透明氧化铝陶瓷制备的研究进展

透明氧化铝陶瓷制备的研究进展
透明氧化铝陶瓷制备的研究进展

透明氧化铝陶瓷制备的研究进展

关键词:透明氧化铝,透光率,烧结助剂,烧结工艺

1引言

透明氧化铝陶瓷最早是由美国Coble博士发明的,他通过在Al2O3中添加0.25wt% MgO,于1700~1800℃氢气气氛下烧结出呈半透明的氧化铝陶瓷,从此开创了透明氧化铝陶瓷研究和应用的新篇章[1]。经过半个世纪的不懈努力和研究,科研工作者发现,通过提高氧化铝的纯度、致密度以及合理的调控显

微结构,可以显著提高氧化铝陶瓷的透光性。

随着研究的不断开展,制备氧化铝陶瓷的烧结助剂得到了极大地扩展,除了MgO,一些稀土氧化物(如Y2O3、La2O3、ZrO2等)同样可以作为氧化铝陶瓷的烧结助剂,并且采用复合添加剂的效果优于单独使用MgO。关于添加剂的引入方式,谢志鹏等[2]提出了化学沉淀包覆工艺,在1800℃氢气气氛下烧结,制备了透明氧化铝陶瓷。与传统的球磨工艺相比,该方法能够实现添加剂在氧化铝基体中的均匀分布,从而大大提高了陶瓷的透光性。

关于透明氧化铝陶瓷的烧结技术,最近的研究工作表明,采用热等静压(HIP)、放电等离子(SPS)等特种烧结工艺可以制备出亚微米晶的高性能透明氧化铝陶瓷。例如,Jin等[3]采用SPS工艺,于1250~1350℃,80MPa压力下烧结,制备了晶粒尺寸小于1μm,直线透光率为53%的透明陶瓷。由于晶粒细小,其机械强度也非常优异。

此外,Mao等[4]就氧化铝晶粒光轴取向对透光性的影响进行了研究,他们通过在强磁场条件下进行透明Al2O3陶瓷浆料的注浆成型,使烧结后的Al2O3陶瓷晶粒光轴趋于一致,从而减少六方晶系Al2O3陶瓷因双折射率不同带来的光损失,显著提高透明Al2O3陶瓷的透过率。下面就影响氧化铝陶瓷透光性的各种因素,以及氧化铝粉体选择、烧结助剂及作用、烧结工艺及透明氧化铝陶瓷的应用进行综述。

2影响氧化铝陶瓷透明性的因素

2.1.1气孔

对透明陶瓷透光性能影响最大的因素是气孔率,又包括气孔尺寸、数量、种类。普通陶瓷即使具有高的密度,往往也不是透明的,这是因为其中有很多封闭气孔,并且当陶瓷内部的气孔率大于1%时,陶瓷就基本不再透明。有实验

证明:当陶瓷体中闭口气孔率从0.25%变化到0.85%时,透过率降低33%。根据平均气孔的大小,产生的影响也不同,在气孔直径小于光波波长λ/3时,会产生Rayleigh散射;当气孔直径与光波波长λ接近时,会产生Mie散射;当气孔直径大于光波波长λ时,会产生反散射折射。因此,欲提高陶瓷的透明度,必须降低气孔率。

2.1.2 晶界结构

晶界是破坏陶瓷体光学均匀性,从而引起光的散射,致使材料的透光率下降的重要因素之一,单位体积晶界数量越,透光率越低。由于陶瓷材料的物相组成通常包含两相或更多相,这种多相结构会导致光在相界表面上发生散射。透明盒不透明陶瓷的晶界结构是不同的。透明材料是单相的,晶界与晶体的光学性质差别小因而晶界模糊不清,而非透明材料是多相的,晶界很清晰。材料的组成差异越大,折射率相差越大,整个陶瓷的透光率越低。因而透明陶瓷晶界区应微薄、光匹配性好、无气孔及杂物、位错等。具有各向同性晶体的陶瓷材料可以达到与玻璃相近的直线透光率。

2.1.3 第二相物质

Al2O3透明陶瓷中的杂质等第二相与基体的光学性质不一致,往往成为散射和吸收中心,大大降低陶瓷的透明性。因此,Al2O3透明陶瓷体要求是均一、连续的单相结构。这就要求原料必须具备高纯、超细、高分散等特性,制备过程中不能引入杂质。

2.1.4 晶粒尺寸

研究表明晶粒的尺寸大小和分布对Al2O3透明陶瓷的透明度也有影响。如果晶粒的直径与入射光的波长相同,则晶粒对入射光散射最强;晶粒直径小于入射光波长时,光线可以容易地通过。同时由于晶粒尺寸还会影响陶瓷材料的表面光洁度,而表面光洁度也会对Al2O3透明陶瓷的透明度产生影响,因此,

晶粒尺寸对陶瓷透光性的影响是多角度的。一般地,晶粒尺寸小、晶粒分布均匀的Al2O3透明陶瓷就有较高的透光度。

2.1.5晶体结构

晶体结构决定陶瓷多晶体的光学性能,直接影响其透过率,晶体光学性能的各向异性损害陶瓷的透光率,具有双折射效应,在晶界处造成界面反射损失而降低透过率。着重指出的是,对于立方晶体结构的陶瓷,由于其各向同性,光线进入陶瓷内部,不会产生双折射效应。多晶Al2O3为六方晶系,具有0.008的双折射率,因此其透光性能不如立方晶体结构的陶瓷。

