澄清剂

澄清剂
澄清剂

澄清剂的分类

玻璃澄清剂是玻璃生产中常用的辅助化工原料。凡能在玻璃熔制过程中高温分解(气化)产生气体或降低玻璃液粘度,促使玻璃液中气泡消除的原料称为澄清剂。根据玻璃澄清的作用机理可分为:氧澄清,硫澄清,卤素澄清和复合澄清。可将澄清剂分为氧化物澄清剂,硫酸盐型澄清剂,卤化物澄清剂和复合澄清剂。

一,氧化物澄清剂。主要有白砒,氧化锑,硝酸钠,硝酸铵,二氧化铈等。

1,白砒又称亚砷酐,是澄清效果极好的一种常用澄清剂,玻璃行业俗称“澄清王”。但白砒必须与硝酸盐配合使用才能达到良好的澄清效果。白砒微溶于冷水,易溶于热水,剧毒,呈白色结晶粉末或无定形的玻璃状物质,黄金冶炼副产品砷灰常呈灰白,灰色或灰黑色等,作为澄清剂多用晶态白砒。当白砒加热到400度以上时,与硝酸盐在高温时放出的氧气生成五氧化二砷,加热至1300度时,五氧化二砷分解生成三氧化二砷,使玻璃液气泡中气体的分压减少,有利于气泡的长大,加速气泡的排除,从而达到澄清的目的。

白砒的用量一般为配合料量的0.2%-0.6%,硝酸盐的引入量为白砒用量的4-8倍.白砒用量过多不仅增加挥发量,而且污染环境对人体有害,0.06克白砒能使人致死.所以在使用白砒时要派专人保管,以防中毒事件发生.用白砒作澄清剂的玻璃,在灯工操作时易使玻璃还原变黑,故灯工玻璃应少用或不用白砒.

2,氧化锑氧化锑的澄清作用与白砒相似,也必须与硝酸盐配合使用.使用氧化锑的澄清分解温度较白砒低,所以在熔制铅玻璃时常用氧化锑作澄清剂.在钠钙硅酸盐

玻璃中用0.2%的氧化锑和0.4%的白砒作澄清剂,澄清效果较好,而且可以防止二次气泡的产生.

3,硝酸盐玻璃中很少单独以硝酸盐作为澄清剂,一般作为供氧体与变价氧化物

配合使用.

4,二氧化铈氧化铈的分解温度较高,是一种较好的澄清剂.作为澄清剂使用可以不需要与硝酸盐配合,高温时可自行分解放出氧气,加速澄清.为了降低成本,在玻璃

球生产中常与硫酸盐合用也可取得良好的澄清效果.目前在复合澄清剂中被广泛作为原料使用.

二,硫酸盐型澄清剂. 玻璃中使用的硫酸盐主要是硫酸钠,硫酸钡,硫酸钙.硫酸

盐的分解温度较高,属高温澄清剂.硫酸盐作为澄清剂时最好与氧化剂硝酸盐配合使用,不能与还原剂合用,以防硫酸盐低温分解.硫酸盐常用于瓶罐玻璃及平板玻璃,其

用量为配合料的1.0%-1.5%

三,卤化物澄清剂. 主要有氟化物,氯化钠,氯化铵等.氟化物主要是萤石和氟硅

酸钠.萤石作为澄清剂的用量,一般按引入配合料中0.5%的氟计算.氟硅酸钠一般用量为玻璃中氧化钠用量的0.4%-0.6%.氟化物在熔制中,部分氟将生成氟化氢,氟化硅,氟化钠,其毒性比二氧化硫大,使用时应考虑对大气的影响.氯化钠高温时气化挥发能促

进玻璃液澄清,一般用量为配合料的1.3%-3.5% 过多会使玻璃乳化.常用于含硼玻璃的澄清剂.

四,复合澄清剂复合澄清剂主要利用了澄清剂中氧澄清,硫澄清和卤素澄清三大澄清优势,充分发挥三者的协同效应和叠加效果,可达到持续澄清的效果,大大地增强了澄清能力,是单一澄清剂无法比拟的。按是否含砷划分有:砷锑复合澄清剂和无砷复合澄清剂,按发展阶段划分有:第一代复合澄清剂,第二代复合澄清剂和第三代复合澄清剂,第三代复合澄清剂又称新一代绿色环保型复合澄清剂,以其绿色,环保,安全,高效著称,是玻璃澄清剂行业今后的发展方向,也是实现玻璃行业配方无砷化的必然趋势。一般用量为配合料的0.4%-0.6%,复合澄清剂现已广泛应用于瓶罐玻璃,玻璃球(中碱,无碱),药用玻璃,电光源玻璃,电子玻璃,微晶玻璃等玻璃制品行业。复合澄清剂厂家主要集中在湖南,四川,江苏等。

复合澄清剂复合澄清剂是玻璃行业使用的复合玻璃澄清剂的简称。复合澄清剂

是利用两种以上原料能在玻璃熔制过程中通过高温分解或气化放出气体,促进玻璃熔

体中气体的排出,按比例合理复配而成的。

复合澄清剂按是否含砷划分:砷锑类复合澄清剂,无砷复合澄清剂。无砷复合澄清剂是新一代绿色环保型玻璃澄清剂,以其绿色,环保,安全,高效著称,是玻璃行业实现玻璃配方无砷化的发展方向。

复合澄清剂按其主要有效成分划分:砷基复合澄清剂,砷锑基复合澄清剂,铈基复合澄清剂。

复合澄清剂按其发展阶段划分:第一代复合澄清剂,第二代复合澄清剂和新一代复合澄清剂。第一代复合澄清剂主要是以三氧化二砷为要成分辅以其玻璃助熔,脱色成分,以其澄清效果较稳定,毒性较白砒低,早期使用较普遍。第二代复合澄清剂主要是利用有色冶炼厂副产品砷锑烟灰和稀土厂的下脚料铈渣再辅以其它原料组合而成,其特点是澄清温度要求低,澄清范围宽,持续分解能力强,成本低,毒性低,速迅受到玻璃行业的青睐。第三代复合澄清剂其主要是利用变价氧化物,硫化物和卤化物及其盐类科学复配而成,其最大特点是综合利用了玻璃澄清当中的氧澄清,硫澄清和卤化物澄清三大优势,充分发挥氧系澄清,硫系澄清和卤化物澄清在玻璃澄清过程的协同效应和叠加效果。是“三系”澄清法的典型代表。“三系”法澄清剂是今后玻璃澄清剂行业的发展方向,也是玻璃行业实现配方无砷化的必然趋势。

第三代复合澄清剂的一般特点和使用方法:1,产品常适用于氧化气氛条件的玻璃熔制。2,有效防止玻璃“曝晒”发黄现象和玻璃二次加工还原发黑。3,无需强氧化剂配合使用也可发挥澄清效果,可有效减少硝酸盐使用量和“硒-钴”补色剂的用量。4,对于含硼玻璃可抑制硼的挥发损失。5,产品与各种澄清剂协同作用强,可与其它澄清剂搭配使用,无副作用。6,无毒,安全,方便运输和保管。7,一般使用量为粉料的0.4%-0.6%,可等量取代白砒,也可根据自身工艺调整使用量。

