无损检测基础知识教学教材

无损检测基础知识教学教材
无损检测基础知识教学教材

一、无损检测基础知识

1.1无损检测概况

1.1.1无损检测的定义和分类

什么叫无损检测,从文字上面理解,无损检测就是指在不损坏试件的前提下,对试件进行检查和测试的方法。但是这并不是严格意义上的无损检测的定义,对现代无损检测的定义是:在不损坏试件的前提下,以物理或化学为手段,借助先进的技术和设备器材,对试件的内部及表面的结构、性质、状态进行检查和测试的方法。在无损检测技术发展过程中出现三个名称,即:无损探伤(Non-destructive lnspction),无损检测(Non-destructive Testing),无损评价( Non-destructive Evaluation)。一般认为,这三个名称体现了无损检测技术发展的三个阶段,其中无损探伤是早期阶段的名称,其内涵是探测和发现缺陷;无损检测是当前阶段的名称,其内涵不仅仅是探测缺陷,还包括探测试件的一些其它信息。而无损评价则是即将进入或正在进入的发展阶段,无损评价包涵更广泛,更深刻的内容,它不仅要求发现缺陷,探测试件的结构、性质、状态,还要求获取全面的、更准确的、综合的信息。

射线检测(Radiographyic Testing,,简称RT),超声波检测(Uitrasonic Testing,简称UT),磁粉检测(Magnetic Testing 简称MT),渗透检测(Penetrant Testing,简称PT)是开发较早,应用较广泛的探测缺陷的方法,称为四大常规检测方法,到目前为止,这四种方法仍是锅炉压力容器制造质量检验和再用检验最常用的无损检测方法,其中RT和UT 主要用于检测试件内部缺陷。PT主要用于检测试件表面缺陷,MT主要用于检测试件表面及近表面缺陷。其它用于锅炉压力容器的无损检测方法有涡流检测(Eddy current Testing,简称ET)、声发射检测(Acoustic Emission,简称AE)。

1.1.2无损检测的目的

用无损检测技术,通常是为了达到以下目的:

1、保证产品质量;

2、保障使用安全;

3、改进制造工艺;

4、降低生产成本。

1.1.3无损检测应用的特点

无损检测应用时,应掌握以下几个方面的特点:

1、无损检测要与破坏性检测配合;

2、正确选用实施无损检测的时机;

3、正确选用最适当的无损检测方法;

4、综合应用各种无损检测方法。

1.2射线检测(RT)及特点

1.2.1射线检测(RT)原理:射线检测的原理是应用射线可穿透物质的性质。透过物质对射线的吸收衰减效应及对胶片的光化特性实施的,是射线透过物质后的强度分布在底片的再现。通过底片观察、分析、确定被检物体的完整性和均匀性,从而达到无损检测的目的。

1.2.2射线检测的特点(局限性和优点)

1、可以获得缺陷的直观图像,定性准确,对长度、宽度的定量比较准确;

2、结果可直接记录,记录媒介可长期保存;

3、体积型缺陷捡出率很高,对面积型缺陷,若检测角度不适当,容易漏检;

4、适宜检测厚度较薄的工件而不适宜较厚的工件,因为检测较厚工件需要高能

量的检测设备。一般大于100mm的工件射线检测是比较困难的。因此,板

厚增厚,射线检测绝对灵敏度是下降的,也是说对厚板射线检测,小尺寸缺

陷以及一些面积型缺陷漏检的可能性增大。

5、适宜检测对焊接缝,不适宜检测角接焊缝以及板材、棒材、锻件等。

6、对缺陷在工件中厚度方向的位置、尺寸(高度)的确定比较困难。

7、检测成本高、速度慢。

8、射线对人体有害。

1.3超声波检测(UT)及特点

1.3.1超声波检测(UT)的原理:超声波检测是利用超声波可穿透物质,并能在不同声阻抗的界面上产生反射,折射,透射的特性。通过换能器把各种波形显示在荧光屏上,观察、分析荧光屏上的波形和位置,从而达到无损检测的目的。

1.3.2超声波检测的特点(优点及局限性)

1、面积型缺陷的检出率较高,而体积型缺陷的检出率较低;

2、适宜检验厚度较大的工件,例如直径达几米的锻件,厚度达几百毫米的焊缝,不适宜

检验厚度较薄的工件,例如对厚度小于8mm的焊缝和6mm的板材检验是困难的;3、适用于各种试件,包括对接焊缝、角焊缝、板材、管材、棒材、锻件,以及复合材料

等;

4、检验成本低、速度快,检验仪器小、重量轻,现场使用较方便;

5、无法得到缺陷直观图像,定性困难,定量精度不高;

6、检验结果无直接见证记录;

7、对缺陷在工件厚度方向上定位较准确;

8、材质、晶粒度对探伤有影响,例如铸钢材料和奥氏体不锈钢焊缝,因晶粒度大不适宜

超声波探伤。

1.4磁粉检测(MT)及特点

1.4.1磁粉检测(MT)原理:铁磁性的元件磁化后,当表面或近表面存在缺陷且与磁场方向垂直或呈较大角度,由于缺陷内部介质是空气或非金属夹杂物,其磁导率比零件小得多,磁阻大,因此,磁感应线通过缺陷时发生弯曲,一部分磁感应线遵守折射定律,溢出零件表面产生N极、S极并形成可检测的漏磁场,此时当磁悬液或磁粉加到零件表面,在缺陷处的磁粉就会被漏磁场磁化,也形成N极、S极,并沿着漏磁场的磁感应线方向排列堆积起来,形成磁痕,从而显示缺陷的位置、形状和大小。

1.4.2磁粉检测法的特点(优点和局限性)

1、适宜铁磁性材料检测,不能用于非铁磁性材料检测;

2、适宜检测表面和近表面缺陷,不能用于检查内部缺陷,可检出的缺陷埋藏深度与工件

状态,缺陷状态以及工艺条件有关,一般为1——2mm,较深为3——5mm;

3、检测灵敏度很高,可以发现极细小的裂纹以及其它缺陷;

4、检出成本很低,速度快;

5、工件的形状和尺寸有时对检出有影响,因其难于磁化而无法检测。

1.5 渗透检测(PT)及特点

1.5.1渗透检测(PT)原理:工件表面施涂含有荧光染料或着色染料的渗透液后,在毛细管作用下,经过一段时间,渗透液可以渗进表面开口的缺陷中,经去除零件表面多余的渗透液后,再在零件表面施加显象剂,同样在毛细管作用下,显象剂将吸引缺陷中保留的渗透液,渗透液回渗到显象剂中,在一定的光源下(紫外线或白光),缺陷处的渗透液痕迹被显示(黄绿色荧光或鲜艳红色),从而检测出缺陷的外貌及分布状态。

1.5.2渗透检测方法的特点(优点及局限性)

1、除了疏松多孔性材料外任何种类的材料,例如钢铁材料、有色金属、陶瓷材料和塑料

等材料的表面开口缺陷都可以进行渗透检测;

2、复杂的部件也可用渗透检测,并一次操作就可大致做到全面检测;

3、同时存在几个方向的缺陷,用一次检测操作就可以完成全部检测,形状复杂的缺陷,

也很容易观察出显示痕迹;

4、不需要大型的设备,携带式喷罐着色检测,不需水、电,十分便于现场使用;

5、试件表面光洁度影响大,检测结果往往受操作人员技术水平的影响;

6、可以检出表面张口的缺陷,但对埋藏缺陷或闭合型的表面缺陷无法检出;

7、检测灵敏度比磁粉检测低;

8、材料较贵,成本较高;

9、检测程序多,速度慢;

10、有些材料易燃、有毒。

1.6其它无损检测方法简介

1.6.1涡流检测(ET):是一种利用电磁感应原理为基础的无损检测方法,导电材料在交变磁场作用下产生涡流,根据涡流的大小以及材料某些物理性能等,只要是导电材料均可进行涡流检测。

1.6.2声发射检测(AE):声发射技术是一种动态无损检测方法,材料或结构受外力或内力作用产生变形或断裂,以弹性波形式释放出应变能的现象称为声发射,也称为应力波发射,声发射检测就是通过探测受力时材料内部发出的应力波判断容器内部结构损坏程度的一种新的无损检测方法。

二、《容规》、GB150、GB151中对无损检测的有关规定

1.1《压力容器安全技术监察规程》(1999)有关无损检测的规定

2.1.1材料部分有关无损检测的规定

第14条用于制造压力容器壳体的碳素钢和低合金钢板,凡符合下列条件之一的,应逐张进行超声检测:

1、盛装介质毒性程度为极度,高度危害的压力容器。

2、盛装介质为液化油气且硫化氢含量大于100mg/1的压力容器。

3、最高工作压力大于等于10Mpa的压力容器。

4、GB150第4章和附录C、GB151《管壳式换热器》、GB12337《钢制球形储罐》及

其它国家标准和行业标准中规定应逐张进行超声波检测。

5、移动式压力容器:

钢板的超声波检测应按JB4730-94《压力容器无损检测》的规定进行。用于本条第

1、第

2、第5款所述容器的钢板的合格等级应不低于Ⅱ级;用于本条第3款所述

容器的钢板的合格等级不低于III级,用于本条第4款所述容器的钢板,合格等级

应符合GB150、GB151或GB12337的规定。

第20条钛材(指钛合金、工业纯钛。及其复合材料)的无损检测

1、对成型的钛钢复合板封头,应做超声检测。

2、钛材料压力容器的下列焊缝应进行渗透检测:

(1)接管、法兰、补强圈与壳体或封头连接的角焊缝;

(2)换热器管板与管子连接的焊缝;

(3)钛钢复合板的复层焊缝及镶条盖板与复合板复层的搭接焊缝。

第21条镍材(指镍和镍基合金及其复合材料)的无损检测

1、对成型的镍钢复合板封头,应做超声检测

2、镍材压力热器的下列焊缝应进行磁粉或渗透检测;

(1)接管、法兰、补强圈与壳体或封头连接的角焊缝;

(2)换热器管板与管子连接的焊缝;

(3)镍钢复合板的复层焊接接头。

第25条主要受压元件复验对无损检测的要求

1、用于制造第三类压力容器的钢板必须复验。当钢厂未提供钢板超声检测保证书时,

应按本规程第14条的要求进行超声检测复验。

2.1.2设计对无损检测的要求

第30条压力容器的设计总图上应注明无损检测。

第43条用焊接方法制造的压力容器,其焊接接头系数按表3-5选取。按JB4732标准设计时,焊接接头系数取1.0.

表3-5 压力容器的焊接接头系数

注:1、此表所指无损检测,对钢制压力容器以射线或超声检测为准,对有色金属压力容器原则上以射线为准。2、表中所列有色金属制压力容器焊接接头系数上限值指熔化极惰性气体保护焊,下限值指非熔化极惰性气体保护焊。3、相当于双面焊全焊透的对接焊缝指单面焊双面成型的焊缝,按双面焊评定(含焊接试板的评定),如氩弧焊打底的焊缝或带陶瓷、钢衬垫的焊缝等。

第47条不属于第46条所规定条件的压力容器,因特殊情况不能检查孔时,则应对每条纵、环焊缝做100%无损检测(射线或超声)。

2.1.3制造对无损检测的规定

第69条压力容器组焊时临时吊耳拉筋的垫板割除后留下的焊疤必须打磨平滑,并按图样规定进行渗透检测或磁粉检测,确保表面无裂纹等缺陷。

第71条压力试验后需返修的,返修部位必须按原要求经无损检测合格。

第76条4)焊缝咬边的要求:

(1)使用抗拉强度规定值下限大于等于540MPa的钢材及铬-钼低合金钢材制造的压力容器,奥氏体不锈钢、钛材和镍材制造的压力容器,低温压力容器,球形压力容器以及焊缝系数取1.0的压力容器,其焊缝表面不得有咬边。

(2)上述(1)款以外的压力容器的焊缝表面的咬边深度不得大于0.5mm,咬边的连续长度不得大于100mm,焊缝两边咬边的总长不得超过该焊缝长度的10%。

2.1.4 无损检测部分的要求

第81条无损检测人员应按照《锅炉压力容器无损检测人员资格考核规定》进行考试,取得资格证书,方能承担与资格证书的种类和技术等级相应的无损检测工作。

第82条压力容器的焊接接头,应先进行形状尺寸和外观质量的检查,合格后,才能进行无损检测,有延迟裂纹倾向的材料应在焊接完成24小时后进行无损检测;有再热裂纹倾向的材料应在热处理后再增加一次无损检测。

第83条压力容器的无损检测方法包括射线、超声、磁粉、渗透和涡流检测等,压力容器制造单位应根据图样和有关标准的规定选择检测方法和检测长度。

第84条压力容器对焊接焊接接头的无损检测比例,一般分全部(100%)和局部(大于等于20%)两种。对铁素体钢制低温容器,局部无损检测的比例应大于等于50%。

第85条符合下列情况之一的,压力容器的对接接头,必须进行全部射线或超声检测。

1、GB150及GB151等标准中规定进行全部射线或超声检测的压力容器。

2、第三类压力容器。

3、第二类压力容器中易燃介质的反应压力容器和储存压力容器。

4、设计压力大于5.0Mpa的压力容器。

5、设计压力大于等于6.0Mpa管壳式余热锅炉。

6、设计选用焊缝系数为1.0的压力容器(无缝管制壳体除外)

7、疲劳分析设计的压力容器。

8、采用电渣焊的压力容器。

9、使用后无法进行内外部检验或耐压试验的压力容器。

10、合下列之一的铝、铜、镍、钛及其合金制压力容器:

(1)介质为易燃或毒性程度为极度、高度、中度危害的;

(2)采用气压试验的;

(3)设计压力大于等于1.6Mpa的;

第86条压力容器焊接接头检测方法的选择要求如下:

1、压力容器壁厚小于等于38mm时,其对接接头应采取射线检测,由于结构等原

因,不能采用射线检测时,允许采用可记录的超声检测。

2、压力容器壁厚大于38mm(或小于等于38mm,但大于20 mm且使用材料抗拉

强度规定值之下限大于等于540Mpa)时,其对接接头如采用射线检测,则每条

焊缝还应附加局部超声检测,如采用超声检测,则每条焊缝还应附加局部射线

检测,无法进行射线检测或超声检测时,应采取其它检测方法进行附加局部无

损检测,附加局部检测应包括所有的焊缝交叉部位,附加局部检查的比例为本

规程第84条规定的原无损检测比例的20%。

3、对有无损检测要求的角接接头、T形接头,不能进行射线或超声检测时,应做

100%表面检测。

4、铁磁性材料压力容器的表面检测应优先选用磁粉检测。

5、有色金属制压力容器对接接头应尽量采用射线检测。

第87条除本规程第85条规定之外的其它压力容器,其对接接头应做局部无损检测,并应满足第84条、第86条的规定,局部无损检测的部位由制造单位检验部门根据实际情况指定,但对所有的焊缝交叉部位以及开孔区将被其它元件覆盖的焊缝部分必须进行射线检测,拼接接头(不含先成形后组焊的拼接封头)、拼接管板的对接接头必须进行100%无损检查(检测方法的选择按第86条规定),拼接补强圈的对接接头必须进行100%超声或射线检测,其合格级别与压力容器壳体相应的对接接头一致。

拼接封头应在成形后进行无损检测,若成形前进行无损检测,则成形后应在圆弧过渡区再做无损检测。

搪玻璃设备上、下接环与夹套组装焊接接头、公称直径小于250mm的搪玻璃设备接管焊接接头可免做无损检测,但应按JB4708做焊接工艺评定,编制切实可行的焊接工艺规程,经制造单位技术负责人或总工程师批准后严格执行,上、下接环与筒体连接的焊接接头,应做渗透检测。

经过局部射线检测或超声检测的焊接接头,若在检测部位发现超标缺陷时,则应进行不少于该条焊接接头长度的10%的补充局部检测,如仍不合格,则应对该条焊接接头全部检测,

第88条压力容器的无损检测按JB4730《压力容器无损检测》执行

对压力容器对接接头进行全部(100%)或局部(20%)无损检测:当采取射线检测时,其透照质量不应低于AB级,其合格级别为Ⅲ级,且不允许有未焊透,当采用超声检测时,其合格级别为Ⅱ级。

对GB150、GB151等标准中规定进行全部(100%)无损检测的压力容器、第三类压力容器、焊接系数取1.0的压力容器以及无法进行内外部检验或耐压试验的压力容器,其

对接接头进行全部(100%)无损检测:当采用射线检测时,其透照质量不应低于AB级,其合格级别为Ⅱ级。当采用超声检测时,其合格级别为Ⅰ级。

公称直径大于等于250mm(或公称直径小于250mm,其壁厚大于28 mm)的压力容器接管对接接头的无损检测比例及合格级别应与压力容器壳体主体焊缝要求相同;公称直径小于250mm,其壁厚小于等于28 mm时仅做表面无损检测,其合格级别为JB4730规定的Ⅰ级。

有色金属制压力容器焊接接头的无损检测级别、射线透照质量按相应标准或由设计图样规定。

第89条压力容器的对接接头进行全部或局部无损检测,采用射线或超声两种方法进行时,均应合格,其质量要求和合格级别,应按各自合格标准。

第90条进行局部无损检测的压力容器,制造单位也应对未检测部位的质量负责。

第90条压力容器表面无损检测要求如下:

1、钢制压力容器的坡口表面、对接、角接和T形接头,符合本规程第69条第2款条件且使用材料抗拉强度规定值下限大于等于540Mpa的,应按GB150、GB151、GB12337等标准的有关规定进行磁粉或渗透检测。检查结果不得有任何裂纹、成排气孔、分层、并应符合JB4730标准中磁粉或透照检测的缺陷显示痕迹等评定的I级要求。

2、有色金属制压力容器应按相应的标准或设计图样规定进行。

第92条现场组装焊接的压力容器,在耐压试验前,应按标准规定对现场焊接的焊接接头进行表面无损检测,在耐压试验后,应按有关标准规定进行局部表面无损检测,若发现裂纹等超标缺陷,则应按标准规定进行补充检测,若仍不合格,则应对该焊接接头做全部表面无损检测。