3透明氧化铝陶瓷制备技术进展

3.1粉末选择与要求

粉体除具有高的纯度和小的粒度外,同时颗粒应高度分散,以保障高的烧结活性。研究表明,制备透明陶瓷的理想粉体不能产生明显的团聚。硬团聚体的产生会使粉体原有的高分散性和小颗粒尺寸的优势完全或部分丧失,使粉体成型体中存在大尺寸的气孔,这类气孔被排出的阻力较大,甚至难以排除,从而导致材料无法烧结致密,最终难以获得透明的陶瓷材料。原料的预烧温度也会对陶瓷透明性产生明显的影响。过高则活性降低,影响产品的透明化烧结;过低则相转变不完全,制品在烧结过程中会产生变形等不良影响。此外,原料粉体的颗粒形状、流动性、成型时的素坯密度均匀性等也会对致密化过程产生影响[5]。

3.2烧结助剂及作用

为了使Al2O3陶瓷体烧结成没有气孔的完全致密体,必须在Al2O3粉中加入微量的烧结助剂,通常加入MgO,还可采用Y2O3、La2O3、ZrO2、ThO2等,也可将这些氧化物与MgO混合使用。与MgO相比,Y2O3、La2O3、ZrO2、ThO2等添加剂具有较宽的浓度范围,在此浓度范围内,最大透光率仍能保持不变。

。.

3.3透明氧化铝陶瓷烧结工艺

3.3.1气氛和真空烧结

氧化铝在空气中烧结常有1~3%的剩余气孔,这些气孔的产生主要是由于在烧结后期气孔被封闭在氧化铝陶瓷中,气孔的进一步收缩需要借助晶界扩散到表面;空气中的氮气在烧结温度下不溶于氧化铝晶粒,因此只有当内部压力与表面收缩能量平衡时,气孔才收缩。而在氢气气氛条件下,一方面氢气是可溶的,能很快从体系中扩散出去,另一方面Al2O3陶瓷的烧结是由阴离子(O2-)扩散速率控制的烧结过程,在还原气氛下,晶体中的氧从表面脱离,从而在晶体表面产生大量的氧空位,使O2-扩散系数增大导致烧结过程加速,从而达到完全致密,因此透明氧化铝陶瓷在氢气气氛下烧结可有效排除剩余气孔。3.3.2放电等离子烧结

透明氧化铝陶瓷的SPS烧结近几年也得到研究和探索。Diminuendi[8]以平均粒径为100nm的高纯Al2O3为原料,在不使用任何添加剂的情况下采用SPS 烧结,工艺条件为压力275MPa,最高烧结温度1150℃,制备了平均晶粒尺寸为0.3μm,硬度达到23GPa的透明氧化铝陶瓷。

3.3.3微波快速烧结

微波烧结是利用材料在微波电磁场中的介电损耗使陶瓷及其复合材料整体加热至烧结温度而实现致密化的快速烧结技术。微波烧结速度快、时间短,从而避免了烧结过程中陶瓷晶粒的异常长大,最终可获得高强度和高致密度的透明陶瓷。Cheng等[11]研究发现微波烧结氧化铝在加入百分比为0.05%氧化镁烧结助剂的条件下烧结45min就可以得到密度为3.97/cm3,平均粒径为40μm 透明性能优异的氧化铝陶瓷。但是,微波烧结有其本身的问题,如控温准确度,温度场均匀性等,这往往会产生氧化铝晶体晶粒尺寸的差别非常大,从而影响材料质量的稳定性。,这种粉料制备的陶瓷,其致密度可达理论密度的99.9%或更

高。一般的化学方法,包括沉淀法、溶胶—凝胶法等制备出的原料粉具有高的分散度,从而保证其良好的烧结活性。

3.3.4常压烧结与热等静压(HIP)相结合

将纳米级氧化铝粉末通过常压烧结与热等静压相结合可制备出微米或亚微米级细晶透明氧化铝陶瓷,且剩余气孔很少,晶界洁净,直线透光率高。由于晶粒很小,机械性能也显著提高,甚至接近氧化铝单晶材料。

4总结

通过论文我知道了制备Al2O3透明陶瓷首先要制取具有高的纯度。高活性、不凝聚、高分散的陶瓷粉末。其次要正确选择添加剂种类和加入量,三是要在各工艺过程中严格防止使用陶瓷制品产生气孔。包括成型坯体要密度均匀,烧成气氛和压力要有利于坯体气孔的排除,升温过程也要简历有利于制品致密烧结和防止气孔产生的烧成工艺制度。总之对于Al2O3透明陶瓷的制备,在整个工艺过程中必须对原料、添加剂、成型方法、烧结气氛、表面光洁度等进行严格控制,才能获得高致密度、低气孔率、组织均匀(包括晶界、第二相、晶粒等)、表面光洁度好,从而透光性好的Al2O3陶瓷。

透明氧化铝是第一个实现透明化的的先进陶瓷材料,并且得到了广泛的应用,比如节能照明的高压钠灯及金卤等电弧管,用于口腔矫正的正畸透明托槽等。近年来,为了提高氧化铝陶瓷的透光率,国内外学者主要从对原始粉体性能进行改善、烧结助剂引入方式优化、并采用先进的烧结工艺等方面开展研究,并使得多晶透明氧化铝的透光率大大提高。我认为未来透明氧化铝金卤灯管的产业化及民用化将成为透明氧化铝陶瓷的主流应用热点,会使人们的生活越来越便捷。

参考文献:

[1]田增英.来自西方的知识-精密陶瓷及应用[M].科学普及出版社,1993,7:36.