复合澄清剂使用范围:瓶罐玻璃,玻璃球(无碱,中碱),电光源玻璃,药用玻璃,微晶玻璃,电子玻璃等玻璃制品。

澄清剂的发展经历了漫长的实践摸索阶段。

明胶的出现解决了酒液澄清的问题,直到现在明胶法还在使用。蛋清粉的推广补充了明胶法(需加温溶解·需小试易过量)的缺陷,但本身易染菌且漂浮。

2000年初,改性膨润土的出现给澄清剂行业带来了曙光,特点:质优价廉广普。一时间变性淀粉.植物多糖.壳聚糖.海洋生物胶类,纷纷登场,单体复配占据了澄清剂高端市场。

各种产品都有其适用性,未来澄清剂的发展方向应该是:不溶于水.安全无毒.不被人体消化吸收,表面积大.选择吸附能力强.耐受酸碱能力强。使用方便,用量少,适合多种行业。

国内外除臭剂的最新研究进展

国内外除臭剂的最新研究进展 摘要恶臭气体污染已成为环境污染的重大问题,除臭剂的开发和使用成为研究的一个热点.除臭剂可分为物理除臭剂,化学除臭剂,微生物型除臭剂,植物型除臭剂和复合型除臭剂5类.介绍了各类除臭剂最新的研究进展,并展望了其发展的趋势. 随着我国人民生活水平的提高,恶臭的排放对环境的污染不断加大,所产生的臭气对环境的污染不断加剧,对人类的健康造成极大的威胁,臭气污染愈来愈引起人们的重视.因此,除臭剂的开发和使用已成为研究的一个热点.其主要有两大类,即硫(S)基化合物类和氮(N) 基化合物类.S类化合物硫化氢,甲硫醇和乙硫醇等,最常见的是H2S,某些含硫化合物也能溢发恶臭,如硫化铵,二烷基二硫代磷酸盐,氨基甲酸盐和异硫氰酸盐等.N类化合物有氨与胺类化合物,氨类化合物强烈刺激人的视觉器官,令人窒息,中毒. 1 恶臭污染来源与危害 恶臭物质种类繁多,不同类型物质分子结构中有不同的发臭基团,因而有不同气味和阈值.产生恶臭的物质有上万种,恶臭气体按其组成可分成5类:①含硫化合物,如H2S,SO2,硫醇等;②含氮化合物,如氨气,胺类,吲哚等;③卤素及衍生物,如氯气,卤代烃等;④烃类及芳香烃; ⑤含氧有机物,如醇,酚,醛,酮等。 在恶臭物质中对人体健康危害较大的有硫醇类,氨,硫化氢,二甲基硫,三甲胺,甲醛,苯乙烯,铬酸和酚类等.恶臭污染主要危害人体以下几个循环系统:呼吸系统,循环系统,消化系统,内分泌系统,神经系统,严重影响了人们的精神状态,降低了人们的生活质量[3,4].最常见的硫化氢气体(H2S) 恶臭,有剧毒,人的感知量为0.000 37 mg/m3 ,含0.1% H2S的气体,可使人体中毒,浓度更高的硫化氢在短时间内可使人致死. 2 恶臭污染的测定方法及排放标准 2.1 恶臭污染的测定方法 恶臭污染的测定方法有科学仪器法和感官测定法.仪器分析的方法主要是通过化学反应测试其中某些气体(如H2S,NH3等)的含量,在简单恶臭气体中能较为准确的测定恶臭的强度与测定结果之间的关系,复杂的恶臭气体中,利用科学仪器法与感官测定法相结合.感官测定法包括恶臭强度法和臭气指数法(或称为臭气浓度法).恶臭强度法是根据嗅检人员的嗅觉来

中药提取物澄清除杂的几种过滤方法

中药提取物澄清除杂的几种过滤方法: 1. 醇沉法: 工艺:药材材→水提液→浓缩液→醇沉液静置过滤醇水滤渡→水溶液→澄清成品液常用的醇沉法的基本原理是利用中药中的部分有效成 分既溶于水又溶于醇的性质,采用醇沉法除去部分不溶于乙醇的组份如多糖、蛋白质等。以达到制成精品。 2 吸附澄清法: 工艺:药材→水提液→浓缩液加澄清剂→水溶液(成品)。 在混悬的中药提取液或提取浓缩液中加入一种吸附澄清剂,以吸附的方式除去溶液中的粗粒子,经过滤达到精制和提高制剂成品质量的一项新技术。吸附澄清 法精制不仅可以得到澄清透明性状稳定的口服液,而且能充分保留药物的有效成分,提高药物的疗效。采用该技术可以代替醇沉法工艺。常用的吸附澄清剂有 ztc1+1天然澄清剂、壳聚糖、101果汁澄清剂、明胶、蛋清。 3 酶法澄清: 工艺:原料→提取→浓缩液酶解→灭酶→过滤→灌装。 酶是一种蛋白质,其特点是反应专一。故不是所有的口服液都可以用酶法澄清、精制。与醇沉法相比不仅可以节省工时并且周期缩短,大幅降低生产成本。 4 加絮凝剂: 工艺:原料→提取→浓缩→加絮凝剂→沉淀→过滤→灌封。

常用的絮凝剂有明胶-丹宁和甲壳素等。口服液精制澄清时需根据不同的产品,不同的成分选用不同的絮凝剂。 5. 冷藏法 低温甚至冷冻可以明显的去除部分沉淀。 6. 离心法 高速离心法是以离心机为主要设备,通过离心机的高速运转,而使沉降速度增加。 7.超滤膜过滤法: 工艺:药物提取液→初滤液→预处理→澄清液→超滤→灌封、灭菌→成品。中草药的有效成分如生物碱、甙类、黄酮等分子量均较小,一般在10000分子量以下,而一般的无效成分如淀粉、树脂、蛋白质等分子量较大,一般在50,000以上。因此在口服液精制时可根据不同药物的不同性质和有效成分来选择不同孔经的滤膜进行超滤。中药提取液所含杂质较多,一般先将药液粗滤预处理后再用高速离心机除去大部分杂质,然后再超滤。

