一边所在直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积。 (1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切;

相切分两种情况,如图, ①左图:当t=0时,原图中OB=9,此时圆移动了OB-OE=9-5=4cm 则:t=4/2=2s; --------------- ②右图:设圆O与边AC的切点为F,此问不用三角函数是无法求出的==>∵∠C=30==>∴OC=OF/sinC=5/sin30=10=BC ==>O与B重合,此时圆移动的长即为OB的长,即9cm ==>t=9/2; ========= (2)如右图:由②得:∠AOE=90 ==>S阴=(90*π*5^2)/360=6.25π 不明之处请指出~~ 创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

初三数学几何证明题(经典)

如图;已知:在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O 交AB于点D,过点D作⊙O 的切线DE交BC于点E. 求证:BE=CE 证明:连接CD ∵AC是直径 ∴∠ADC=90° ∵∠ACB=90°,ED是切线 ∴CE=DE ∴∠ECD=∠EDC ∵∠ECD+∠B=90°,∠EDC+∠BDE=90° ∴∠B=∠BDE ∴BE=DE ∴BE=CE 如图,半圆O的直径DE=10cm,△ABC中,∠ABC=90°,∠BCA=30°,BC=10cm,半圆O 以2cm/s的速度从左向右运动,在运动过程中,D、E始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧且OB=9cm。(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; (2)当△ABC一边所在直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积。 (1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; 相切分两种情况,如图, ①左图:当t=0时,原图中OB=9,此时圆移动了OB-OE=9-5=4cm 则:t=4/2=2s; --------------- ②右图:设圆O与边AC的切点为F,此问不用三角函数是无法求出的==>∵∠C=30==>∴OC=OF/sinC=5/sin30=10=BC ==>O与B重合,此时圆移动的长即为OB的长,即9cm ==>t=9/2; =========

(2)如右图:由②得:∠AOE=90 ==>S阴=(90*π*5^2)/360=6.25π 不明之处请指出~~

初一几何证明题练习

初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6 解:∵∠B=∠C ∴ AB∥CD( ) 又∵ AB∥EF() ∴ ∥() ∴∠BGF=∠C() 2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明 ∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD⊥AB,FG⊥AB ∴∠CDB=∠=90°( 垂直定义) ∴_____//_____ ( ∴∠2=∠3 ( 又∵DE//BC ∴∠=∠3 ( ∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°, 试判断AB、CD有何位置关系?并说明理由。(8分) 4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠ DAC、∠C的度数吗?(7分) D C B A E D

5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。 解:∵EF∥AD(已知) ∴∠2= () 又∵∠1=∠2(已知) ∴∠1=∠3(等量替换) ∴AB∥() ∴∠BAC+ =180 o () ∵∠BAC=70 o(已知)∴∠AGD= ° 6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。 解:AB∥CD,理由如下: 过点E作∠BEF=∠B ∴AB∥EF() ∵∠BED=∠B+∠D(已知) 且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF() ∴AB∥CD()7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o, 求∠EAD、∠DAC、∠C的度数。(6分) 8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)

初三数学几何综合练习题

初三数学几何综合练习题 1.在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE. (1)如图1,点D在BC边上. ①依题意补全图1; ②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长; (2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系 (直接写出结论). 图1图2

B A C 2. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD . (1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明; (3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由. 3.如图1,已知线段BC =2,点B 关于直线AC 的对称点是点D ,点E 为射线CA 上一点,且ED =BD ,连接DE ,BE .

(1) 依题意补全图1,并证明:△BDE 为等边三角形; (2) 若∠ACB =45°,点C 关于直线BD 的对称点为点F ,连接FD 、FB .将△CDE 绕点D 顺时针旋转α度(0°<α<360°)得到△''C DE ,点E 的对应点为E ′,点C 的对应点为点C ′. ①如图2,当α=30°时,连接'BC .证明:EF ='BC ; ②如图3,点M 为DC 中点,点P 为线段'' C E 上的任意一点,试探究:在此旋转过程中,线段PM 长度的取值范围? 4.(1)如图1 ,在四边形ABCD 中,AB=BC ,∠ABC =80°,∠A +∠C =180°,点M 是AD 边上一点,把射线BM 绕点B 顺时针旋转40°,与CD 边交于点N ,请你补全图形,求MN ,AM ,CN 的数量关系; 图1 图2 图3

精选初中数学几何证明经典试题(含答案)

初中几何证明题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 求证:AP =AQ .(初二) A P C D B A F G C E B O D N

F 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 求证:PA =PF .(初二) 4、如图,PC 切圆O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、 D .求证:AB = DC ,BC =AD .(初三) 经典题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) D

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

中考数学几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. E B F C D A

所以22(22)3BF k k k = += 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. ∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD , ∴四边形 AGBD 是平行四边形.

上海2018初三数学一模各区几何证明23题集合

2018各区一模几何证明 普陀23.(本题满分12分) 已知:如图9,四边形ABCD 的对角线AC 和BD 相交于点E ,AD=DC ,DC 2 =DE ·DB . 求证:(1)△BCE ∽△ADE ; (2)AB ·BC=BD ·BE . 静安23. 已知:如图,梯形ABCD 中,AB DC //,BD AD =,DB AD ⊥,点E 是腰AD 上一点,作?=∠45EBC ,联结CE ,交DB 于点F . (1)求证:ABE ?∽DBC ?; (2)如果 6 5 =BD BC ,求BDA BCE S S ??的值.