[2]谢志鹏,刘伟,薄铁柱.异质形核沉淀法制备透明氧化铝陶瓷及其应用[P]中国专利,申请号:201010581759,2010

[3]Jin X H,Gao L,Sun J.lightly transparent alumina spark plasma sintered from common grade commercial powder: the effect of powder treatment [J].J.Am.Ceram.Soc.,2010,93(5):1232-1236.

[4]Mao X J, Wang S W,Transparent polycrystalline alumina ceramics with orientated Optical axes[J].J.Am.Ceram.Soc.,2008,91(10):3431-3433.

[5]刘军芳,傅正义,张东明.透明陶瓷的制备技术及其透光因素的研究[J].硅酸盐通报,2003,22(3):68-73.

[6]Coble R L,Transparent alumina and method of preparation[P].USP,30262101962.

[7]单萌,周国红,王士维.SPS制备亚微米晶氧化铝陶瓷[J].无机材料学报,2008,23(5):1001-1004.

[8]Dibycndm C,Panjandarum C,Effect of applied stress on IR transmission of spark Plasma sintered alumina[J].J.Am.Ceram.Soc.,2010,93(4):951-953.[9]Jiang D T,Hulbert D M,Umberto A T,ct al.Optically transparent polycrystalline

Al2O3 proceed by spark plasma sintering[J].J.Am.Ceram.Soc.,2008,91(1):151-154.

[10]Michael S,Zhe Z,Ulrich A.Transparent polycrystalline alumina use spark plasm a sintering:effect of Mg,Y and La doping[J].journal of the European Ceramic so2010,30(6):1335-1343.

[11]Cheng J P.Fabricating transparent ceramics by microwave sintering [J].J.Am.Ceram.Soc.,2000,79(9):71-74.

[12]Wei G C.Transparent ceramic lamp envelope materials[J].J.Phys.D:Appl.Phys.,2005,38(17):3057-3065.

[13]Krell A,Blank P,Ma H W,et al.Transparent sintered corundum with high hardness and strength[J].J.Am.Ceram.Soc.,2003,86(1):12-18.

多孔PZT压电陶瓷膜的制备及其抗污染性能

2017年3月 CIESC Journal ·1224· March 2017第68卷 第3期 化 工 学 报 V ol.68 No.3 DOI :10.11949/j.issn.0438-1157.20160994 多孔PZT 压电陶瓷膜的制备及其抗污染性能 毛恒洋,邱鸣慧,范益群 (南京工业大学化工学院,材料化学工程国家重点实验室,国家特种分离膜工程技术研究所,南京 210009) 摘要:以PbZr x Ti 1-x O 3(PZT )压电陶瓷粉体为原料,通过干压成型的方法制备多孔PZT 陶瓷膜,考察了煅烧温度 对多孔PZT 陶瓷膜的机械强度、孔隙率以及纯水渗透性能的影响。当煅烧温度为950℃时,可制备出纯水渗透率 为850 L ·m ?2·h ?1·MPa ?1,孔径为300 nm ,机械强度为47.8 MPa ,孔隙率为34%的多孔PZT 陶瓷膜。在此基 础上,考察了极化温度与极化电压对多孔PZT 陶瓷膜压电性能的影响,并对极化后的PZT 压电陶瓷膜进行萃取 和表面等离子刻蚀处理。结果表明:极化温度为120℃、极化电压强度为4 kV ·mm ?1,极化后经热乙醇萃取及表 面等离子刻蚀4 min 后,多孔PZT 压电陶瓷膜在外加交流电为20 V 时,产生的共振振幅信号值达34.8 mV 。将制 备的多孔PZT 压电陶瓷膜在粒径为600 nm 的含油乳化液中进行过滤实验,发现陶瓷膜两端未加交流电时,其通 量在2 h 内衰减至4%。而加交流电后,其稳定通量可维持在20%左右,表明制备的多孔PZT 压电陶瓷膜具有良 好的抗污染效果。 关键词:多孔陶瓷膜;压电陶瓷;极化;原位振动 中图分类号:TQ 174 文献标志码:A 文章编号:0438—1157(2017)03—1224—07 Porous PZT ceramic membranes and their anti-fouling performance MAO Hengyang, QIU Minghui, FAN Yiqun (State Key Laboratory of Materials -oriented Chemical Engineering , National Engineering Research Center for Special Membranes , College of Chemical Engineering , Nanjing Tech University , Nanjing 210009, Jiangsu , China ) Abstract: Porous PZT ceramic membranes were fabricated by dry pressing PZT powder. Study of sintering temperature on mechanical strength, porosity and pure water permeability showed that the membrane obtained at 950℃ sintering temperature had pure water permeability of 850 L ·m ?2· h ?1·MPa ?1, average pore size about 300 nm, mechanical strength of 47.8 MPa, and porosity of 34%. Further study of poling temperature and electric voltage on piezoelectric property of porous PZT ceramic membranes, which were extracted and plasma etched after poling, showed that after poling at temperature of 120℃ and electric field of 4 kV ·mm ?1, hot alcohol extraction, and 4 min plasma etching, the porous PZT ceramic membranes could create a resonance signal with an amplitude of 34.8 mV when applied to 20 V of an alternating current (AC). Filtration study of the membrane in wastewater oil emulsion with particles of size about 600nm showed that flux decreased to 4% within 2 h without electric field whereas the flux was stabilized at 20% with AC, which indicated the porous PZT membrane had an excellent anti-fouling performance. Key words: porous ceramic membrane; PZT ceramic; poling; in-situ vibration 2016-07-13收到初稿,2016-11-28收到修改稿。 联系人:邱鸣慧。第一作者:毛恒洋(1991—),男,硕士研究生。 基金项目:国家自然科学基金项目(21506093,91534108);江苏省 自然科学基金项目(BK20150947);国家高科技研究发展计划项目 (2012AA03A606)。 Received date: 2016-07-13. Corresponding author: QIU Minghui, qiumh_1201@https://www.360docs.net/doc/3416213911.html, Foundation item: supported by the National Natural Science of China (21506093, 91534108), the Natural Science Foundation of Jiangsu Province (BK20150947) and the National High Technology Research and Development Program of China (2012AA03A606).