柑橘天然除臭剂的除臭原理

柑橘天然除臭剂的除臭原理 ▍写在前面 无休止的欲望,无穷的垃圾,地球正在进入垃圾时代。垃圾时代除了该如何安放这些垃圾,还有一大困扰我们的问题:气味。 人的感官是非常敏感的,恶臭会引发我们呼吸困难、头疼、恶心以及神经衰弱,轻度的恶臭显然不会爆发性的危害我们身体健康,但长期接触会导致人心情郁闷、情绪暴躁。 目前,已经研发出各种各样的除臭设备,但据了解,使用下来大多效果都不理想。不是效果差就是有危害性,因此一种安全环保并且有实际效果的除臭剂必定会得到市场的青睐。 ▍目前市场上常见的除臭方法按臭味基团是否含氮、硫、氧等官能团,可将臭气分为三类:1)含氮化合物,如氨、甲胺、烟碱;2)含硫化合物,如硫化氢、硫醇、硫化物;3)含氧化合物,如乙酸等小分子酸、醛、酮。根据臭味产生基团的不同,研究者们已经研究出不同类型的除臭产品。从除臭原理上讲,除臭剂主要有以下几种类型:物理除臭剂、化学除臭剂、微生物型除臭剂、植物型除臭剂和复合型除臭剂等。 1 物理除臭剂是通过物理方法进行除臭,利用除臭剂或者臭气的物理性质,不改变臭气组分的结果,只改变臭气的局部浓度,或者说是相对浓度。常见的有吸附除臭剂、遮掩除臭剂等。掩盖法除臭是用一些怡人的芳香剂掩盖臭味,但是当芳香剂挥发后,臭气分子依然存在,不能彻底消除;吸附法除臭是用一些类似活性炭、硅藻土的多孔物质吸附住臭气分子,该方法的缺点是吸附具有选择性。 2 化学除臭剂是利用氧化、还原分解、中和反应、加成反应、缩合反应、离子交换反应等将产生的恶臭物质变为无臭物质从而消除臭气。其中应用比较多的是氧化除臭剂,但是这种除臭办法的工作环境有条件限制,广泛利用并不可行。 3 微生物除臭的基本原理是利用微生物把溶解水中的恶臭物质吸收于微生物自身体内,通过微生物的代谢活动使其降解的一种过程。其优点是环保性好,但缺陷是对已散发出的恶臭难以发挥作用,并且占地广、投入高,运行管理麻烦。 4 柑橘天然除臭的基本原理是采用气味学研究成果——气味“双对”原理,选取巴西优质柑橘精油为主,英国等地的多种植物精油科学配比而成。 01 水圈严选的澳飘克斯柑橘天然除臭剂含有多种精油成分,精油里的小分子精油具有强力的穿透性,可以高效、快速、安全的清除空气中的恶臭异味,功效立竿见影,对植物以及动物等有机物腐败后所产生的恶臭因子具有快速捕捉、清除以及控制作用,最终达到除臭的效果,臭气(无量纲)消除率高达93.7%以上。 02 让我们来设想一个场景夏天,你汗流浃背的回到家,打开冰箱门,一阵难闻的异味扑面而来。这时候你想到的是什么?一定是尽快买点橘子,剥了橘子皮放到冰箱里吸吸味道。用橘子皮来消除异味,这是一种常识。D—柠檬烯橘子皮中含有大量的维生素C和香精油,橙皮中D—柠檬烯含量高达90~95%,D—柠檬烯主要来源于芸香科植物如柑橘、柠檬类水果的果皮,D—柠檬烯也是一种绿色环保的非极性有机溶剂,有较强的溶解力以及良好的医学适应性,是一种非常珍贵的原料。 03 提起橘子,大家首先想到的就是清香。因此作为澳飘克斯柑橘除臭的主要原料,在保障除臭效果的同时,淡淡的柑橘香气也更容易被人接受。因此,柑橘除臭剂作为一种安全的环保除臭产品,可以广泛应用于厨房卫生间等生活场所、生活污水处理厂、垃圾填埋场、垃圾中转站、畜牧养殖业以及动物无害化处理中心等场所。

不同澄清剂对葡萄酒的影响

不同温度、澄清剂对葡萄酒品质的影响 课程:食品实验设计与统计分析基础 授课教师:朱京涛 学院:食品科技学院 专业:酿酒08级 班级:0801 学号:0613080118 姓名:王雷

目录 一文献综述 1.葡萄酒混浊的原因 (2) 2.葡萄酒澄清技术研究现状 (2) 3.存在的问题 (3) 4.本试验计划拟解决的问题 (3) 二.试验设计 1.材料及仪器 (4) 2.试验的因素 (4) 3.试验的水平 (4) 4.试验设计方法 (4) 5.处理组合 (4) 6.重复 (5) 三理化指标分析 (5) 四统计分析方法 (6) 五经费预算 (7) 六参考文献 (7)

一文献综述 1.葡萄酒混浊的原因 葡萄酒是深受人们喜爱的一种健康饮料。其生产过程主要是将葡萄进行分选、破碎、成分调整后,进行发酵、后酵,陈酿等操作而成。在生产过程中为了保证葡萄酒的稳定性和澄清度,常常需要进行澄清处理。在长期的贮酒过程中造成杂菌污染,给葡萄酒带来生物病害,当气温回升时容易因发酵重新启动而出现沉渣上浮、酒液返混的现象。引起葡萄酒混浊沉淀的主要原因: 1.引起葡萄酒混浊沉淀的主要原因 (1)蛋白质类混浊 主要来源于原料葡萄、酵母,以及发酵过程中添加的果胶酶等蛋白质类物质这些蛋白质类物质往往短时间内以溶解的状态停留在酒液中,但随着时间的推移,可以缓慢地与葡萄酒中的单宁等多酚类物质结合形成不溶性物质,造成酒体的混浊。 (2)果胶类混浊 葡萄酒中含有较多的果胶类物质,这些物质的存在,可以使酒液粘度增高,有利于混浊物质在酒液中停留更长的时间。且果胶类物质在货架期易发生凝聚反应,形成更大的分子而出现絮状沉淀。随着果胶类物质的絮凝沉淀,酒液的粘度下降,混浊物质会随之沉淀,造成酒体的混浊。 (3)金属破败病混浊 葡萄酒中的金属破败病主要有铁破败病和铜破败病两种。铁破败病是由于葡萄酒中的金属离子Fe2+在贮存过程中氧化成Fe3+,并和酒液中的单宁结合形成不溶性的蓝色结合物,俗称蓝色破败病。如Fe3+与酒液中磷酸盐结合可形成不溶性的磷酸铁沉淀,俗称白色破败病。铜破败病是由于葡萄酒的铜离子与含硫化合物结合形成不溶性化合物造成的。这些破败病与葡萄酒生产加工中原料与金属器具的接触、原料本身中金属元素的残留和酒液的氧化等因素有关。 (4)酒石酸盐类混浊 酒石酸盐类物的溶解度会随气温的变化而变化,当气温下降时,其溶解度会大幅度的下降,导致酒的混浊。此外酒石酸盐类物质的稳定性还易受葡萄酒中电荷的相互作用等因素的影响。 (5)微生物混浊 新酒中分布的酵母等微生物会导致葡萄酒出现混浊的现象,葡萄酒生产中的微生物污染也会导致葡萄酒中微生物的大量繁殖,造成酒的澄清度下降、酒体混浊失光,甚至发生葡萄酒生物病害的现象。葡萄酒生产期间应加强卫生管理,同时在葡萄酒发酵结束后应将酒液中较多的酵母等微生物去除,以降低其葡萄酒品质的不利影响。