第93条制造单位必须认真做好无损检测的原始记录,检测部位图

应清晰、准确地反映实际检测的方位(如:射线照相位置、编号、方向等),正确填发报告,妥善保管好无损检测档案和底片(包括原缺陷

的底片)或超声自动记录资料,保存期限不应少于七年,七年后若用户需要可转交用户保管。

2.2 GB150—1998《钢制压力容器》有关无损检测的规定

2.2.1 总论中对无损检测的规定

(3.7)焊接接头系数:焊接接头系数根据受压元件的焊接接头型式及无损检测的长度比例确定。

双面焊接接头和相当于双面焊的全焊透对接接头:

100%无损检测ф=1.00

局部无损检测ф=0.85

单面焊对接接头(沿焊缝根部全长有紧贴基础金属的垫板)

100%无损检测ф =0.9

局部无损检测ф=0.8

2.2.3 材料中对无损检测的规定

(4.2.9)用于壳体的下列碳素钢和低合金钢板,应逐张进行超声检测,钢板超声检测方法和质量标准按JB4730的规定。

a)厚度大于30mm的20R和16MnR,质量等级不低于III级。

b)厚度大于25mm的15MnNbR、18MnMoNbR、13MnNiMoNbR和Cr-Mo钢板、质量等级不低于III级。

c)厚度低于20mm的16MnDR、15MnNiDR和09MnNiDR,质量等级不低于III级。

d)多层包扎压力容器的内筒钢板质量等级不低于Ⅱ级。

e)调质状态供货的钢板,质量等级不低于Ⅱ级。

(4.2.12)不锈钢复合钢板应符合以下规定:

b)不锈钢的结合率指标及超声检测范围,应在图样或相应技术文件中注明。

2.2.3法兰对无损检测的要求:

(9.1.4)必要时采用钢板制造带颈法兰时

a)钢板应经超声检测,无分层缺陷;

b)圆环对接接头应经后热处理及100%射线或超声检测,合格标准按JB4700规定。

2.2.4 制造、检验与验收对无损检测的规定:

(10.1.5)容器的无损检测应由持有相应方法的“锅炉压力容器无损检测人员资格证”的人员担任。

(10.2.2)坡口表面要求

b)标准抗拉强度下限值ab>540Mpa的钢材及Cr-Mo低合金钢材经火焰切割的坡口表面,应进行磁粉或渗透检测,当无法进行磁粉或渗透检测时,应由切割工艺保证坡口质量。(10.2.6)螺栓、螺柱和螺母

(10.2.6.3)

c)公称直径大于M48的螺柱和螺母,应进行磁粉检测,不得存在裂纹。

(10.6.3.4)层板包扎

标准抗拉强度下限值ab>540Mpa层板的C类接头在修磨后,应进行磁粉或渗透检测,不得存在裂纹、咬边和密集气孔。

2.2.5 无损检测部分的规定

(10.8.1)容器的焊接接头,经形状尺寸及外观检查合格后,再进行本规程的无损检查。

(10.8.2)射线和超声的检测范围

(10.8.2.1)凡符合下列条件之一的容器及受压元件,须采用图样规定的方法,对其A类和B类焊接接头,进行100%射线和超声检测

a)钢板厚度δs>30mm的碳素钢、16MnR;

b)钢板厚度δs>25mm的15MnV、20MnMo和奥式体不锈钢;

c)标准抗拉强度下限值σb>540Mpa的钢材(σ6-8mm的15MnVR除外)

d)钢板厚度δs>16mm的12CrMo、15CrMoR、15CrMo;其他任意厚度的Cr-Mo低合金钢。

e)进行气压试验的容器;

f)图样注明盛装毒性为极度危害或高度危害的容器;

g)图样规定须100%检测的容器;

h)多层包扎压力容器内筒的A类焊接接头;

i)热套压力容器各单层圆筒的A类焊接接头;

j)对于上述进行100%射线或超声检测的焊接接头,是否须采取超声或射线检测进行复查,以及复查的长度,由设计者在图样上予以规定;

(10.8.2.2)除10.8.2.1和10.8.2.3规定以外的容器,允许对其A类和B类焊接接头进行局部射线或超声检测,检测方法按图样规定,检测长度不得少于各条焊接接头长度的20%且不小于250mm,焊缝交叉部位及以下部位应全部检测,其检测长度可记入局部检测长度之内.

a)先拼板后成型凸形封头上的所有拼接接头;

b)凡被补強圈、支座、垫板、内件等覆盖的焊接接头;

c)以开孔直径为圆心,1.5倍开孔直径为半径的园中所包括的焊接接头;

d)嵌入式接管与圆筒或封头对接连接的焊接接头;

e)公称直径不小于250mm的接管与长颈法兰、接管与接管对接连接的焊接接头。(注:按本条规定检测后,制造部门对未检查的质量仍须负责,但是,若作进一步检查可能发现气孔等不危及容器安全的超标缺陷,如果这也不允许时,就应选择100%射线或超声检测)。(10.8.2.3)对容器直径不超过800mm的圆筒与封头的最后一道环向封闭焊接,当采用不带垫板的单面焊对接接头,且无法进行射线或超声检测时,允许不进行检测,但需采用气体保护焊打底,

(10.8.2.4)公称直径小于250mm的接管与长颈法兰、接管与接管的B类焊接接头可不进行射线或超声检测。

(10.8.3)凡符合下列之一的焊接接头,需按图样规定的方法,对其表面进行磁粉或渗透检测。

a)凡属10.8.2.1中c)、d)条容器上的C类和D类焊接接头;

b)层板材料标准抗拉强度下限值σb>540Mpa的多层包扎压力容器的层板C类焊接接头;

c) 堆焊表面;

d)复合钢板的复合层焊接接头;

e)标准抗拉强度下限值σb>540Mpa的钢材及Cr-Mo低合金钢材经火焰的坡口表面,以及该容器的缺陷修磨或补焊处的表面,卡具和拉筋等拆除处的焊痕表面;

f)凡属10.8.2.1容器上公称直径小于250mm的接管与长颈法兰、接管与接管对接连接的焊接接头。

(10.8.4)无损检测标准

按JB4730对焊接接头进行射线、超声、磁粉、渗透检测,其合格指标如下:

(10.8.4.1)射线检测

a)若容器及受压元件符合10.8.2.1的规定,不低于Ⅱ级为合格;

b)若容器符合10.8.2.2的规定,不低于III级为合格;

(10.8.4.2)超声检测

a)若容器及受压元件符合10.8.2.1的规定,Ⅰ级为合格;

b)若容器符合10.8.2.2的规定,不低于Ⅱ级为合格;

(10.8.4.3)磁粉和渗透检测,Ⅰ级为合格;

(10.8.5)重复检测

(10.8.5.1)经射线或超声检测的焊接接头,如有不允许的缺陷,应在缺陷清除干净后进行补焊,并对该部分采用原检测方法重新检查,直至合格。

进行局部检测的焊接接头,发现有不允许的缺陷时,应在该缺陷两端的延伸部位增加检测长度,增加的长度为该条焊缝长度的10%,且不小于250mm,若仍有不允许的缺陷时,则对该焊接接头做100%的检测。

(10.8.5.2)磁粉或渗透检测发现有不允许的缺陷时,应进行修磨及必要的补焊,并对该部位采用原检测方法重新检查,直至合格。

2.3 GB151-1999《管壳式换热器》有关无损检测的规定

2.3.1总则对无损检测的规定

(3.1)换热器的设计、制造、检验和验收除必须符合本标准的规定外,还应遵守GB150和国家颁布的有关规定、法规和规章。

2.3.2钢板对无损检测的规定

(4.3.2.2)当采用钢板制造长颈法兰时. a)钢板不得有分层缺陷,且应按JB4730进行超声检测,质量等级不低于III级;b)圆环对接接头应经焊后热处理及100%射线或超声检测,按JB4730规定的射线检测Ⅱ级合格,超声检测Ⅰ级合格。

2.3.3换热管对无损检测的规定

(6.3.3)换热管拼接时, f)对接接头应进行射线检测,抽查数量应不少于接头总数的10%,且不少于一条,以JB4730的III级为合格;如有一条不合格,应加倍抽查;再出现不合格时,应100%检查。

2.3.4管板对无损检测的规定

(6.4.1)拼接管板的对接接头应进行100%射线或超声检测,按JB4730射线检测不低于Ⅱ级,或超声检测中的Ⅰ级合格。

(6.4.3)堆焊复合管板b)基层材料的待堆焊面和复层材料加工后(钻孔前)的表面,应按JB4730进行表面检测,检测结果不得有裂纹、成排气孔,并应符合Ⅱ级缺陷显示。

2.3.5无损检测的规定

焊接接头无损检测的检查和评定标准,应根据换热器管、壳体不同的设计条件,按GB150-1999中10.8的规定和图样要求执行。

2.3.6 GB151附录A《低温管壳式换热器》对无损检测的规定(≤20oC)

(A2.1.3)换热器壳体钢板厚度大于20mm时,应逐张进行超声检测,按JB4730规定的III 级为合格。

(A4.8)焊接接头检测

(A4.8.1)换热器的对接接头(A、B类接头)凡符合下列条件之一者,应进行100%射线或超声检测

a)换热器设计温度低于-40°C;

b)换热器设计温度虽高于等于-40°C,但接头厚度大于25mm;

c)符合GB150-1998中10.8.2.1和10.8.2.2者;