氧化铝陶瓷的制备与应用

论文题目:氧化铝陶瓷的制备与应用 学院:材料科学与工程学院 专业班级:材料化学2班 学号:20090488 姓名:王杰 日期:2011-10-19

氧化铝陶瓷的制备与应用 摘要:氧化铝陶瓷是用途最广泛的陶瓷材料中的一种,它可用作机器及设备制造中的耐腐蚀材料、化工专业中的抗腐蚀材料、电工及电子技术中的绝缘材料、热工技术中的耐高温材料以及航空、国防等领域中的某些特种材料。 Abstract: the alumina ceramics is the most widely use of one of the ceramic material, it can be used as the machine and equipment manufacture of corrosion resistant material, chemical corrosion materials in the professional, electrical and electronic technology of thermal insulation materials, high temperature resistant materials and technologies in the aerospace, defense, etc to some of the special material. 关键词:氧化铝陶瓷耐磨性机械强度耐化学腐蚀 Keywords: alumina ceramics Wear resistance Mechanical strength Chemical corrosion-resistant 氧化铝陶瓷是一种用途广泛的陶瓷。因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。[1] 1.硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2.耐磨性能极好经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。

氧化铝陶瓷制作工艺

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长

提高氧化铝透明陶瓷透明度

提高氧化铝透明陶瓷的透明度 氧化铝透明陶瓷:又称半透明氧化铝陶瓷或透明多晶氧化铝陶瓷主晶相为α-A12O3。密度3.98g/cm3以上。直线透光率90%~95%以上。介电常数大于9.8。介电损耗角正切值小于2.5×10-4(1GC>,抗弯强度大于350~380MPa。击穿强度6.0~6.4kV/mm。热膨胀系数(6.5~8.5>×10-6/℃。高温下具有良好耐碱金属蒸气腐蚀性。 原料为纯度99.99%以上的Al2O3,添加少量纯氧化镁、三氧化二镧、或三氧化二钇等添加剂,采用连续等静压成型,气氛烧结或热压烧结,严格控制晶粒大小,可获得高致密透明陶瓷。 用于制造高压钠灯的发光管(工作寿命可超过2万h>。也可用作微波集成电路基片、轴承材料、耐磨表面材料和红外光学元件材料等。 1. 概述 透明陶瓷特性:耐高温耐腐蚀 高绝缘高强度 透明 一般陶瓷—气孔、杂质、晶界、结构 ↓ 对光反射损失+吸收损失 ↓ 光学不透明 2.透光模型 表面反射光 ↑ 入射光→陶瓷材料→透射光 ↓ 内部吸收光 + 散射光 ↑↑ 晶体本身+杂质外表+内散射中心 ↓ 杂质+微气孔+晶粒直径↓ 散射量最大←入射光波长=晶粒直径 3.陶瓷透光的基本条件 1>致密度>理论密度的99.5% 2>晶界无空隙或空隙大小<<入射光波长

3>晶界无杂质及玻璃相,或其与微晶体的光学性质相似 4>晶粒较小且均匀,其中无空隙 5>晶体对入射光的选择吸收很小 6>晶体无光学异向性(立方晶系> 7>表面光洁 4.工艺原理 <1)控制以体积扩散为烧结机制的晶粒长大过程 晶粒过快生长—晶界裂缝,封闭气孔 晶粒生长速度 > 气孔移动速度 —包裹于晶体内的气孔更不易排出 加入适量MgO(0.1-0.5%> →透明Al 2O 3 陶瓷 ↓ 1>MgAl 2O 4 晶界析出,阻止晶界过快迁移 2>MgO较易挥发,防止形成封闭气孔↓ 限制晶粒过快生长—微晶结构透明Al 2O 3 陶瓷 <2)控制气孔平均尺寸 烧结透明Al 2O 3 陶瓷:晶粒~25μm,大小均匀 气孔半径0.5-1.0μm 气孔率0.1% 热压烧结Al 2O 3 陶瓷:晶粒1-2μm,大小不均 气孔半径~0.1μm 对可见光散射效应强 在可见光区透光率:烧结瓷 >热压瓷 <3)其他因素:原料纯度、细度,成型方法,烧结气氛等氢气或真空中烧结,透光率高 5.工艺方法 1)配料 主料:高纯Al 2O 3 (>99.9%> —硫酸铝铵热解法 Al 2(NH 4 > 2 (SO 4 > 4 ?24H 2 O ~200℃ → Al 2 (SO 4 > 3 ?(NH 4 > 2 SO 4 ?H 2 O + 23 H 2 O↑ 500~600 ℃ → Al 2 (SO 4 > 3 + 2NH 3 ↑+SO 3 ↑ + 2 H 2 O↑ 800~900 ℃ →γ-Al 2O 3 + 3 SO 3 ↑ ~1300 ℃/1.0~1.5h →α-Al 2O 3 (少量γ-Al 2O 3 提高活性,促进烧结> 改性料:MgO 以Mg(NO 3> 2 加入,共同热分解 —分布均匀,活性较大的MgO 2)成型和烧结: a>常温注浆或等静压成型,高温烧结 浆料pH=3.5,流动性较好 坯体理论密度 > 理论密度的85% 氢气或真空下烧结,T=1700-1900℃