澄清剂

澄清剂的分类 玻璃澄清剂是玻璃生产中常用的辅助化工原料。凡能在玻璃熔制过程中高温分解(气化)产生气体或降低玻璃液粘度,促使玻璃液中气泡消除的原料称为澄清剂。根据玻璃澄清的作用机理可分为:氧澄清,硫澄清,卤素澄清和复合澄清。可将澄清剂分为氧化物澄清剂,硫酸盐型澄清剂,卤化物澄清剂和复合澄清剂。 一,氧化物澄清剂。主要有白砒,氧化锑,硝酸钠,硝酸铵,二氧化铈等。 1,白砒又称亚砷酐,是澄清效果极好的一种常用澄清剂,玻璃行业俗称“澄清王”。但白砒必须与硝酸盐配合使用才能达到良好的澄清效果。白砒微溶于冷水,易溶于热水,剧毒,呈白色结晶粉末或无定形的玻璃状物质,黄金冶炼副产品砷灰常呈灰白,灰色或灰黑色等,作为澄清剂多用晶态白砒。当白砒加热到400度以上时,与硝酸盐在高温时放出的氧气生成五氧化二砷,加热至1300度时,五氧化二砷分解生成三氧化二砷,使玻璃液气泡中气体的分压减少,有利于气泡的长大,加速气泡的排除,从而达到澄清的目的。 白砒的用量一般为配合料量的0.2%-0.6%,硝酸盐的引入量为白砒用量的4-8倍.白砒用量过多不仅增加挥发量,而且污染环境对人体有害,0.06克白砒能使人致死.所以在使用白砒时要派专人保管,以防中毒事件发生.用白砒作澄清剂的玻璃,在灯工操作时易使玻璃还原变黑,故灯工玻璃应少用或不用白砒. 2,氧化锑氧化锑的澄清作用与白砒相似,也必须与硝酸盐配合使用.使用氧化锑的澄清分解温度较白砒低,所以在熔制铅玻璃时常用氧化锑作澄清剂.在钠钙硅酸盐 玻璃中用0.2%的氧化锑和0.4%的白砒作澄清剂,澄清效果较好,而且可以防止二次气泡的产生. 3,硝酸盐玻璃中很少单独以硝酸盐作为澄清剂,一般作为供氧体与变价氧化物 配合使用. 4,二氧化铈氧化铈的分解温度较高,是一种较好的澄清剂.作为澄清剂使用可以不需要与硝酸盐配合,高温时可自行分解放出氧气,加速澄清.为了降低成本,在玻璃 球生产中常与硫酸盐合用也可取得良好的澄清效果.目前在复合澄清剂中被广泛作为原料使用. 二,硫酸盐型澄清剂. 玻璃中使用的硫酸盐主要是硫酸钠,硫酸钡,硫酸钙.硫酸 盐的分解温度较高,属高温澄清剂.硫酸盐作为澄清剂时最好与氧化剂硝酸盐配合使用,不能与还原剂合用,以防硫酸盐低温分解.硫酸盐常用于瓶罐玻璃及平板玻璃,其 用量为配合料的1.0%-1.5% 三,卤化物澄清剂. 主要有氟化物,氯化钠,氯化铵等.氟化物主要是萤石和氟硅 酸钠.萤石作为澄清剂的用量,一般按引入配合料中0.5%的氟计算.氟硅酸钠一般用量为玻璃中氧化钠用量的0.4%-0.6%.氟化物在熔制中,部分氟将生成氟化氢,氟化硅,氟化钠,其毒性比二氧化硫大,使用时应考虑对大气的影响.氯化钠高温时气化挥发能促

不同澄清剂对高铝硅玻璃的澄清作用

第36卷 第6期Vol .36 No .6材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering 总第176期Dec .2018文章编号:1673‐2812(2018)06‐0998‐05 不同澄清剂对高铝硅玻璃的澄清作用 李铭涵1,赵会峰2,潘国志2,陈 阔1,姜 宏1,2 (1.海南大学,海南省特种玻璃重点实验室,海南海口 570228; 2.海南中航特玻科技有限公司,特种玻璃国家重点实验室,海南澄迈 571924) 【摘 要】 本研究使用CelSian 高温观测系统,对高铝硅酸盐玻璃的澄清过程进行了深入的分析;研究了澄清剂的种类和含量对澄清过程中气泡运动、气体吸收的影响。研究表明:对于不同种类的澄清剂而言,气泡逸出速率均会随澄清剂用量的增加而增大;而SnO 2的用量增加会使玻璃液对气泡的吸收率增大,NaCl 和Na 2SO 4的作用则与SnO 2相反。澄清剂通过影响气泡的逸出和吸收,进而影响最终澄清效果。 【关键词】 高铝硅酸盐玻璃;澄清剂;高温观测系统 中图分类号:TQ 171.4+24文献标识码:A DOI:10.14136/j.cnki.issn1673‐2812.2018.06.026 HighAluminosilicateGlassFiningwithVariousFiningAgent LIMinghan1,2,ZHAOHuifeng2,PANGuozhi2,CHENKuo1,JIANGHong1,2 (1.KeyLaboratoryofSpecialGlassinHainanprovince,HainanUniversity,Haikou570228,China;2.EngineeringandTechnological ResearchCenterforSpecialGlassinHainanProvince,HainanAVICSpecialGlassCo.,Ltd.,Chengmai571924,China) 【Abstract】 High aluminosilicate glass melting and fining need elevated temperature too high for people to observe the complete process directly and make an analysis intuitively .In this paper ,the CelSian high temperature observation system was used to carry out a thorough investigation of the fining process of high aluminosilicate glass with different types and dosages of fining agents ,p articularly the role in bubbles motion and gas absorption .Research show s that bubbles escape rate increases with the increase of dosage of fining agent for all fining agents added .With the increase of SnO 2dosage the bubble absorption rate increases ,w hereas the effect of NaCl and Na 2SO 4is contrary to SnO 2.Fining agent makes melting glass finally fine through affecting the bubbles motion and absorption .【Keywords】 high aluminosilicate glass ;fining agent ;high temperature observation system 收稿日期:2017‐03‐02;修订日期:2017‐05‐02 基金项目:国家支撑计划资助项目(2013BA E 03B 02) 作者简介:李铭涵(1990‐),女,硕士研究生,E ‐mail :775279297@qq .com 。 通讯作者:姜 宏(1961‐),男,博士,教授,E ‐mail :j hong 63908889@sina .com 。1 前 言高铝硅酸盐玻璃具有强度大、硬度高、耐磨损、化学稳定性好等特点[1],在风电、电子显示、交通工具等领域展现出良好的应用前景[2]。但其具有熔点高、粘度大、表面张力大等基本物理特性,会对玻璃的熔化、澄清造成极大的困难[3]。在玻璃熔化过程中,易出现 玻璃熔化不均而产生条纹,在澄清过程中气泡排出异 常困难也是目前亟待解决的重要问题[3]。 气泡是玻璃生产过程中最为常见的缺陷之一[4], 其会影响玻璃制品外观、透明度、机械强度等性能[5], 需要澄清后才能达到生产要求。目前,玻璃澄清方法 有两类[6],其中一类就是本研究所采用的化学澄清法。 化学澄清法就是向配料里添加一种或多种澄清剂,在 玻璃的熔化过程中释放出气体以加速气泡的排出,起万方数据

0903浅谈玻璃澄清剂的使用

从分为三个过程,实际上是相互密切、相互影响的。配合料各组份的分解反应和挥发组份的挥发等会产生大量的气泡。同时还有其它因素产生气泡,这些气泡直径在2mm 以上的称之为泡沫,直径为0.8~2mm 的称之为气泡,0.8mm 以下的小气泡称之为灰泡。 玻璃熔制过程可分为五个阶段,分述如下。 (一) 硅酸盐形成 硅酸盐生成反应在很大程度上是在固体状态下进行的。配合料各组份在加热过程中经过一系列的物理变化和化学变化,大部分气态产物从配合料中逸出。在这一阶段结束时,配合料变成由硅酸盐和二氧化硅组成的不透明烧结物。制造普通钠钙硅酸盐玻璃时,硅酸盐形成在800~900℃基本结束。 (二) 玻璃的形成 烧结物连续加热时即开始熔融,易熔的低共熔混合物首先开始熔化,在熔化的同时发生硅酸盐和剩余二氧化硅的互熔,到这一阶段结束时,烧结物变成了玻璃熔融体,再没有未起反应的配合料颗粒,但此时玻璃液中还有大量气泡、条纹。熔制普通玻璃时,玻璃的形成在1200~1250℃完成。 (三) 澄清 玻璃液继续加热,其粘度降低,并从中放出气态混杂物,即进行去除可见气泡的过程。熔制普通玻璃时,澄清在1400~1500℃结束,这时玻璃液粘度η≈102dPa·s 。 (四) 均化 玻璃液长时间处于高温下,由于扩散的作用,其化学组成逐渐趋向均一,使玻璃中条纹和结石消除到允许限度,达到均一体。玻璃液是否均一,可由测定不同部位玻璃的折射率或密度的一致程度来鉴定。熔制普通玻璃时,均化可在低于澄清的温度下完成。 (五) 冷却过程 经澄清均化后将玻璃液的温度降低1350~1420℃,以便使玻璃液具有成形所必需的粘度η≈103~105dPa·s 。 伴随熔融过程所产生的气泡,一部份从玻璃液上升至表面破裂消失;一部份气泡溶解在玻璃液中;一部份与玻璃的组份形成化学的结合;还有一部份还以气泡的形式残留在玻璃液中。