(A4.8.2)除A4.8.1规定者外,允许进行局部无损检测,检查长度不得低于各条焊接接头长度的50%,且不小于250mm。

(A4.8.3)凡符合A4.8.1规定进行100%射线或超声检测的换热器,所有受压元件焊接接头均需做100%磁粉或渗透检测,受压元件与非受压元件的连接焊接接头亦按本条要求检查。

2.3.7 GB151附录C《换热管奥氏体不锈钢焊接钢管》

(C1.8)钢管应按GB71277逐根进行涡流检测。

2.3.8 GB151附录D《有色金属设计数据》

(D1)焊接接头系数

铝、钢、钛及合金的焊接接头系数ф,应根据受压元件焊接接头的型式和射线检测的长度比例表D1选取

表D1

注:1、本表所指无损检测,系射线检测

2、对无法进行无损检测的有金属垫板的单面对接钛制换热气取ф=0.65

三、JB/T4730-2005《承压设备无损检测》介绍

3.1 JB/T4730-2005主题内容与适用范围

本标准规定了射线检测、超声检测、磁粉检测、渗透检测和涡流检测五种无损检测方法及缺陷等级评定。

本标准所述各种无损检测方法,适用于在制和在用金属材料制承压设备无损检测。

3.2射线检测范围(对象)

3.2.1射线检测适用于碳素钢、低合金钢、不锈钢、铜及铜合金、铝及铝合金、钛及钛合

金、镍及镍合金材料制压力容器焊缝及钢管对接环缝的射线透照检测。射线检测不适用于锻件、管材、棒材的检测。T型焊接接头、角焊缝以及堆焊层的检测一般也不采用射线检测。

3.2.2钢制压力容器焊缝射线透照适用于2-400mm板厚的碳素钢、低合金钢、不锈钢、镍及镍合金及2~80mm板厚的铜及铜合金制压力容器对接焊缝的X射线和γ射线透照和质量分级。

3.2.3钢管环缝射线透照适用于管壁厚大于或等于2mm的碳素钢、低合金钢、不锈钢、铜及铜合金、镍及镍合金管环焊缝射线透照检测和质量分级。焊制三通、四通、管帽、异径焊缝和弯头,焊管的纵缝和螺旋缝也可参照使用,但不适用于摩擦焊、闪光焊等机械焊方法施焊的钢管环焊接。

3.2.4 铝制压力容器焊缝射线透照适用于壁厚小于2~80mm铝及铝合金制压力容器对接焊缝的X射线和γ射线透照和缺质量分级。

3.2.5钛制压力容器焊缝射线透照适用于壁厚小于2~50mm的钛及钛合金制压力容器对接焊缝的X射线和γ射线透照和质量分级。

3.3 超声检测范围(对象)

3.3.1超声检测适用于压力容器原材料、零部件和焊缝的检测。

3.3.2 压力容器钢板超声检测适用于板厚为6-250mm的碳素钢、低合金钢制压力容器用板材的超声检测和缺陷等级评定。奥氏体钢板、镍及镍合金板材以及双向不锈钢板材的超声检测业可参照执行。

3.3.3 压力容器锻件超声检测适用于碳素钢和低合金钢锻件的超声检测和缺陷等级评定。(压力容器锻件等级分Ⅰ、Ⅱ、III、Ⅳ四个级别)其中Ⅰ、Ⅱ级锻件不做超声检测,III、Ⅳ级锻件应逐件进行超声检测。合格级别按下表执行。

注:根据需方要求,对锻件重要区可提高合格级别。

但不适用于奥氏体钢等粗晶材料的超声检测,也不适用于内外半径之比小于80%的环形和筒形锻件的周向横波检测。

3.3.4压力容器复合板超声检测,适用于基板厚度大于或等于6mm的压力容器用不锈钢、铜及铜合金、铝及铝合金、钛及钛合金、镍及镍合金复合板的超声检测和缺陷等级的评定。

3.3.5高压无缝钢管超声检测适用于外径为12-660mm,壁厚大于等于2mm的压力容器用碳钢和低合金钢无缝钢管或外径为12-400mm,壁厚为2-35mm的不锈钢管的超声检测和缺陷等级评定。

不适用于分层缺陷的超声检测,也不适用于内外径之比小于80%的钢管的周向横波检测。

3.3.6高压螺栓件的超声检测适用于直径大于M36的碳钢和低合金钢螺栓坯件的超声检测和缺陷等级的评定。

3.3.7不适用于奥氏体钢螺栓坯件超声检测。

3.3.8 钢制压力容器焊缝超声检测适用于母材厚度为8-400mm全焊透熔化焊对接焊缝的超声检测和缺陷等级的评定。

不适用外径小于158mm的钢管对接焊缝,内经小于或等于200mm管座角焊缝,也不适用于外径小于250mm或内经之比小于80%的纵向焊缝检测。

3.3.9 适用于不锈钢、镍合金等堆焊层内,堆焊层与母材未接合缺陷和堆焊层下母材再热裂纹超声检测及质量分级。

3.3.10 铝制压力容器焊缝超声适用于厚度大于或等于8mm的铝及铝合金制压力容器对接焊缝超声检测和缺陷等级的评定。

不适用外径小于158mm的铝及铝合金对接焊缝,内经小于或等于200mm管座角焊缝,也不适用于外径小于250mm或内经之比小于80%的纵向焊缝检测。

3.4 磁粉检测范围(对象)

压力容器渗透检测适应于金属材料制成的压力容器及其零件表面开口缺陷的检测和缺陷等级的评定。

3.5 渗透检测范围(对象)

压力容器渗透检测适应于金属材料制成的压力容器及其零件表面及近表面缺陷的检测和缺陷等级的评定。

各种常见无损探伤方法简介与比较

各种常见无损探伤方法简介与比较 三种常规无损检测方法的比较 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。 常用的无损检测方法:超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT)。 超声波检测(UT) 1、超声波检测的定义: 通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 2、超声波工作的原理: 主要是基于超声波在试件中的传播特性。声源产生超声波,采用一定的方式使超声波进入试件;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 3、超声波检测的优点: a.适用于金属、非金属和复合材料等多种制件的无损检测; b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件; c.缺陷定位较准确; d.对面积型缺陷的检出率较高; e.灵敏度高,可检测试件内部尺寸很小的缺陷; f.检测成本低、速度快,设备轻便,对人体及环境无害,使用较方便。 4、超声波检测的局限性

a.对试件中的缺陷进行精确的定性、定量仍须作深入研究; b.对具有复杂形状或不规则外形的试件进行超声检测有困难; c.缺陷的位置、取向和形状对检测结果有一定影响; d.材质、晶粒度等对检测有较大影响; e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。 5、超声检测的适用范围 a.从检测对象的材料来说,可用于金属、非金属和复合材料; b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等; c.从检测对象的形状来说,可用于板材、棒材、管材等; d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米; e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。 磁粉检测(MT) 1. 磁粉检测的原理: 铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小 2. 磁粉检测的适用性和局限性: a.磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹),目视难以看出的不连续性。 b.磁粉检测可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测。 c.可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。 d.磁粉检测不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。 渗透检测(PT) 1.液体渗透检测的基本原理: 零件表面被施涂含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。 2.渗透检测的优点: a.可检测各种材料;金属、非金属材料;磁性、非磁性材料;焊接、锻造、轧制等加工方式; b.具有较高的灵敏度(可发现0.1μm宽缺陷) c.显示直观、操作方便、检测费用低。 3.渗透检测的缺点及局限性: a.它只能检出表面开口的缺陷; b.不适于检查多孔性疏松材料制成的工件和表面粗糙的工件; c.渗透检测只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价。检出结果受操作者的影响也较大。 由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、形状、部位和取向,选择最适当无损检测方法。 任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。

无损检测中的UT RT MT PT ET 都是什么意思

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 无损检测中的UT RT MT PT ET 都是什么意思 无损检测中的 UT RT MT PT ET 都是什么意思?学习的时候这些有什么不同吗?超声检测 Ultrasonic Testing(缩写 UT);射线检测 Radiographic Testing(缩写 RT);磁粉检测 Magnetic particle Testing(缩写 MT);渗透检测 Penetrant Testing (缩写 PT);涡流检测 Eddy Current Testing (缩写 ET);射线照相法(RT)是指用 X 射线或 g 射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。 1、射线照相检验法的原理:射线能穿透肉眼无法穿透的物质使胶片感光,当 X 射线或 r 射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线能量也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。 2、射线照相法的特点:射线照相法的优点和局限性总结如下: a.可以获得缺陷的直观图像,定性准确,对长度、宽度尺寸的定量也比较准确; b.检测结果有直接记录,可长期保存; c. 对体积型缺陷(气孔、夹渣、夹钨、烧穿、咬边、焊瘤、凹坑等)检出率很高,对面积型缺陷(未焊透、未熔合、裂纹等),如果照相角度不适当,容易漏检; d.适宜检验厚度较薄的工件而不宜较厚的工件,因为检验厚工件需要高能量的射线设备,而且随着厚度的增加,其检验灵敏 1/ 11