氧化铝陶瓷制作及强化工艺

氧化铝陶瓷制作及强化工艺 氧化铝陶瓷制作工艺 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650-1990℃,透射波长为1~6μm Al2O380%或75 %外, 体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA. 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来

上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有 很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度 小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二、成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、 1mm, 15~ 60μm、介于 制备。通常以水为熔剂介质,再加入解胶剂与粘结剂,充分研磨之后排气,然后倒 注入石膏模内。由于石膏模毛细管对水分的吸附,浆料遂固化在模内。空心注浆时,在模壁吸附浆料达要求厚度时,还需将多余浆料倒出。为减少坯体收缩量、应尽量 使用高浓度浆料。 氧化铝陶瓷浆料中还需加入有机添加剂以使料浆颗粒表面形成双电层使料

浆稳定悬浮不沉淀。此外还需加入乙烯醇、甲基纤维素、海藻酸胺等粘结剂及聚丙烯胺、阿拉伯树胶等分散剂,目的均在于使浆料适宜注浆成型操作。 三、烧成技术: 将颗粒状陶瓷坯体致密化并形成固体材料的技术方法叫烧结。烧结即将坯体内颗粒间空洞排除,将少量气体及杂质有机物排除,使颗粒之间相互生长结合, 中。 硬度较高,需用更硬的研磨抛光砖材料对其作精加工。如SiC、B4C或金刚钻等。通常采用由粗到细磨料逐级磨削,最终表面抛光。一般可采用<1μm微米的Al2O3微粉或金刚钻膏进行研磨抛光。此外激光加工及超声波加工研磨及抛光的方法亦可采用。有些氧化铝陶瓷零件需与其它材料作封装处理。 氧化铝陶瓷强化工艺

氧化铝陶瓷制作工艺简介

无机非金属材料工艺学 无机非金属材料工艺学第三次作业 班级:材料科学与工程2班(非金属) 姓名:伍洋婷 学号:201211101076 2015年4月7日

氧化铝陶瓷生产技术工艺简介氧化铝陶瓷的低温烧结技术 氧化铝陶瓷是一种以Al 2O 3 为主要原料,以刚玉(α—Al 2 O 3 )为主晶相的 陶瓷材料。 一、通过提高Al 2O 3 粉体的细度与活性降低瓷体烧结温度。 目前,制备超细活化易烧结Al 2O 3 粉体的方法分为二大类,一类是机械 法,另一类是化学法。机械法是用机械外力作用使Al 2O 3 粉体颗粒细化,常用 的粉碎工艺有球磨粉碎、振磨粉碎、砂磨粉碎、气流粉碎等等。通过机械粉碎方法来提高粉料的比表面积,尽管是有效的,但有一定限度,通常只能使粉料的平均粒径小至1μm左右或更细一点,而且有粒径分布范围较宽,容易带入杂质的 缺点。近年来,采用湿化学法制造超细高纯Al 2O 3 粉体发展较快,其中较为成 熟的是溶胶—凝胶法。由于溶胶高度稳定,因而可将多种金属离子均匀、稳定地分布于胶体中,通过进一步脱水形成均匀的凝胶(无定形体),再经过合适的处理便可获得活性极高的超微粉混合氧化物或均一的固溶体。目前此法大致有以下3种工艺流程。 (1)形成金属氧有机基络合物溶胶→水解并缩合成含羟基的三度空间高分子结构→溶胶蒸发脱水成凝胶→低温煅烧成活性氧化物粉料。 (2)含有不同金属离子的酸盐溶液和有机胶混合成溶液→溶胶蒸发脱水成凝胶→低温煅烧成粉体。 (3)含有不同金属离子的溶胶直接淬火、沉积或加热成凝胶→低温煅烧成粉 体。湿化学法制备的Al 2O 3 粉体粒径可达到纳米级,粒径分布范围窄,化学纯 度高,晶体缺陷多。因此化学法粉体的表面能与活性比机械法粉体要高得多。采 用这种超细Al 2O 3 粉体作原料不仅能明显降低氧化铝瓷的烧结温度(可降15 0℃—300℃),而且可以获得微晶高强的高铝瓷材料。表二是日本住友化学 有限公司生产的易烧结Al 2O 3 粉料理化指标。 二、通过瓷料配方设计掺杂降低瓷体烧结温度 氧化铝陶瓷的烧结温度主要由其化学组成中Al 2O 3 的含量来决定,Al 2 O 3 含量越高,瓷料的烧结温度越高,除此之外,还与瓷料组成系统、各组成配 比以及添加物种类有关。比如,在Al 2O 3 含量相当时,CaO-Al 2 O 3 -S iO 2系Al 2 O 3 瓷料比MgO-Al 2 O 3 -SiO 2 系瓷料的烧结温度低,对于 我国目前大量生产的CaO-MgO-Al 2O 3 -SiO 2 系统瓷料而言,为使 其具有较低的烧结温度与良好性能,应控制其SiO 2 /CaO处于16~06之内,MgO含量不超过熔剂类氧化物总量的1/3,同时,在配方中引入少量的 La 2O 3 、Y 2 O 3 、Cr 2 O 3 、MnO、TiO 2 、ZrO 2 、Ta 2 O 3 等氧化物 能进一步降低烧结温度、改善瓷体的微观组织结构和性能。目前配方设计中所加入的各种添加剂,根据其促进氧化铝陶瓷烧结的作用机理不同,可以将它们分为形成新相或固溶体的添加剂和生成液相的添加剂二大类。 1、与Al 2O 3 形成新相或固溶体的添加剂。 这类添加剂是一些与氧化铝晶格常数相接近的氧化物,如TiO 2、Cr 2 O 3、Fe 2 O 3 、MnO 2 等,在烧成中,这些添加物能与Al 2 O 3 生成固溶体, 这类固溶体或为掺入固溶体(如Ti4+置换Al3+时),或为有限固溶体,或为 连续固溶体(如Cr 2O 3 与形成的Al 2 O 3 ),它们可以活化晶格(TI4+、A