除臭剂介绍

除臭剂简介 一、应用前景: 改革开放以来我国工业飞速发展,取得巨大成功的同时也无法避免工业恶臭气体污染,问题日益加剧,严重危害人类健康。工业尾气治理可谓迫在眉睫。由于工业生产原料种类繁多、成分交错,在生产过程中产生的废气成分较为复杂,对除臭剂的选型、用量和处理方式要求也不尽相同。解决恶臭气体污染,必须根据废气不同的物化性质,实际现场情况,采用有针对性的、系统性的工艺才能有效控制恶臭气体污染的难题。 二、天然植物除臭简介及技术原理 目前除臭技术领域更多采用的是植物液、香精、等化工产品作为原材料。这样一来,势必产生二次污染问题。好产品从源头做起!梓昂公司引进国际最新技术【超波微生物分解技术】梓昂生物除臭剂是采用100%纯天然绿色植物萃取。不仅仅是绿色纯天然植物萃取,更为重要的是梓昂公司生物除臭剂产品蕴含生物酶本体,产生大量活性菌群,采用微生物分解恶臭气体,可有效控制或解决恶臭气体污染问题。 天然生物除臭剂表面不仅能有效地吸咐、分解空气中的恶臭气体分子,同时也能使被吸附的异味分子的立体构型发生改变,削弱了异味分子中的化合键,使得异味分子的不稳定性增加,容易与其他分子进行化学反应,植物液中的酸性缓冲液发生反应,最后生成无味、无毒的有机盐。如硫化氢在植物液的作用下反应生成硫酸根离子和水;氨在植物液的作用下,生成氮气和水。

天然生物除臭工作液中所含的有效分子是来自于生物酶本体,它们大多含有多个共轭双键体系,具有较强的提供电子对的能力,这样又增加了异味分子的反应活性。吸附在天然生物除臭工作液表面的异味分子与空气中的氧接触,此时的异味分子因上述两种原因使得它的反应活性增大,改变了与氧反应的机理,从而可以在常温下与氧发生反应。 微生物除臭剂是在微生态工程原理的指导下,采用微生态工程技术,从自然界本来就存在的有益微生物中,筛选出来的具有抑制腐败菌等有害微生物生长、除臭功能强、不会对环境造成任何污染的多个种群,经过特殊的发酵工艺把它们组合在一起,各个种群之间要能协同共生、互不拮抗、功能互补,形成 一个稳定的微生态系统,也叫微生态制剂。

平磨的原理

平磨的原理: 一.平磨的原理: 就是利用抛光粉的磨削作用和玻璃表面与水的水合作用来进行玻璃表面的表面处理。 玻璃研磨分为粗磨和细磨,粗磨是用粗磨料将玻璃表面粗糙不平或多余留量磨去,有磨削作用,使玻璃制品具有需要的形状和尺寸,但是玻璃表面会留下凹陷坑和裂纹层,需要用细磨料进行细磨,使凹陷坑和裂纹层变细,但还是细的毛面,之后由抛光工序使玻璃变成透明,光洁的表面。研磨盘材质一般为铸铁,也可用黄铜盘。磨料基本为自由磨料的水悬浮液,其硬度必须大于被研磨玻璃的硬度。 玻璃的研磨过程先是磨盘与玻璃表面作相对运动,自由磨料在磨盘负载下对玻璃表面进行划痕和剥离的机械作用,同时玻璃上产生微裂纹。磨料所用的水既起冷却作用也与玻璃的新剥离面产生水解作用,产生硅胶,有利于进一步剥离作用,所以研磨过程除了机械磨削作用,还有一定的化学作用,从而周而复始在玻璃的表面形成了有凹陷的毛面,同时也产生一定深度的裂纹层。 玻璃的抛光是把研磨最后的毛面变成光亮的表面,既要除去凹陷层和裂纹层两者合起来可能有10---15um,抛光盘面常用材料:毛毡,硬沥青和无纺布,聚氨酯和聚四氯乙烯等等.用尼龙,铝,锌等薄片外覆盖薄沥青层的柔性抛光盘,这种抛光盘沿着被加工工件表面始终与之保持吻合状态,此外采用浸渍氧化铈的发泡氨基甲酸乙酯抛光盘可以实现高迅抛光。 抛光粉常用材料: 氧化铁Fe2O3(红粉)赤褐 0.56,氧化铈CeO2 0.88-1.04,氧化镧,氧化钛,氧化锆ZrO2 0.78,氧化铝,氧化铬Cr2O3 0.28和氧化钍ThO2 1.26等等。软质的火石玻璃用性软的磨料(氧化铈),硬质的硼硅玻璃和石英玻璃用性硬的磨料(氧化锆)。 在研磨和抛光过程中,研磨盘和抛光盘的材质,转速,压力,以及磨料的种类和规格,悬浮液的浓度,给料量,以及磨料的溶解度,棵粒大小和是否产生沉淀和室内温度有关。 细磨1:将玻璃表面粗糙不平或余留部分磨去,有磨削作用,但玻璃表面留下了凹陷坑和裂纹层,通过细磨2,使凹陷坑和裂纹层变的很细,但还是细的毛面。一般用铸铁或者黄铜盘和金刚沙, 细磨后凹陷坑深度为3-----4um和裂纹层深度3------12um 合计10---------15um,光学玻璃的磨消量还大。 常用玻璃的磨消量分布:105----150um的碳化硅磨料 最后经过抛光工序使玻璃变得透明,光洁。 抛光速度;8----10um/h 平磨:玻璃抛光时,在抛光盘压力和磨料Fe2O3,ZrO2,CeO2等等作用下,产生热振动的非谐性,使玻璃表面有流动性,而使玻璃表面平坦. 二.平磨的技术要领: 1.磨料的要领: 磨料的硬度,磨料的溶解度(浓度)决定磨削量,磨料水浮液的干净度决定玻璃的表面品质。生产中主要体现在过滤粉水和达到一定浓度还有粉水的供给量。 2.抛光皮的要领: 一般用的是无纺布,主要要看无纺布的柔软度,粗糙度决定磨削量和干净度决定玻璃的表面品质。生产中主要体现在刮皮和清机。 3.环氧板的选择: 环氧板的厚度小于加工玻璃的厚度的5---15c,环氧板的齿要完好,环氧板的大小要适中包括直径,内腔的大小和环氧板之间的距离要适中,内腔的平滑度所以使用前要把内腔的毛刺除去。均匀放置5个行星环氧板到下盘面上使轮齿正确齿合,且用清水保持盘