无损检测基础知识

无损检测概论 1、定义和分类: 就是指在不损坏试件的前提下,对试件进行检查和测试的方法。 现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构、性质、状态进行检查和测试的方法。 2、无损检测方法有: 射线检测(RT)、超声波检测(UT)、磁粉检测(MT)、渗透检测(PT)、涡流检测(ET)和声发射检测(AT)等。在目前核工业上还有目视检测、检漏检测等。 3、无损检测的目的: 应用无损检测技术,是为了达到以下目的 A、保证产品质量。应用无损检测技术,可以探测到肉眼无法看到的试件内部的缺陷;在对试件表面质量进行检验时,通过无损检测方法可以探测出许多肉眼很难看见的细小缺陷。 B、保障使用安全。即使是设计和制造质量完全符合规范要求的设备,在经过一段时间使用后,也有可能发生破坏事故,这是由于苛刻的运行条件使设备状态发生变化,由于高温和应力的作用导致材料蠕变;由于温度、压力的波动产生交变应力,使设备的应力集中部位产生疲劳;由于腐蚀作用使材质劣化;这些原因有可能使设备中原来存在的制造规范允许的缺陷扩展开裂,或使设备中原来没有缺陷的地方产生新生的缺陷,最终导致设备失效。而无损检测就是在用设备定期检验的主要内容和发现缺陷最有效的手段。 C、改进制造工艺。在产品生产中,为了了解制造工艺是否适宜,必须事先进行工艺试验。在工艺试验中,经常对工艺试样进行无损检测,并根据检测结果改进制造工艺,最终确定理想的制造工艺。如,为了确定焊接工艺规范,对焊接试验的焊接试样进行射线照相,并根据检测结果修正焊接参数,最终得到能够达到质量要求的焊接工艺。 D、降低生产成本。在产品制造过程中进行无损检测,往往被认为要增加检查费用,从而使制造成本增加。可是如果在制造过程中间的环节正确地进行无损检测,就是防止以后的工序浪费,减少返工,降低废品率,从而降低制造成本。 一、射线检测基础知识 射线的种类很多,其中易穿透物质的X射线、γ射线、中子射线三种。这三种射线都被用于无损检测,其中X射线和γ射线广泛用于锅炉压力容器压力管道焊缝和其他工业产品、结构材料的缺陷检测,而中子射线仅用于一些特殊场合。 射线检测是工业无损检测的一个重要专业。最主要的应用是探测试件内部的宏观几何缺陷(探伤)。按照不同特征可将射线检测分为许多种不同的方法,例如使用的射线种类、记录的器材、探伤工艺和技术特点等。 射线照相法是指X射线或γ射线穿透试件,以胶片作为记录信息的无损检测方法,是最基本、应用最广泛的一种射线检测方法。 1、射线照相的原理: 射线照相法是利用射线透过物质时,会发生吸收和散射这一特征,通过测量材料中因缺陷存在影响射线的吸收来探测缺陷的。X射线和γ射线通过物质时,其强度逐渐减弱。一般认为是由光电效应引起的吸收、康普顿效应引起的散射和电子对效应引起的吸收三种原因造成的。射线还有一个重要性质,就是能使胶片感光,当X射线或γ射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜象中心,经过显影和定影后就黑化,接收射线越多的部位黑化程度越高,这个作用叫做射线的照相作用。因为X射线或γ射线使卤化银感光作用比普通光线小得多,所以必须使用特殊的X射线胶片,还使用一种能加强感光

无损检测基础知识

一、无损检测基础知识 1.1无损检测概况 1.1.1无损检测的定义和分类 什么叫无损检测,从文字上面理解,无损检测就是指在不损坏试件的前提下,对试件进行检查和测试的方法。但是这并不是严格意义上的无损检测的定义,对现代无损检测的定义是:在不损坏试件的前提下,以物理或化学为手段,借助先进的技术和设备器材,对试件的内部及表面的结构、性质、状态进行检查和测试的方法。在无损检测技术发展过程中出现三个名称,即:无损探伤(Non-destructive lnspction),无损检测(Non-destructive Testing),无损评价( Non-destructive Evaluation)。一般认为,这三个名称体现了无损检测技术发展的三个阶段,其中无损探伤是早期阶段的名称,其内涵是探测和发现缺陷;无损检测是当前阶段的名称,其内涵不仅仅是探测缺陷,还包括探测试件的一些其它信息。而无损评价则是即将进入或正在进入的发展阶段,无损评价包涵更广泛,更深刻的内容,它不仅要求发现缺陷,探测试件的结构、性质、状态,还要求获取全面的、更准确的、综合的信息。 射线检测(Radiographyic Testing,,简称RT),超声波检测(Uitrasonic Testing,简称UT),磁粉检测(Magnetic Testing 简称MT),渗透检测(Penetrant Testing,简称PT)是开发较早,应用较广泛的探测缺陷的方法,称为四大常规检测方法,到目前为止,这四种方法仍是锅炉压力容器制造质量检验和再用检验最常用的无损检测方法,其中RT和UT 主要用于检测试件内部缺陷。PT主要用于检测试件表面缺陷,MT主要用于检测试件表面及近表面缺陷。其它用于锅炉压力容器的无损检测方法有涡流检测(Eddy current Testing,简称ET)、声发射检测(Acoustic Emission,简称AE)。 1.1.2无损检测的目的 用无损检测技术,通常是为了达到以下目的: 1、保证产品质量; 2、保障使用安全; 3、改进制造工艺; 4、降低生产成本。 1.1.3无损检测应用的特点 无损检测应用时,应掌握以下几个方面的特点: 1、无损检测要与破坏性检测配合; 2、正确选用实施无损检测的时机;

超声波探伤仪磁粉探伤仪等无损检测常用知识

超声波探伤仪磁粉探伤仪等无损检测常用知识 无损探伤问题集 物理探伤就是不产生化学变化的情况下进行无损探伤。 一、什么是无损探伤? 答:无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 二、常用的探伤方法有哪些? 答:常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。 三、试述磁粉探伤的原理? 答:它的基本原理是:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。 四、试述磁粉探伤的种类? 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 五、磁粉探伤的缺陷有哪些? 答:磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。 六、缺陷磁痕可分为几类? 答:1、各种工艺性质缺陷的磁痕; 2、材料夹渣带来的发纹磁痕;

3、夹渣、气孔带来的点状磁痕。 七、试述产生漏磁的原因? 答:由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B=μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。 八、试述产生漏磁的影响因素? 答:1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。 2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。 3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。 九、某些零件在磁粉探伤后为什么要退磁? 答:某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某些零件的剩磁将会使附近的仪表指示失常。因此某些零件在磁粉探伤后为什么要退磁处理。 十、超声波探伤的基本原理是什么? 答:超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。 十一、超声波探伤与X射线探伤相比较有何优的缺点? 答:超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探伤适合于厚度较大的零件检验。 十二、超声波探伤的主要特性有哪些? 答:1、超声波在介质中传播时,在不同质界面上具有反射的特性,如遇到缺陷,缺陷的尺寸等于或大于超声波波长时,则超声波在缺陷上反射回来,探伤仪可将反射波显示出来;如缺陷的尺寸甚至小于波长时,声波将绕过射线而不能反射; 2、波声的方向性好,频率越高,方向性越好,以很窄的波束向介质中辐射,易于确定缺陷的位置。

常用无损检测技术分析

158 第三篇 常用无损检测技术 第15章 射线照相检测技术 15.1射线照相检测技术概述(Ⅱ级人员仅要求本节内容) 射线是具有可穿透不透明物体能力的辐射,包括电磁辐射(X 射线和γ射线)和粒子辐射。在射线穿过物体的过程中,射线将与物质相互作用,部分射线被吸收,部分射线发生散射。不同物质对射线的吸收和散射不同,导致透射射线强度的降低也不同。检测透射射线强度的分布情况,可实现对工件中存在缺陷的检验。这就是射线检测技术的基本原理。射线照相检测技术,利用射线对胶片可以产生感光作用的原理,采用胶片记录透射射线强度,在底片上形成不同黑度的图像,完成检验。图15—1显示了射线照相检测技术的基本原理。 射线照相检测的基本过程为准备、透照、暗室处理、评片,从底片上给出的图像,判断缺陷性质、分布、尺寸,完成对工件的检验。 图15-1 射线照相检测技术基本原理 图15-2 光电效应示意图 射线照相检验技术可应用于各种材料(金属材料、非金属材料和复合材料)、各种产品缺陷的检验。检验技术对被检工件的表面和结构没有特殊要求。检验原理决定了,这种技术最适宜检验体积性缺陷,对延伸方向垂直于射线束透照方向(或成较大角度)的薄面状缺陷难于发现。射线照相检验技术特别适合于铸造缺陷和熔化焊缺陷的检验,不适合锻造、轧制等工艺缺陷检验。现在它广泛应用于航空、航天、船舶、电子、兵器、核能等工业领域。 射线照相检测技术直接获得检测图像,给出缺陷形貌和分布直观显示,容易判定缺陷性质和尺寸。检测图像还可同时评定检测技术质量,自我监控工作质量。这些为评定检测结果可靠性提供了客观依据。 射线照相检测技术应用中必须考虑的一个特殊问题是辐射安全防护问题。必须按照国家、地方、行业的有关法规、条例作好辐射安全防护工作,防止发生辐射事故。 15.2射线照相检测技术基础 15.2.1 射线与物质的相互作用 射线按其特点分为二类:电磁辐射和粒子辐射,以下仅讨论X射线与γ射线(电磁辐射)。 X射线、γ射线与物质的相互作用是光量子和物质的相互作用。包括光量子与原子、原子核、原子的电子及自由电子的相互作用。主要的作用是:光电效应、康普顿效应、电子对效应和瑞利散射。图15—2、图15—3、图15—4是光电效应、康普顿效应、电子对效应作用示意图。