透明氧化铝陶瓷制备的研究进展

透明氧化铝陶瓷制备的研究进展 关键词:透明氧化铝,透光率,烧结助剂,烧结工艺 1引言 透明氧化铝陶瓷最早是由美国Coble博士发明的,他通过在Al2O3中添加0.25wt% MgO,于1700~1800℃氢气气氛下烧结出呈半透明的氧化铝陶瓷,从此开创了透明氧化铝陶瓷研究和应用的新篇章[1]。经过半个世纪的不懈努力和研究,科研工作者发现,通过提高氧化铝的纯度、致密度以及合理的调控显

微结构,可以显著提高氧化铝陶瓷的透光性。 随着研究的不断开展,制备氧化铝陶瓷的烧结助剂得到了极大地扩展,除了MgO,一些稀土氧化物(如Y2O3、La2O3、ZrO2等)同样可以作为氧化铝陶瓷的烧结助剂,并且采用复合添加剂的效果优于单独使用MgO。关于添加剂的引入方式,谢志鹏等[2]提出了化学沉淀包覆工艺,在1800℃氢气气氛下烧结,制备了透明氧化铝陶瓷。与传统的球磨工艺相比,该方法能够实现添加剂在氧化铝基体中的均匀分布,从而大大提高了陶瓷的透光性。 关于透明氧化铝陶瓷的烧结技术,最近的研究工作表明,采用热等静压(HIP)、放电等离子(SPS)等特种烧结工艺可以制备出亚微米晶的高性能透明氧化铝陶瓷。例如,Jin等[3]采用SPS工艺,于1250~1350℃,80MPa压力下烧结,制备了晶粒尺寸小于1μm,直线透光率为53%的透明陶瓷。由于晶粒细小,其机械强度也非常优异。 此外,Mao等[4]就氧化铝晶粒光轴取向对透光性的影响进行了研究,他们通过在强磁场条件下进行透明Al2O3陶瓷浆料的注浆成型,使烧结后的Al2O3陶瓷晶粒光轴趋于一致,从而减少六方晶系Al2O3陶瓷因双折射率不同带来的光损失,显著提高透明Al2O3陶瓷的透过率。下面就影响氧化铝陶瓷透光性的各种因素,以及氧化铝粉体选择、烧结助剂及作用、烧结工艺及透明氧化铝陶瓷的应用进行综述。 2影响氧化铝陶瓷透明性的因素 2.1.1气孔 对透明陶瓷透光性能影响最大的因素是气孔率,又包括气孔尺寸、数量、种类。普通陶瓷即使具有高的密度,往往也不是透明的,这是因为其中有很多封闭气孔,并且当陶瓷内部的气孔率大于1%时,陶瓷就基本不再透明。有实验

氧化铝陶瓷生产工艺流程简介

氧化铝陶瓷生产工艺流程简介 一、特点与技术指标 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al 2 O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650-1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷 系按Al 2O 3 含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al 2 O 3 含量在 80%或75%者也划为普通氧化铝陶瓷系列。 1. 硬度大 经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2. 耐磨性能极好 经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。 3. 重量轻 氧化铝陶瓷密度为3.5g/cm3,仅为钢铁的一半,可大大减轻设备负荷。性能符合Q/OKVL001-2003技术标准,耐磨陶瓷主要技术指标氧化铝含量≥95% 、密度≥3.5 g/cm3 、洛氏硬度≥80 HRA 、抗压强度≥850 Mpa 、断裂韧性K ΙC ≥4.8MPa·m1/2 、抗弯强度≥290MPa 、导热系数 20W/m.K 、热膨胀系数:7.2×10-6m/m.K。 其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 二、粉体制备: 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm微米以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需

氧化铝陶瓷制作工艺

氧化铝陶瓷制作工艺 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氧化铝陶瓷制作工艺 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在%以上的陶瓷材料,由于其烧结温度高达1650-1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一、粉体制备: 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm微米以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,一般为重量比在10-30%的热塑性塑胶或树脂有机粘结剂应与氧化铝粉体在150-200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体