天然澄清剂在中药提取液精制中的应用

?43? 天然澄清剂在中药提取液精制中的应用 首都医科大学中医药学院(100013 龚慕辛贾春伶 内容摘要在对比传统的中药水提醇沉精制法与吸附澄清精制法各自特点的基础上, 着 重介绍近几年几种天然澄清剂在中药提取精制中的应用。关键词水提醇沉精制法吸附澄清精制法101果汁澄清剂壳聚糖ZTC 1+1天然澄清剂一、中药水提醇沉精制法与吸附澄清精制法的比较 11中药水提醇沉精制法在中药制剂的生产过程中, 经常需要对药物的提取液进行精制, 其主要目的是去除杂质、保留药材中具有生理活性的有效成分, 减少服用量。目前在中药颗粒剂、口服液、注射剂等多种剂型的制备工艺中广泛使用的精制方法是水提醇沉精制法, 、淀粉、粘液质、油脂、、(1 :甙元、香豆素、内酯等在水溶液中含量很低的物质以及对免疫有重要调节作用的多糖易被除去[1]。另外, 沉淀的吸附和包裹等作用也会使小分子的有效物质丢失[2]。 (2 微量元素的损失:微量元素是中药有效成分之一, 在水溶液中以不同类型的络合物状态存在。醇沉过程中因络合条件的改变, 极易导致微量元素损失[3]。 (3 对中药疗效的影响:由于上述因素的影响, 加之醇沉后乙醇回收不易完全, 对制剂 4] 的疗效也会产生影响[2、, 常见精制后所得的制剂的疗效不及原来不采取精制工艺的制剂。

(4 对制剂稳定性的影响:水提液经乙醇处理时, 除去了大量高分子化合物, 使水提液本身的自然胶体稳定体系被破坏, 结果醇沉后的药液在贮存中常见易沉淀、粘壁等现象[5]。 (5 对后期工艺的影响:对醇沉后的药液进行浓缩不易, 所得干燥物粘度大, 易吸潮, 给后期工艺操作带来不便[4]。 另外, 此法还有耗醇量大、成本高、工艺流程长、对设备及生产条件要求高的缺点[2]。可 见水提醇沉法尽管精制后得到了澄清液, 但由 于上述因素影响了疗效及制剂稳定性, 给制备带来了困难, 所以寻求新技术来代替水提醇沉法已势在必行。近年来, 提取液精制的新技术不断发展, 。 21, , 达到精制。其:只除去水提液中较大、具有斯托克沉淀趋势的悬浮颗粒, 而保留了高分子物质、多糖等天然亲水胶体[4]。吸附澄清法有四大特点:①有效:该工艺不减少溶液中可溶性总固体物, 能有效地提高有效成分的含量, 保证制剂的疗效。 ②方便:采用该工艺不要任何特殊设备, 只需向药液中加入吸附澄清剂予以处理即可。工期短 , 全部澄清过程最多只需6h 即可完成。③成本低:吸附澄清剂成本低廉。④稳定性好:由于保留了高分子物质、多糖等天然亲水胶体, 使之对疏水胶体起到保护作用, 提高了制剂稳定性[4]。处理过的药液室温储存近两年, 仍无明显的沉淀产生[5]。以下重点介绍三种来源于天然产物、利用吸附原理澄清药液, 近几年用于中药精制工艺的天然吸附澄清剂。

植物型除臭剂

植物型除臭剂 一、产品概述 植物型除臭剂是采用国际先进的植物提取技术,在丝兰、银杏叶、茶多酚、葡萄籽、樟科植物、桉叶油、松油等300多种植物提取有效成分为主要原料,配以对各种不同臭气分子的吸附分解原理而进行调配生产的一种除臭剂。 植物型除臭剂主要用于各种恶臭环境的异味处理,如垃圾填埋场场、垃圾转运站、垃圾堆肥厂、垃圾焚烧厂、污水处理中心、粪便处理中心、养猪养鸡场、工业废水处理及渔业加工中心等。 蓝净植物型除臭剂可以有效分解恶臭环境中的氨、有机胺、二氧化硫、硫化氢、甲硫醇等恶臭气体分子。经化工研究院检测中心、国家安全生产济南危险化学品分类检测检验中心(MSDS)认证,为无爆炸危险性,不属易燃危险品;无氧化剂危险性,不属腐蚀品;不属毒害品。 二、性能优点 1、蓝净植物型除臭剂不受温度等气候环境制约,不会受到温度及环境的影响而使其无法发挥效果,有极强的耐候性,在高温(50℃以下)及高寒(-15℃以上)均可以充分发挥其除臭功效;不论是在潮湿地区,还是在干旱地区,其除臭功效基本不受影响。 2、蓝净植物型除臭剂可以用于常年性的、持续恶臭处理,也可以从容应对暂时性的、超高浓度的恶臭事件。除臭速度非常快,吸收效率高。 3、蓝净植物型除臭剂本身对人体、动植物及土壤没有任何危害,臭气分子分解产物也完全为对人体、动物、植物无害。无二次污染,安全环保。符合现代工业节能环保理念。 4、蓝净植物型除臭剂可以用普通喷雾瓶进行喷洒,也可以用专业喷雾设备进行喷洒,除臭液雾化到空间,形成颗粒很小的雾状颗粒,雾状颗粒具有很大的比表面积,可以高效的吸收空气中的恶臭分子,被吸附的恶臭分子能够与植物萃取液中的有效成分发生反应,生成无味、无毒的物质。 三、应用领域 植物型除臭剂可以有效去除硫化氢、氨气、二氧化硫、甲硫醇、胺等多种常见的恶臭气体,可用于去除工业领域产生的特种恶臭气味。 蓝净植物型除臭剂广泛用于垃圾处理厂、污水处理、垃圾转运站、包装印刷、垃圾填埋场、制药厂、垃圾堆肥站、畜牧养殖场、垃圾焚烧厂、水产养殖场、粪便处理中心、饲料加工、市政污水处理、食品与渔业加工、工业废水处理、交通运输工具、公共厕所、家居日用。 四、使用方法 蓝净植物型除臭剂可用大功率风炮进行喷洒,也可用微型喷雾装置进行喷雾,包括手动式喷雾器、小型自动喷雾设备均可。 对于无组织废气,安装喷雾除臭净化设备使用。 对于收集废气,安装高活化生物废气净化塔使用。