焊管常用探伤方法及技术

焊管常用探伤方法及技术 曹雷 (阜新华通管道有限公司,辽宁阜新123000) 摘要:介绍了焊管常用的3种探伤方法(漏磁探伤、涡流探伤和超声波探伤)及技术。分析了3种探伤方法 的优缺点:漏磁探伤灵敏度高,能很好地分辨出焊管内外壁缺陷,但长管体、大壁厚管在漏磁探伤后需做消磁处理;涡流探伤检测速度快,但受趋肤效应的限制,很难发现工件深处的缺陷;超声波探伤穿透能力强、缺陷定位准确、成本低、速度快,但探伤操作需经耦合,在北方严冬环境下耦合时焊管易冻结,给探伤作业带来不便。 关键词:焊管检测;漏磁探伤;涡流探伤;超声波探伤中图分类号:TG115.28;TG441.7 %%文献标志码:B %文章编号:1001-2311(2012)04-0072-03 Commonly -used NDT Methods and Techniques for Weld Pipes Cao Lei (Fuxin Huatong Piping Co.,Ltd.,Fuxin 123000,China ) Abstract :Described in the paper are the three commonly -used NDT methods and techniques for weld pipe flaw inspection ,i.e.,the MFL detection ,the eddy -current detection and the ultrasonic detection.Also analyzed are the advantages and disadvantages of these methods.The MFL method features high sensitivity which ensures satisfactory identification of both outer and inner flaws of the pipe ,but in case of long large -sized heavy -wall pipe ,demagnetization is necessary to be carried out upon ending of the detection.As for the eddy -current method ,although the detection speed is rather high ,it is so difficult to find out any flaw located deep in the workpiece due to the Kelvin skin effect.And speaking of the ultrasonic method ,the advantages are high penetrating force ,high flaw -positioning accuracy ,low operation cost ,and high detection velocity ,but medium coupling is needed for the detection ,which may cause ,in winter ,the trouble of freezing of the pipe ,particularly in hi -latitude areas ,thus make it rather difficult to keep the detection operation going smoothly. Key words :Weld pipe detection ;Magnetic flux leakage (MFL )detection ;Eddy -current detection ;Ul -trasonic detection 在焊管的制造和使用过程中,为保证焊缝质量而进行的无损检测是尤为重要的。焊管常用的无损检测方法有:适用于距焊管表面5mm 以上的离线全管体漏磁探伤、涡流探伤和超声波探伤;验证距焊管表面5mm 以上焊接质量的在线漏磁探伤和涡流探伤;适用于厚壁焊管的离线焊缝全管体超声波探伤;验证厚壁焊管焊接质量的超声波探伤。本文将结合生产经验,对焊管常用的探伤方法及技术作简要介绍,并对其优缺点进行分析比较。 1焊管全管体漏磁探伤 漏磁探伤是指铁磁材料被磁化后,其表面和近表面缺陷在材料表面形成漏磁场,通过检测漏磁场发现缺陷的无损检测技术。漏磁探伤对管材的表面状态要求不高,检出深度较大,在国外的焊管检测中被大量使用,国内特别是石油用焊管的检测也已普遍采用。 在生产检测中,曾出现过漏磁探伤检测不出焊管透壁大孔洞的现象,除了管理及人员因素外,这与仪器、探头性能及缺陷尺寸形状等都有关系。笔者根据实践经验,总结出影响焊管全管体漏磁探伤精度的主要因素有以下几点。 曹 雷(1983-),男,工程师,从事石油钢管生产工 艺和石油天然气管道管件的研究工作。 STEEL PIPE Aug .2012,Vol.41,No.4 钢管2012年8月第41卷第4期 检测技术 72

电力行业无损检测基础知识

无损检测基础知识 一.无损检测的定义、方法及目的 二.焊接接头的缺陷及防止措施 三.焊接接头射线检测质量分级 四.焊接缺陷在底片上的形貌 (一)无损检测的定义、方法和目的 1.无损检测是在不损坏和不破坏材料及设备的情况下,对它们进行检测的一种方法。 2.无损检测的方法主要有:射线探伤、超声波探伤、磁粉探伤、渗透探伤等。 3.无损检测的目的确保工件或设备的质量,保证设备的安全运行。 (二)焊接接头的缺陷及防止措施 1.缺陷的分类 焊接接头缺陷类型很多,按在接头中的位置可分为外部缺陷和内部缺陷两大类。

1)外部缺陷 位于接头的表面,用肉眼就可看到,如咬边、焊瘤、弧坑、表面气孔和裂纹等。 2)内部缺陷 位于接头内部,必须通过各种无损检测方法才能发现。内部缺陷有未焊透、未熔合、夹渣、气孔、裂纹等。 2.内部缺陷产生的原因及防止措施 (一)未焊透----焊接时接头根部未完全融透的现象叫未焊透。 未焊透缺陷不仅降低了焊接接头的机械性能,而且在未焊透处的缺口和端部形成应力集中点,承载后往往会引起裂纹,是一种危险缺陷,这类缺陷一般是不允许存在的。 产生的原因:坡口钝边间隙太小,焊接电流太小或运条速度过快,坡口角度小,运条角度不对以及电弧偏吹等。 防止措施:合理选用坡口型式、对口间隙和采用正确的焊接工艺。

(二)未熔合----熔焊时,焊道于母材之间或焊道之间未完全熔化结合的部分,点焊时母材与母材之间未完全熔化结合的部分。 产生的原因:坡口不干净,焊速太快,电流过小或过大,焊条角度不对,电弧偏吹等。

预防措施:正确选用坡口和焊接电流,坡口清理干净,正确操作防止焊偏等。

混凝土结构常用无损检测方法

混凝土结构常用无损检测方法 摘要:介绍了回弹法、超声波法、雷达法等各种混凝土无损检测方法的工作原理,分析了各自的特点及适用范围。在实际工程中,宜使用两种或两种以上方法进行检测,以互相验证,提高检测的效率及可靠性。? 无论是工业及民用建筑,还是公路、铁路、水利及水电工程等都广泛使用混凝土材料,混凝土的质量关系到整个工程的质量。传统的混凝土强度检验方法是在浇筑地点随机抽取试样,对试样进行抗压强度试验,由试验结果来评定混凝土的强度。由于试样的制作条件、养护环境及受力状态与原位混凝土均存在着明显的差异,试样的实验结果难以全面、准确地反映原位混凝土的质量状况,显然无损检测是获得原位混凝土真实质量的有效方法。早在20 世纪30 年代,人们就开始研究混凝土无损检测技术。1948 年,瑞士科学家施密特( E. Schmidt )研制成回弹仪;1949 年莱斯利(Leslie )等人用超声脉冲成功检测混凝土;60年代费格瓦洛(I. Facaoaru)提岀用声速、回弹综合法估算混凝土强度;80年代中期,美国的Mary Sansalone 等用机械波反射法进行混凝土无损检测;90 年代以来,随着科学技术的快速发展,涌现岀一批新的测试方法,如微波吸收、雷达扫描、红外线谱、脉冲回波等方法。我国从50年代开始引进瑞士、英国、波兰等国的超声波仪器和回弹仪,并结合工程应用开展了一定的研究工作;60 年代初我国研制成功多种型号的超声波仪器,随后广泛进行了混凝土无损检测技术的研究和应用;80 年代混凝土无损检测技术在我国得到快速发展,并取得了一定的研究成果,除了超声、回弹等无损检测方法外,还进行了钻芯法、后装拔岀法的研究;90 年代以来,雷达技术、红外成像技术、冲击回 波技术等进入实用阶段,同时超声波检测仪器也由模拟式发展为数字式,可将测试数据传入计算机进行各种数据处理,以进一步提高检测的可靠性。 混凝土无损检测的方法主要有回弹法、超声法、超声回弹综合法、雷达法、冲击回波法、红外成像法、钻芯法、拔岀法及超声波CT 法等,其中钻芯法和拔岀法属局部破损或半破损检测方法。以下就各种方法的工作原理、特点及适用范围作以述评。 各种无损检测方法工作原理及其特点述评 1.1 回弹法 回弹法是以在混凝土结构或构件上测得的回弹值和碳化深度来评定混凝土结构或构件强度的一种方法,它不会对结构或构件的力学性质和承载能力产生不利影响,在工程上已得到广泛应用。 回弹法使用的仪器为回弹仪,它是一种直射锤击式仪器,是用一弹击锤来冲击与混凝土表面接触的弹击杆,然后弹击锤向后弹回,并在回弹仪的刻度标尺上指示岀回弹数值。回弹值的大小取决于与冲击能量有关的回弹能量,而回弹能量则反映了混凝土表层硬度与混凝土抗压强度之间的函数关系,即可以在混凝土的抗压强度与回弹值之间建立起一种函数关系,以回弹值来表示混凝土的抗压强度。回弹法只能测得混凝土表层的质量状况,内部情况却无法得知,这便限制了回弹法的应用范围,但由于回弹法操作简便,价格低廉,在工程上还是得到了广泛应用。 回弹法的基本原理是利用混凝土强度与表面硬度之间的关系,通过一定动能的钢杆件弹击混凝土表 面,并测得杆件回弹的距离(回弹值),利用回弹值与强度之间的相关关系来推定混凝土强度。 通常采用试验的方法得到回弹值与强度之间的相关关系,即建立混凝土强度f c cu与回弹值R之间 的一元回归公式,或混凝土强度与回弹值R及主要影响因素(如碳化深度)之间的二元回归公式。回归 的公式可采用各种不同的函数方程形式,根据大量试验数据进行回归拟合,择其相关系数较大者作为实用经验公式。目常常用的形式主要有以下几种: 直线方程 f c cu A BR 幂函数方程 f c cu AR B