有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂如硬脂酸及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二、成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍:1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长度与直径之比不大于4∶1的物件。成型方法有单轴向或双向。压机有液压式、机械式两种,可呈半自动或全自动成型方式。压机最大压力为200Mpa.产量每分钟可达15~50件。由于液压式压机冲程压力均匀,故在粉料充填有差异时压制件高度不

氧化铝陶瓷

氧化铝陶瓷 氧化铝陶瓷(alumina ceramics)是一种以α- Al2O3为主晶的陶瓷材料。其Al2O3含量一般在75~99.99%之间。通常习惯以配料中Al2O3的含量来分类。Al2O3含量在75%左右的为“75瓷“,含量在85%左右的为“85瓷“,含量在95%左右的为“95瓷“,含量在99%左右的为“99瓷“。 工业Al2O3是由铝钒土(Al2O3·3H2O)和硬水铝石制备的,对于纯度要求不高的,一般通过化学方法来制备。电熔刚玉即是用上述原料加碳在电弧炉内于2000~2400C熔融制得,也称人造刚玉。 Al2O3有许多同质异晶体。根据研究报道过的变体有十多种,但主要有三种,即γ- Al2O3,β- Al2O3,α- Al2O3。Al2O3的晶体转化关系如下图,其结构不同,因此其性质也不同,在1300度以上的高温几乎完全转变为α- Al2O3。 γ- Al2O3,属尖晶石型(立方)结构,氧原子形呈立方密堆积,铝原子填充在间隙中。它的密度小。且高温下不稳定,机电性能差,在自然界中不存在。由于是松散结构,因此可利用它来制造多孔特殊用途材料。 β- Al2O3是一种Al2O3含量很高的多铝酸盐矿物。它的化学组成可以近似地用RO·6 Al2O3和R2O·11 Al2O3来表示(RO指碱土金属氧化物,R2O指碱金属氧化物),其结构由碱金属或碱土金属离子如[NaO]ˉ层和[Al11O12]+类型尖晶石单元交叠堆积而成,氧离

子排列成立方密堆积,Na+完全包含在垂直于C轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电。 α- Al2O3,属三方晶系,单位晶胞是一个尖的菱面体,在自然办只存在α- Al2O3,如天然刚玉、红宝石、蓝宝石等矿物。α- Al2O3结构最紧密、活 性低、高温稳定。它是三种形态中最稳定的晶型,电学性质最好,具有优良的机电性能。 Al2O3中的化学键是离子键,离子键也称“电价键”,它是由金属原子失去外层电子形成正离子,非金属原子取得电子形成负离子,互相结合形成的。离子键是依靠正负离子间静电引力所产生的化学键,它没有方向性也没有饱和性。A Al2O3陶瓷属于氧化物晶体结构,氧化物结构的结合键以离子键为主,它的分子式通常以AmXn 表示。A(或者B)表示与氧结合的正离子,n为离子数,x表示氧离子,n表示它的数量。大多数氧化物中的氧离子半径大于正离子的半径。所以它们的结构是以大直径的氧离子密堆排列的骨架,组成六方或面心立方点阵,小直径的正离子嵌入骨架的间隙处。这种陶瓷材料具有高的硬度和熔点。 陶瓷体的相组成中,晶相相对含量波动范围很大,通常特种陶瓷中晶相体相对含量较高。晶相对陶瓷材料性质有很大的影响。表中列出了一般陶瓷到特种陶瓷中的刚玉相(α- Al2O3)含量的变化及表现出的性能差异。

氧化铝陶瓷综述(原版)

目 录 摘 要 ................................................................................................................................ 1 正文: ................................................................................................................................ 1 1氧化铝的同质多晶变体及其性能简介 . (1) 1.1α-32O Al ................................................................................................................ 1 1.2β-32O Al ................................................................................................................. 1 1.3γ-32O Al ................................................................................................................. 1 2氧化铝陶瓷的分类及功能简介 . (2) 2.1分类 (2) 2.1.1氧化铝陶瓷按其中氧化铝含量不同分为高纯型和普通型两种。.......... 2 2.1.2氧化铝陶瓷根据主晶相不同可分为刚玉瓷、刚玉—莫来石瓷及莫来石瓷。................................................................................................................................. 2 2.2功能 ........................................................................................................................ 2 3氧化铝陶瓷的原料及其加工 .. (3) 3.1原料及其制备 ........................................................................................................ 3 3.232O Al 的预烧 .......................................................................................................... 4 3.332O Al 粉体的制备 .................................................................................................. 4 4氧化铝陶瓷的成型工艺 . (5) 4.1成型辅助剂 ............................................................................................................ 5 4.2成型方法 . (5) 4.2.1模压成型...................................................................................................... 5 4.2.2等静压成型.................................................................................................. 5 4.2.3注浆成型...................................................................................................... 5 4.2.4凝胶注模成型.............................................................................................. 5 4.2.5热压铸成型.. (6) 5烧结 (6) 5.1烧结方法 (6) 5.1.1常压烧结法.................................................................................................. 6 5.1.2热压烧结和热等静压烧结.. (6)