抛光粉资料

平磨工序的技术要领 氧化铈抛光粉具有抛光速度快、光洁度高和使用寿命长的优点,与传统抛光粉-铁红粉相比,不污染环境,易于从沾着物上除去等优点。广泛的应用到平板玻璃、光学玻璃、荧光屏、光学玻璃零件、示玻管、眼镜片,不锈钢、水晶制品、陶瓷制品等各种抛光加工领域的最终抛光,用氧化铈抛光粉抛光透镜,一分钟完成的工作量,如用氧化铁抛光粉则需要30~60分 钟。. 淡黄或黄褐色助粉末。密度7.13g/cm3。熔点2397℃。不溶于水和碱,微溶于酸。在2000℃温度和15Mpa压力下,可用氢还原氧化铈得到三氧化二铈,温度游离在2000℃间,压力游离在5Mpa压力时,氧化铈呈微黄略带红色,还有粉红色,其性能是做抛光材料。 详细内容名称:氧化铈;cerous oxide 分子式:Ce02 分子量:172.13 CAS 号:12014-56-1 规格: 按纯度分为:低纯:纯度不高于99%,高纯:99.9%~99.99%,超高纯99.999%以上 按粒度分为:粗粉、微米级、亚纳米级、纳米级 安全说明:产品无毒、无味、无刺激、安全可靠,性能稳定,与水及有机物不发生化学反应,是优质玻璃澄清剂、脱色剂及化工助剂。 主要用作玻璃脱色剂、玻璃抛光粉、也是制备金属铈的原料,高纯氧化铈也用于生产稀士发光材料.溶于水,能溶于强无机酸。用作玻璃的脱色、澄清剂、高级抛光粉,还用于陶瓷电工、化工等行业。 稀土在各种玻璃中主要作用 (1)稀土抛光作用 ??稀土抛光粉具有抛光速度快、光洁度高和使用寿命长的优点,与传统抛光粉—铁红粉相比,不污染环境,易于从沾着物上除去等优点。用氧化铈抛光粉抛光透镜,一分钟完成的工作量,如用氧化铁抛光粉则需要30~60分钟。所以,稀土抛光粉具有用量少、抛光速度快以及抛光效率高的优点。而且能改变抛光质量和操作环境。一般稀土玻璃抛光粉主要用富铈氧化物。氧化铈之所以是极有效的抛光用化合物,是因为它能用化学分解和机械摩擦二种形式同时抛光玻璃。稀土铈抛光粉广泛用于照相机、摄影机镜头、电视显像管、眼镜片等的抛光。目前我国有稀土抛光粉厂几十家,生产规模上百吨的十余家。中外合资包头天骄清美稀土抛光粉有限公司是我国目前最

果酒澄清方法与常用澄清剂

果酒澄清方法与常用澄清剂 1、果酒浑浊的原因 刚刚结束发酵的酒称之为新酒.新酒在较长的时间里是浑浊的,这是因为新酒里含有悬浮状态的酵母、细菌、凝聚的蛋白质、单宁物质、黏液质以及浆果组织的碎片等。健康的新酒,长期保持在平静的状态,并且定期从沉淀物上部分离清酒(换桶),经3-5年,酒可以自然澄清下来,获得稳定的透明度,传统的酿酒工艺即是用长期储存的办法以达到澄清和陈酿的目的。新酒的酸度愈高,澄清速度愈好愈快,有残糖的酒和带皮发酵的酒,沉淀既慢又不完全。用有病害的水果酿制的酒,受粘液质和酶的影响,澄清困难,甚至长期处于浑浊状态。 由于酒中某些金属含量过高所致,其中铁的氧化、铜的还原是这类浑浊的主要表现形式。在干白葡萄酒新工艺的研究报告中,通过多次实验证实,果酒浑浊的出现是由于处于溶解状态的低价铁氧化为不溶性的高价铁所致,随着高价铁的增多,酒的浑浊程度增加,而SO2可以将高价铁还原为低价铁,从而抑制了浑浊的形成。 在生产实际中,则不是用大量提高酒中的SO2浓度的办法来预防酒的浑浊,而是治标与治本相结合,即用亚铁氰化钾(黄血盐)或植酸除去酒中过多的铁,同时适当提高SO2含量,SO2用量以不影响酒的风味并符合国家卫生标准为前提。 铁所引起的酒的浑浊沉淀,人们称之铁破败病,当酒中铁离子和磷酸离子含量过高时,酒与空气接触后,低价铁氧化为高价铁并与磷酸反应,生成难溶的磷酸铁,使酒浑浊失光,一般称之为白色破败病。当酒中铁离子由低价氧化为高价后,与酒中的单宁结合,生成单宁铁的黑色沉淀,人们称之为兰色破败病。 果酒中的铁来自于果实、果实表面泥沙和酿造贮酒设备。由于在发酵过程中大部分铁离子被酵母所吸收,并且随同酵母的沉淀而除去,只要酿造设备、工具、贮酒容器进行了防腐处理,酒不与铁接触,果酒中铁含量不会超过 8mg/L的极限,酒就不会发生铁破败病。当然,如果要从根本上解决问题,还

垃圾除臭剂简介

所属分类:[垃圾渗透液除臭剂] 产品简介:垃圾渗滤液通常色度深、污染物浓度高,有恶臭。针对以上渗透液研发生产出新型专用垃圾渗透液除臭剂——植物液除臭剂微生物除臭剂和化学除臭剂三种,推荐您选用植物液除臭剂。... 一、植物液垃圾渗透液除臭剂 (一)简介 植物液垃圾除臭剂是采用国际先进的植物提取技术,在丝兰、银杏叶、茶多酚、葡萄籽、樟科植物、桉叶油、松油等300多种植物提取有效成分为主要原料,根据各种不同臭气分子的吸附分解原理而进行调配生产的除臭剂。 (二)优势 1、纯天然,植物液提取,无色无毒,不含化工制剂 2、净化效率高,对各种臭气具有很高的净化效率,对硫化氢和氨气净化率达90%以上。 3、见效快,持续时间长,一般情况下3分钟就可以达到明显的去臭效果 4、使用方便,杀菌性能好,只需将除臭剂喷洒在污染源或空气中,在除臭的同时还可以起到杀菌,抑菌等功效 5、成本低,环保性能好,它是通过分解臭气的成分来祛臭的,价格低廉 (三)他们也在使用 垃圾转运站、包装印刷、垃圾填埋场、制药厂、垃圾堆肥站、畜牧养殖场、垃圾焚烧厂、水产养殖场、粪便处理中心、饲料加工、市政污水处理、公共厕所、屠宰场、食品加工厂、皮革厂、学校、宾馆、医院等。 (四)使用方法 垃圾中转站,用本品100-500倍稀释液均匀喷洒,对每批送进的垃圾都要进行雾状喷洒。大型垃圾填埋场,可用洒水车或喷洒设备喷洒本品的稀释液。 其他(家庭环保):家庭里的下水道口、便器内,可经常喷洒一些本品(原液稀释50-100倍),有除臭及减少蚊蝇作用。 (五)包装存储和运输 包装:本品采用5公斤×4桶/箱或25公斤塑料桶包装。 储存于室内阴凉通风处,避免长期阳光暴晒、产品保质期十二个月。 运输:植物液除臭剂为非危险品、适合常规运输,运输时要防止包装损坏。 二、微生物垃圾渗透液除臭剂 (一)简介 微生物垃圾除臭剂是遵循微生态工程原理,在充分借鉴国外先进复合微生物技术的基础上,采用微生态工程技术,运用现代生物技术生产,由多种不同性质的有益微生物共同组成新型生物除臭剂。 (二)优势 1、使用方便,杀菌性能好,只需将除臭剂喷洒在污染源或空气中,在除臭的同时还可以起