质量管理基础知识

质量管理基础知识培训内容 基本概念: 什么是认证?:“认证”一词的英文原意是一种出具证明文件的行动。ISO/IEC指南2:1986中对“认证”的定义是:“由可以充分信任的第三方证实某一经鉴定的产品或服务符合特定标准或规范性文件的活动。” 举例来说,对第一方(供方或卖方)生产的产品甲,第二方(需方或买方)无法判定其品质是否合格,而由第三方来判定。第三方既要对第一方负责,又要对第二方负责,不偏不倚,出具的证明要能获得双方的信任,这样的活动就叫做“认证”。 这就是说,第三方的认证活动必须公开、公正、公平,才能有效。这就要求第三方必须有绝对的权力和威信,必须独立于第一方和第二方之外,必须与第一方和第二方没有经济上的利害关系,或者有同等的利害关系,或者有维护双方权益的义务和责任,才能获得双方的充分信任。 那么,这个第三方的角色应该由谁来担当呢?显然,非国家或政府莫属。由国家或政府的机关直接担任这个角色,或者由国家或政府认可的组织去担任这个角色,这样的机关或组织就叫做“认证机构”。 什么是ISO?:ISO是一个组织的英语简称。其全称是International Organization for Standardization , 翻译成中文就是“国际标准化组织”。 ISO是世界上最大的国际标准化组织。它成立于1947年2月23日,它的前身是1928年成立的“国际标准化协会国际联合会”(简称ISA)。他如IEC 也比

较大。IEC即“国际电工委员会”,1906年在英国伦敦成立,是世界上最早的国际标准化组织。IEC主要负责电工、电子领域的标准化活动。而ISO负责除电工、电子领域之外的所有其他领域的标准化活动。 ISO 宣称它的宗旨是“在世界上促进标准化及其相关活动的发展,以便于商品和服务的国际交换,在智力、科学、技术和经济领域开展合作。” 1有关质量的概念 1.1 质量:一组固有特性满足要求的程度。 “质量”可使用形容词差、好或优秀来修饰 “固有的”(其反义是“赋予的”)就是批在某事物或某物中本来就有的,尤其是那种永久的特性。 1.2 要求: 明示的、通常隐含的或必须履行的需求或期望。 “明示的”可以理解为是规定的要求 “通常隐含的”是指组织、顾客和其他相关方的惯例或一般做法 “必须履行的”是指法律法规的要求及强制标准的要求 要求可以由不同的相关方提出,不同的相关方对同一产品的要求可能是不同的。 要求可以是多方面的,如产品要求、质量管理体系要求、顾客要求等。 质量的内涵是由一组固有的特性组成,并且这些固有特性是以满足顾客及其他相关方所要求的能力加以表征。 1.3顾客满意: 顾客对其要求已被满足的程度的感受。 顾客抱怨是一种满意程度低的最常见的表达方式,但没有抱怨并不一

常用无损检测方法的特点及应用

检测方法优点缺点应用 射线检测 1.检测结果有直接记录——底片 2.可以获得缺陷的投影图像,缺陷 定性定量准确1.体积型缺陷检出率很 高,而面积型缺陷的检 出率受到多种因素影 响 2. 不适宜检验较厚工 作。 3. 检测角焊缝效果较 差,不适宜检测板材、 楱材、锻件。 4. 对缺陷在工作中厚 度方向的位置、尺寸 (高度)的确定比较困 难。 5. 射线对人体有伤害 1.焊缝透照。 2.平板对接焊 缝透照。 3.角形焊缝照 射。 4.管件对接焊 缝照射。 超声检测 1.面积型缺陷的检出率较高,而体积 型缺陷的检出率较低。 2.适宜检验厚度较大的工件,不适 宜检验较薄的工件。 3.应用范围广,可用于各种试件。 4.检测成本低、速度快,仪器体积 小、重量轻,现场使用较方便 5.对缺陷在工件厚度方向上的定位 较准确。1.无法得到缺陷直观图 像,定性困难,定量精 度不高。 2.检测结果无直接见 证记录。 3.材质、晶粒度对检测 有影响。 4.工件不规则的外形 和一些结构会影响检 测。 5.探头扫查面的平整 度和粗糙度对超声检 测有一定影响。 1.陶瓷气孔率 的检测。 2.陶瓷表面缺 陷检测。 3.钻孔灌注桩 的无损检测 磁粉检测 1.磁粉检测对工件中表面或近表面 的缺陷检测灵敏度最高。 2.对裂纹、折叠、夹层和未焊透等 缺陷较为灵敏,能直观地显示出缺 陷的大小、位置、形状和严重程度, 并可大致确定缺陷性质,检测结果 的重复性好。1.随着缺陷的埋藏深度 的增加,其检测灵敏度 迅速降低。因此,它被 广泛用于磁性材料表 面和近表面的缺陷 1.压力容器的 探伤。 2.锻件探伤。 3.疲劳缺陷探 伤。

无损检测技术综述

无损检测技术原理与应用 安全工程1401班 2014074201 1无损检测技术的定义及发展概况 随着中国科学和工业技术的发展,高温、高压、高速度和高负荷已成为现代化工业的重要标志。但它的实现是建立在材料高质量的基础之上的。必须采用不破坏产品原来的形状,不改变使用性能的检测方法,以确保产品的安全可靠性,这种技术就是无损检测技术。无损检测技术不损害被检测对象的使用性能,应用多种物理原理和化学现象,对各种工程材料,零部件,结构进行有效地检验和测试,借以评价它们的连续性、完整性、安全可靠性及某些物理信息。目的是为了评价构件的允许负荷、寿命或剩余寿命,检测设备在制造和使用过程中产生的结构不完整性及缺陷情况,以便及时发现问题,保障设备安全[1]。 无损检测技术是机械工业的重要支柱,也是一项典型的具有低投入、高产出的工程应用技术。可能很难找到其他任何一个应用学科分支,其涵盖的技术知识之渊博、覆盖的基本研究领域之众多、所涉及的应用领域之广泛能与无损检测相比。美国前总统里根在发给美国无损检测学会成立20周年的贺电中曾说过,(无损检测)能给飞机和空间飞行器、发电厂、船舶、汽车和建筑物等带来更高的可靠性,没有无损检测(美国)就不可能享有目前在飞机、船舶和汽车等众多领域和其他领域的领先地位。作为一门应用性极强的技术,只有与国家大型工程项目结合,解决国家大型和重点工程项目中急需解决的安全保障问题,无损检测技术才能有用武之地和广阔的发展空间[2]。 我国无损检测技术的快速发展得益于经济的快速发展和国家综合实力的快速增强。近十年来,我国经济一直处于快速发展期,无损检测事业也处于蒸蒸日上的局面,其总体形势和水平已是十年前无法比拟。在我国各工业部门和国防单位,我国无损检测工作者取得了令世人瞩目的成绩[2]。 2无损检测技术的基本类型及其原理 目前常用的无损检测类型主要有超声检测技术、射线检测技术、磁粉检测技术、渗透检测和红外检测技术五种,本文选取其中3种检测技术对其基本原理和应用进行简单的讲述,选取超声波检测技术和红外检测技术这两种检测技术进行