氧化铝陶瓷制作工艺简介.doc

氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍:1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长度与直径之比不大于4∶1的物件。成型方法有单轴向或双向。压机有液压式、机械式两种,可呈半自动或全自动成型方式。压机最大压力为200Mpa。产量每分钟可达15~50件。由于液压式压机冲程压力均匀,故在粉料充填有差异时压制件高度不同。而机械式压机施加压力大小因粉体充填多少而变化,易导致烧结后尺寸收缩产生差异,影响产品质量。因此干压过程中粉体颗粒均匀分布对模具充填非常重要。充填量准确与否对制造的氧化铝陶瓷零件尺寸精度控制影响很大。粉体颗粒以大于60μm、介于60~200目之间可获最大自由流动效果,取得最好压力成型效果。 2注浆成型法:注浆成型是氧化铝陶瓷使用最早的成型方法。由于采用石膏模、成本低且易于成型大尺寸、外形复杂的部件。注浆成型的关键是氧化铝浆料的制备。通常以水为熔剂介质,再加入解胶剂与粘结剂,充分研磨之后排气,然后倒

氧化铝陶瓷的烧结

氧化铝陶瓷的烧结 摘要:随着科学技术与制造技术日新月异的发展,氧化铝陶瓷在现代工业中得到了深入的发展和广泛的应用。本文就氧化铝陶瓷的烧结展开论述。主要涉及原料颗粒和烧结助剂两方面,以获得性能良好的陶瓷材料,对满足工业生产和社会需求有非常重要的意义。 关键词:氧化铝;原料颗粒;烧结助剂; 1 引言 在科学技术和物质文明高度发达的现代社会中,人类赖以制成各种工业产品的材料实在千差万别,但总体包括起来,无非金属、有机物及陶瓷三大类[1]。氧化铝陶瓷是目前世界上生产量最大、应用面最广的陶瓷材料之一,具有机械强度高、电阻率高、电绝缘性好、硬度和熔点高、抗腐蚀性好、化学稳定性优良等性能,而且在一定条件下具有良好的光学性和离子导电性。基于Al2O3陶瓷的一系列优良性能,其广泛应用于机械、电子电力、化工、医学、建筑以及其它的高科技领域[2]。在氧化铝陶瓷的生产过程中, 无论是原料制备、成型、烧结还是冷加工, 每个环节都是不容忽视的。目前氧化铝陶瓷制备主要采用烧结工艺[3],坯体烧结后,制品的显微结构及其内在性能发生了根本的改变,很难通过其它办法进行补救。因此,深入研究氧化铝陶瓷的烧结技术及影响因素,合理选择理想的烧结制度确保产品的性能、分析烧结机理、研究添加剂工作机理等对氧化铝陶瓷生产极有帮助,为氧化铝陶瓷的更广泛应用提供理论依据,为服务生产和社会需要非常重要。 2 氧化铝陶瓷简介 Al2O3是新型陶瓷制品中使用最为广泛的原料之一,具有一系列优良的性能[4]。Al O3陶瓷通常以配料或瓷体中的Al2O3的含量来分类,目前分为高纯型与2 普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料。由于其

氧化铝陶瓷的制备

结构陶瓷的制备通常由所需起始物料的细粉,加入一定的结合剂,根据合适的配比混合后,选择适当的成型方法,制成坯体。坯体经干燥处理后,进行烧结而得到。坯体经烧结后,宏观上的反映为坯体有一定程度的收缩,强度增大,体积密度上升,气孔率下降,物理性能得到提高。 实验目的: 1.选用氧化铝粉体,通过干法成型,制备氧化铝陶瓷。 2.选用合适的烧结助剂,促进氧化铝陶瓷的烧结,加深对陶瓷烧结的理解。 3.熟悉陶瓷常用物理性能的测试方法 实验原理: 氧化物粉体经成型后得到的生坯,颗粒间只有点接触,强度很很低,但通过烧结,虽在烧结时既无外力又无化学反应,但能使点接触的颗粒紧密结成坚硬而强度很高的瓷体,其驱动力为粉体具有较高的表面能。但纯氧化铝陶瓷的烧结需要的温度很高,为在较低的温度下完成烧结,需要向体系中加入一定的助烧剂,使其能在相对较低的温度下出现液相而实现液相烧结。 本实验中,采用向氧化铝粉体中加入适量的二氧化硅粉体以促进烧结,而达到氧化铝陶瓷烧结的目的。 实验仪器: 天平、烧杯、压力机、模具、游标卡尺、电炉等 实验步骤: 1.配料。将氧化铝、氧化锆粉体按80:20的质量比例混合均匀,并外加入 5%的水起结合作用。 2.制样。称取适量混合好的粉体,倒入模具内,压制成型。并量尺寸,计算 生坯的体积密度。 3.干燥。将成型好的生坯充分干燥。 4.烧结。将干燥后的生坯置于电炉内,在1600℃的条件下保温3小时。 5.检测。测量烧后试样的尺寸,计算其体积密度。计算烧结前后线变化率。

1.实验目的 2.实验仪器 3.实验数据记录及数据处理 起始物料的配比;结合剂的加入量;烧结前后试样的体积密度及质量变化;烧结前后的线变化率。 4.思考题: 1)助烧剂的作用机理是什么? 2)常用体积密度的测试方法有哪几种?

氧化铝陶瓷制作工艺

氧化铝陶瓷制作工艺 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达 1650-1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一、粉体制备: 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm微米以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,一般为重量比在10-30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150-200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈

现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二、成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长度与直径之比不大于4∶1的物件。成型方法有单轴向或双向。压机有液压式、机械式两种,可呈半自动或全自动成型方式。压机最大压力为200Mpa.产量每分钟可达15~50件。由于液压式压机冲程压力均匀,故在粉料充填有差异时压制件高度不同。而机械式压机施加压力大小因粉体充填多少而变化,易导致烧结后尺寸收

相关文档
最新文档