奉贤23.已知:如图,四边形ABCD ,∠DCB =90°,对角线BD ⊥AD ,点E 是边AB 的中点,CE 与BD 相交于点F ,2 BD AB BC =? (1)求证:BD 平分∠ABC ; (2)求证:BE CF BC EF ?=?. 虹口23.(本题满分12分,第(1)题满分6分,第(2)题满分6分) 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE 、BC 的延长线相交于点F ,且E F D F B F C F ?=?. (1)求证AD AB AE AC ?=?; (2)当AB =12,AC =9,AE =8时,求BD 的长与△△ADE ECF S S 的值. C E A B D F 第23题图

宝山23.(本题满分12分,每小题各6分) 如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证: G AE AC EG C = ; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项. 嘉定23.(本题满分12分,每小题6分) 如图,已知梯形ABCD 中,AD ∥BC ,CD AB =,点E 在对角线AC 上,且满足 BAC ADE ∠=∠. (1)求证:BC DE AE CD ?=?; (2)以点A 为圆心,AB 长为半径画弧交边BC 于点F ,联结AF . 求证:CA CE AF ?=2 . 第23题图

武汉市中考数学几何综合题专题汇编

武汉市中考数学几何综合题专题汇编(2) 1、(2013?绍兴)矩形ABCD 中,AB=4,AD=3,P ,Q 是对角线BD 上不重合的两点,点P 关于直线AD ,AB 的对称点分别是点E 、F ,点Q 关于直线BC 、CD 的对称点分别是点G 、H .若由点E 、F 、G 、H 构成的四边形恰好为菱形,求PQ 的长。 2、(2013陕西压轴题)问题探究 (1)请在图①中作出两条直线,使它们将圆面四等分; (2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决 (3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点,如果AB=a ,CD=b ,且a b ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由. 图① 图② A B C D M B 图③ A C D P (第25题图)

3、(2013?温州压轴题)如图,在平面直角坐标系中,直线AB 与x 轴,y 轴分别交于点A (6,0),B (0.8),点C 的坐标为(0,m ),过点C 作CE ⊥AB 于点E ,点D 为x 轴上的一动点,连接CD ,DE ,以CD ,DE 为边作?CDEF . (1)当0<m <8时,求CE 的长(用含m 的代数式表示); (2)当m=3时,是否存在点D ,使?CDEF 的顶点F 恰好落在y 轴上?若存在,求出点D 的坐标;若不存在,请说明理由; (3)点D 在整个运动过程中,若存在唯一的位置,使得?CDEF 为矩形,请求出所有满足条件的m 的值. 4、(13年北京)在△ABC 中,AB=AC ,∠BAC=α(?<

中考几何证明题知识点分析

目录 1、考点总分析 2、知识点讲解 3、出题的类型 4、解题思路 5、相关练习题

几何证明题专题 本题的主要知识点(中考中第3道,分值为8分) 七年级上第4章几何图形初步七年级下第5章相交线与平行线 八年级上第11章三角形第12章全等三角形第13章轴对称 八年级下第17章勾股定理第18章平行四边形 九年级上第23章旋转第24章圆 九年级下第27章相似第28章投影与视图 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。 几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。 这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。 知识结构图

中考数学几何证明题大全

几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角 边AC 及斜边AB 向外 作等边 △ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; 图3 A B C D E F 第20题图

A B C D M N E F P (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合), 点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与 AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. A B C D 图8 O A B D F E 图9 A O D B H E C

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

初三-几何证明之中位线题型

学员编号: 年 级:初三 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师: 授课类型 T-同步讲解 C-专题 T-能力提升 星 级 ★★ ★★★ ★★★ 教学目标 1.巩固复习三角形,梯形之中位线相关知识; 2.学会添恰当的辅助线解决中位线题型; 3.掌握中位线题型的综合应用。 授课时间 教学内容 ——几何证明之中位线题型 1.巩固复习三角形,梯形之中位线相关知识; 2.学会添恰当的辅助线解决中位线题型; 3.掌握中位线题型的综合应用。 知识结构 1. 三角形中位线平行于第三边,并且等于第三边的一半。 梯形中位线平行于两底,并且等于两底和的一半。 2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关 系。 3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。 4. 中位线性质定理,常与它的逆定理结合起来用。它的逆定理就是平行线截比例线段定理及推论, ①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等; ②经过三角形一边中点而平行于另一边的直线,必平分第三边; ③经过梯形一腰中点而平行于两底的直线,必平分另一腰。 5. 有关线段中点的其他定理还有:

①直角三角形斜边中线等于斜边的一半; ②等腰三角形底边中线和底上的高,顶角平分线互相重合; ③对角线互相平分的四边形是平行四边形; ④线段中垂线上的点到线段两端的距离相等。 ?因此如何发挥中点作用必须全面考虑。 例1.已知:ABC ?中,分别以AB、AC为斜边作等腰直角三角形ABM和CAN,P是BC的中点。求证:PM PN =。 M A C B N P A B C M N P E F 【证明】:作ME AB ⊥,NF AC ⊥,垂足E,F ∵ABM ?、CAN ?是等腰直角三角形 ∴AE EB ME ==,AF FC NF ==, 根据三角形中位线性质 1 2 PE AC NF ==, 1 2 PF AB ME == PE AC ∥,PF AB ∥ ∴PEB BAC PFC ∠=∠=∠ 即PEM PFN ∠=∠ ∴PEM PFN ?? ≌ ∴PM PN = 例题1

中考数学超好几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1)求证:DC=BC; (2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状, 并证明你的结论; (3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于 G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什 么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中 点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM , FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留)。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=31∠OAC . 8、如图1,一架长4米的梯子AB 斜靠在与地 面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为 60. E B F C D A 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13-1 A ( E ) C O D F C A B D O E

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

相关文档
最新文档