混凝土结构常用无损检测方法

混凝土结构常用无损检测方法 摘要:介绍了回弹法、超声波法、雷达法等各种混凝土无损检测方法的工作原理,分析了各自的特点及适用范围。在实际工程中,宜使用两种或两种以上方法进行检测,以互相验证,提高检测的效率及可靠性。? 无论是工业及民用建筑,还是公路、铁路、水利及水电工程等都广泛使用混凝土材料,混凝土的质量关系到整个工程的质量。 传统的混凝土强度检验方法是在浇筑地点随机抽取试样,对试样进行抗压强度试验,由试验结果来评定混凝土的强度。由于试样的制作条件、养护环境及受力状态与原位混凝土均存在着明显的差异,试样的实验结果难以全面、准确地反映原位混凝土的质量状况,显然无损检测是获得原位混凝土真实质量的有效方法。早在20 世纪30 年代,人们就开始研究混凝土无损检测技术。1948 年,瑞士科学家施密特(E. Schmidt )研制成回弹仪;1949 年莱斯利(Leslie )等人用超声脉冲成功检测混凝土;60 年代费格瓦洛(I. Facaoaru )提出用声速、回弹综合法估算混凝土强度;80 年代中期,美国的Mary Sansalone 等用机械波反射法进行混凝土无损检测;90 年代以来,随着科学技术的快速发展,涌现出一批新的测试方法,如微波吸收、雷达扫描、红外线谱、脉冲回波等方法。我国从50年代开始引进瑞士、英国、波兰等国的超声波仪器和回弹仪,并结合工程应用开展了一定的研究工作;60 年代初我国研制成功多种型号的超声波仪器,随后广泛进行了混凝土无损检测技术的研究和应用;80 年代混凝土无损检测技术在我国得到快速发展,并取得了一定的研究成果,除了超声、回弹等无损检测方法外,还进行了钻芯法、后装拔出法的研究;90 年代以来,雷达技术、红外成像技术、冲击回波技术等进入实用阶段,同时超声波检测仪器也由模拟式发展为数字式,可将测试数据传入计算机进行各种数据处理,以进一步提高检测的可靠性。 混凝土无损检测的方法主要有回弹法、超声法、超声回弹综合法、雷达法、冲击回波法、红外成像法、钻芯法、拔出法及超声波CT 法等,其中钻芯法和拔出法属局部破损或半破损检测方法。以下就各种方法的工作原理、特点及适用范围作以述评。 各种无损检测方法工作原理及其特点述评 1.1 回弹法 回弹法是以在混凝土结构或构件上测得的回弹值和碳化深度来评定混凝土结构或构件强度的一种方法,它不会对结构或构件的力学性质和承载能力产生不利影响,在工程上已得到广泛应用。 回弹法使用的仪器为回弹仪,它是一种直射锤击式仪器,是用一弹击锤来冲击与混凝土表面接触的弹击杆,然后弹击锤向后弹回,并在回弹仪的刻度标尺上指示出回弹数值。回弹值的大小取决于与冲击能量有关的回弹能量,而回弹能量则反映了混凝土表层硬度与混凝土抗压强度之间的函数关系,即可以在混凝土的抗压强度与回弹值之间建立起一种函数关系,以回弹值来表示混凝土的抗压强度。回弹法只能测得混凝土表层的质量状况,内部情况却无法得知,这便限制了回弹法的应用范围,但由于回弹法操作简便,价格低廉,在工程上还是得到了广泛应用。 回弹法的基本原理是利用混凝土强度与表面硬度之间的关系,通过一定动能的钢杆件弹击混凝土表面,并测得杆件回弹的距离(回弹值),利用回弹值与强度之间的相关关系来推定混凝土强度。 通常采用试验的方法得到回弹值与强度之间的相关关系,即建立混凝土强度cu c f 与回弹值R 之间的一元回归公式,或混凝土强度与回弹值R 及主要影响因素(如碳化深度)之间的二元回归公式。回归的公式可采用各种不同的函数方程形式,根据大量试验数据进行回归拟合,择其相关系数较大者作为实用经验公式。目常常用的形式主要有以下几种: 直线方程 BR A f cu c +=

无损检测基础知识教学教材

一、无损检测基础知识 1. 1 无损检测概况 1.1.1 无损检测的定义和分类 什么叫无损检测,从文字上面理解,无损检测就是指在不损坏试件的前提下,对试件进行检查和测试的方法。但是这并不是严格意义上的无损检测的定义,对现代无损检测的定义是:在不损坏试件的前提下,以物理或化学为手段,借助先进的技术和设备器材,对试件的内部及表面的结构、性质、状态进行检查和测试的方法。在无损检测技术发展过程中出现三个名称,即:无损探伤(Non-destructive lnspction),无损检测 (No n-destructive Test in g),无损评价(No n-destructive Evaluatio n)。一般认为,这三个名称 体现了无损检测技术发展的三个阶段,其中无损探伤是早期阶段的名称,其内涵是探测和发现缺陷;无损检测是当前阶段的名称,其内涵不仅仅是探测缺陷,还包括探测试件的一些其它信息。 而无损评价则是即将进入或正在进入的发展阶段,无损评价包涵更广泛,更深刻的内容,它不仅要求发现缺陷,探测试件的结构、性质、状态,还要求获取全面的、更准确的、综合的信息。 射线检测(Radiographyic Testi ng,简称RT),超声波检测(Uitraso nic Test ing,简称UT),磁粉检测(Mag netic Testi ng 简称MT),渗透检测(Pen etra nt Testi ng简称PT)是开发较早,应用较广泛的探测缺陷的方法,称为四大常规检测方法,到目前为止,这四种方法仍是锅炉压力容器制造质量检验和再用检验最常用的无损检测方法,其中RT和UT 主要用于检测试件内部缺陷。PT主要用于检测试件表面缺陷,MT主要用于检测试件表面及近表面缺陷。其它用于锅炉压力容器的无损检测方法有涡流检测(Eddy current Testing简称ET)、声发射检测(Acoustic Emission,简称AE)。 1.1.2无损检测的目的 用无损检测技术,通常是为了达到以下目的: 1、保证产品质量; 2、保障使用安全; 3、改进制造工艺; 4、降低生产成本。 1.1.3 无损检测应用的特点 无损检测应用时,应掌握以下几个方面的特点: 1、无损检测要与破坏性检测配合;

最新核电无损检测基础知识

第一部分核电NDT人员基础知识习题集(闭卷) I.是非题 1.一般说来,钢材硬度越高,其强度也越高。(○) 2.一般说来,焊接接头咬边缺陷引起的应力集中,比气孔缺陷严重得多。(○) 3.材料的断裂韧度值KIC不仅取决于材料的成分、内部组织和结构,也与裂纹的大小、形状和外加应 力有关。(×) 4.一般说来,钢材的强度越高,对氢脆越敏感。(○) 5.应力集中的严重程度与缺口大小和根部形状有关,缺口根部曲率半径越大,应力集中系数就越大。 (×) 6.如果承压类设备的筒体不圆,则在承压时筒壁不仅承受薄膜应力,在不圆处还会出现附加弯曲应力。 (○) 7.低合金钢的应力腐蚀敏感性比低碳钢的应力腐蚀敏感性大。(○) 8.低碳钢和低合金钢组织的晶体结构属于体心立方晶格,而奥氏体不锈钢组织的晶体结构属于面心立 方晶格。(○) 9.钢中的奥氏体转变成马氏体时会产生很大的相变应力,是由于马氏体的比容大于奥氏体。(○) 10.如果高温奥氏体冷却速度过快,其中富含的碳原子来不及扩散,就会形成碳在 铁中的过饱和固溶 体,即马氏体。(○) 11.奥氏体不锈钢具有非常显著的加工硬化特性,其原因主要是在塑性变形过程中奥氏体会转变为马氏 体。(○) 12.硫是钢中的有害杂质,会引起钢的热脆。(○) 13.磷在钢中会形成低熔点共晶物,导致钢的冷脆。(×) 14.氮在低碳钢中是有害杂质,而在低合金钢中却能起提高强度、细化晶粒的作用。(○) 15.奥氏体不锈钢焊接不会产生延迟冷裂纹,但容易产生热裂纹。(○) 16.焊接电流增大,焊缝熔深增大而熔宽变化不大。(○) 17.导致埋弧自动焊接头余高过高的可能原因之一是焊丝伸出长度过长。(○) 18.在重要构件及厚度较大构件中,例如高压、超高压锅炉和压力容器环缝焊接中常用的是双U形坡口。 (○) 19.焊缝偏析发生在一次结晶过程中。(○) 20.对易淬火钢来说,其焊接接头热影响区的淬火区相当于不易淬火钢的过热区加正火区。(○) 21.一般认为,碳当量Ceq<0.4% 时,钢材的淬硬倾向不明显,焊接性较好。(○) 22.铬镍奥氏体不锈钢焊接时一般不需预热。(○) 23.奥氏体不锈钢焊接时容易产生冷裂纹。(×) 24.铬镍奥氏体不锈钢多道焊时应尽可能降低层间温度。(○) 25.沿晶开裂是热裂纹的主要特征。(○) 26.复合钢板的复合层堆焊贴合状况检查通常采用射线照相法。(×) 27.现代无损检测的定义是:在不破坏试件的前提下,以物理或化学方法为手段,借助现代的技术和设 备器材,对试件内部及表面的结构、性质、状态进行检查和测试的方法。(○) 28.裂纹由于产生原因不同分为热裂纹和冷裂纹。(×) 29.射线照相法是利用射线穿透过物体时,会发生吸收和散射这一特性,通过测量材料中因缺陷存在影 响射线的吸收实现探测缺陷的目的。(○) 30.渗透探伤可以发现检测工件的表面和近表面缺陷。(×)

相关文档
最新文档