澄清剂及其在果汁果酒中的应用

澄清剂及其在果汁果酒中的应用 杨春哲冉艳红黄雪松 摘要:澄清剂处理是果汁果酒生产中一个重要环节,介绍了明胶、单宁、皂土、硅溶胶等几种常用澄清剂及其它们在果汁果酒生产中的应用。 关键词:澄清;澄清剂;果汁;果酒 中图分类号:TS262.7 文献标识码:B 文章编号:1002-8110(2000)01-0075-03 1 澄清的目的 果汁果酒作为一种商品,应该是清晰透明的,即算是有轻微的失光,都被认为是变坏的表现。长期贮存后的果汁果酒容易发生混浊沉淀,并可发生氧化变质。混浊形成的原因有很多,主要是与天然存在的酚类物质有关。当果汁果酒中的蛋白质和果胶物质与多酚类物质长时间共存时,就会产生混浊的胶体,乃至发生沉淀[1]。因此需要加入各种澄清剂以除去一部分或大部分上述易形成沉淀成分,使果汁果酒获得好的风味及保持长期的稳定性。 2 澄清的机理(略) 3 果汁与果酒的澄清剂 澄清剂的种类很多,澄清葡萄酒时利用的材料可以分为两类[3] 和葡萄酒的物质相互作用的材料: 有机物质:明胶、蛋清、鱼胶、牛奶、干酪、单宁 矿物质:亚铁氰化钾 不和葡萄酒的物质相互作用的材料: 有机物质:纤维素 矿物质:高岭土、皂土、碳、硅藻土 另外还有某些合成树脂,如聚酰胺、聚乙烯吡咯烷酮(PVP)、聚乙烯聚吡咯烷酮(PVPP)、多糖类,如琼脂、阿拉伯树胶,以及硅胶、壳聚糖等都可用作用澄清剂。下面介绍几种常用的澄清剂。 3.1明胶(Gelatine) 明胶是动物胶原蛋白经部分水解衍生的分子量10000-70000的水溶性蛋白质(非均匀的多肽混合物)。当制明胶时,可用酸性或碱性溶液处理原料,对饮料处理,一般用酸性明胶,在低pH值下酸性明胶溶液带有较高正电荷,在饮料中反应快且好,这是由于蛋白质的等电点(IEP)造成的。酸性明胶溶液的等电点是8.5-9.0,碱性明胶溶液的等电点是4.5-5.0,饮料pH值与明胶等电点相差越大,明胶蛋白质所带正电荷越多[4]。 明胶在用之前,必须在水中溶解,最好的方法是:1份明胶加5份冷水浸泡20-30分钟,再加入5份95℃的热水,搅拌即得完全溶解的明胶,这种约10%的明胶溶液可直接加入到饮料中。

除臭剂种类

生物型除臭剂的种类 生物型除臭剂运用现代生物工程技术将壳聚糖与植物纤维中提取的醇类配伍,制成的生物除臭剂,不仅有高含量的几丁聚糖类天然无毒性生物高分子聚合物,还有含200多种有机物和抑菌物的植物沥液,所以具有特强的杀菌、消毒和除臭功能。壳聚糖生物除臭剂处理臭气的原理是利用微生物把溶解水中恶臭物质吸收于微生物自身体内油品除味剂,通过微生物代谢活动使其降解的过程。 生物型除臭剂酶制剂,酶是一种生物催化剂,是生物活细胞所产生的具有催化功能的蛋白质。目前,应用于饲料中的酶依其作用底物有蛋白酶、纤维素(半纤维素)分解酶、淀粉酶、脂肪酶、非淀粉多糖酶、果胶分解酶和植酸酶等。除植酸酶为单一酶制剂产品外,其余多为复合酶。它们主要来源于微生物(包括真菌、细菌和醇母等)发酵物,用于动物生产.可以补充机体内源酶的不足,激活内源酶的分泌,破坏植物细胞壁,使营养物质释放出来,提高了淀粉和蛋白质等营养物质的可利用性:破坏饲料中可溶性非淀粉多糖.降低消化道食糜的粘度,增加了营养的消化吸收;同时,可以部分或全部消除植酸、植物凝集素和蛋白酶抑制因子等抗营养成分。 微生态制剂是指能够促进动物机体内微生物生态平衡的有益微生物或其发酵产物。随着国际上不断要求抗生素添加剂禁止在动物饲料中添加,微生态制剂在养殖中的作用日益显现。"光合作用"墙体自动清污目前,市场上微生态制剂有很多.既有单一菌制剂,又有复合菌制剂,使用较多的如酵母、霉菌、乳酸杆菌、双歧杆菌、光合杆菌、EM和益生素等。研究发现.微生态制剂对环境除臭具有明显的效果,其作用机理为:动物摄人大量的有益微生物后,可改善胃肠道环境.形成生态优势有益菌群.从而抑制了腐败细菌的生长活动,促进了营养素的消化吸收.减少了氨气、硫化氢的释放量和胺类物质的产生:有益菌群在生长繁

玻璃澄清剂简介

玻璃澄清剂 玻璃澄清剂是玻璃生产中常用的辅助化工原料。凡能在玻璃熔制过程中高温分解(气化)产生气体或降低玻璃液粘度,促使玻璃液中气泡消除的原料称为澄清剂。根据玻璃澄清的作用机理可分为:氧澄清,硫澄清,卤素澄清和复合澄清。可将澄清剂分为氧化物澄清剂,硫酸盐型澄清剂,卤化物澄清剂和复合澄清剂。 一,氧化物澄清剂。主要有白砒,氧化锑,硝酸钠,硝酸铵,二氧化铈等。 1,白砒又称亚砷酐,是澄清效果极好的一种常用澄清剂,玻璃行业俗称“澄清王”。但白砒必须与硝酸盐配合使用才能达到良好的澄清效果。白砒微溶于冷水,易溶于热水,剧毒,呈白色结晶粉末或无定形的玻璃状物质,黄金冶炼副产品砷灰常呈灰白,灰色或灰黑色等,作为澄清剂多用晶态白砒。当白砒加热到400度以上时,与硝酸盐在高温时放出的氧气生成五氧化二砷,加热至1300度时,五氧化二砷分解生成三氧化二砷,使玻璃液气泡中气体的分压减少,有利于气泡的长大,加速气泡的排除,从而达到澄清的目的。 白砒的用量一般为配合料量的0.2%-0.6%,硝酸盐的引入量为白砒用量的4-8倍.白砒用量过多不仅增加挥发量,而且污染环境对人体有害,0.06克白砒能使人致死.所以在使用白砒时要派专人保管,以防中毒事件发生.用 白砒作澄清剂的玻璃,在灯工操作时易使玻璃还原变黑,故灯工玻璃应少用或不用白砒. 2,氧化锑氧化锑的澄清作用与白砒相似,也必须与硝酸盐配合使用. 使用氧化锑的澄清分解温度较白砒低,所以在熔制铅玻璃时常用氧化锑作 澄清剂.在钠钙硅酸盐玻璃中用0.2%的氧化锑和0.4%的白砒作澄清剂,澄清效果较好,而且可以防止二次气泡的产生. 3,硝酸盐玻璃中很少单独以硝酸盐作为澄清剂,一般作为供氧体与变价氧化物配合使用. 4,二氧化铈氧化铈的分解温度较高,是一种较好的澄清剂.作为澄清 剂使用可以不需要与硝酸盐配合,高温时可自行分解放出氧气,加速澄清. 为了降低成本,在玻璃球生产中常与硫酸盐合用也可取得良好的澄清效果.目前在复合澄清剂中被广泛作为原料使用. 二,硫酸盐型澄清剂.玻璃中使用的硫酸盐主要是硫酸钠,硫酸钡,硫 酸钙.硫酸盐的分解温度较高,属高温澄清剂.硫酸盐作为澄清剂时最好与 氧化剂硝酸盐配合使用,不能与还原剂合用,以防硫酸盐低温分解.硫酸盐 常用于瓶罐玻璃及平板玻璃,其用量为配合料的1.0%-1.5%

相关文档
最新文档