反渗透膜及水分子内的扩散过程的分子模拟研究

反渗透膜及水分子内的扩散过程的分子模拟研究
反渗透膜及水分子内的扩散过程的分子模拟研究

《反渗透膜在海水淡化领域的应用及相关分子模拟研究》综述

一、背景概述

在世界上很多国家和地区,水资源短缺是限制社会经济可持续发展的一个重要因素,由于海水资源储量丰富,海水淡化是解决水资源问题的重要途径,随着社会对节能和环境保护需求的逐渐加深,具有节能和环保特点的膜分离技术受到越来越多的关注,其应用也越来越广泛。各种膜分离技术中,反渗透技术是近年来国内应用最成功、发展最快、普及最广的一种,是50年代为海水淡化而提出的,是海水淡化的主要过程之一,同时为缓解我国淡水资源紧缺的现状,海水淡化技术的研究发展日益得到研究学者的关注,因而反渗透膜作为主要的水及其它液体分离膜之一,在分离膜领域占有重要地位,对于反渗透膜的合成、制备和应用等方面的研究就变得尤为重要。同时反渗透技术仍存在需要高压和经常更换膜组件的问题,因此急需对现有海水淡化技术进行改进。

据统计,全球有约80%的海水淡化工厂安装使用了反渗透膜技术设。随着反渗透膜法海水淡化技术的提高以及装置设备的大型化,现在海水淡化的日产量高达几十万吨到几百万吨之间同时海水淡化成本也逐步降低。据不完全统计,全球已经有1.4万多个海水淡化工程建成,大部分分布在中东等缺水较严重国家,这些淡化工程能生产淡化水6.4×107t/d。2005年,以色列建成了当时世界上最大Ashkelon海水淡化反渗透设备,该设备产水能力为3.3×105m3/d,纯水处理成本为0.53美元/t,且产水水质良好,有效地解决了以色列长期以来存在的供水问题。2009年英国在伦敦东部规划并建设一座海水淡化厂。在我国,反渗透海水淡化技术也较好的实现了产业化。大连石化于2004年建成反渗透膜法海水淡化脱盐项目的装置,该装置产水达量5650t/d,水利用率达45%,脱盐率达99.5%。

反渗透技术的关键取决于反渗透膜性能的改善。膜的性能与材料的性质密切相关,高性能的膜材料是发展膜技术的关键。从目前发展趋势来看,研究制备高性能的新型高分子膜材料对海水淡化技术显得至关重要。国外大多数国家都致力于研究耐氯性强、结构稳定等特点的新型膜材料。

对于膜设计的费时费力的原因有两个。一方面,水分子从海水中分离的机制是由膜及被分离体系原子尺度的静态结构以及在皮秒和飞秒范围内的动态行为所决定的;另一方面,又与试验手段的限制,通过试验不可能直接获得在分离过程中分子尺度的活动信息。

而目前对于理想的高分子反渗透膜的设计工作大部分还是基于试验方法,对膜材料加以设计和改性,其研究的层次也局限在实验现象和反应机理上,得到的也只是一些宏观数据,而宏观的现象是微观的分子、原子尺度的宏观表现,要想从本质上研究物质在膜中的扩散情况,必须从分子/原子尺度来研究,而分子模拟方法可以从分子/原子尺度来研究问题,因此与试验方法相比,用分子模拟的方法来进行高分子反渗透膜的研究和设计更有优势。

膜传质机理研究是膜领域的基础理论,贯穿于膜的合成、制备和应用三方面研究之中。扩散系数是膜传质机理研究的重要组成部分,是描述分离和传递现象的基本韧性数据.被用来对传质过程进行描述。为了迎合不断增长的分离过程集

成和能量优化操作的需要,在许多分离操作过程中部需要对传质速率进行计算。因此,很有必要加强对分子在膜内的扩散过程及扩散系数的研究。

二、分子模拟

2.1 分子模拟原理

分子模拟是对真实分子系统的计算机模拟,从统计力学基本原理出发,将一定数量分子输入计算机内,进行分子微观结构的测定和宏观性质的计算。分子模拟可以清晰地展示分子的微观相互作用、分子聚集体结构和分子动力学性能等,可以实时将分子的动态行为显示到计算机屏幕上,便于直观了解体系在一定条件下的演变过程,同时分子模拟不仅可以模拟分子的静态结构,也可以模拟分子体系的动态行为,因此可以用来模拟现代物理实验方法还无法考察的物理现象和物理过程,从而发展新的理论;还能研究化学反应的路径、过渡态、反应机理等问题,代替以往的化学合成、结构分析、物理检测等实验,从而进行新材料的设计,缩短新材料研制的周期,降低开发成本[42]。

分子模拟方法目前有四种类型(陈正国,1997),分别为量子力学(QM)模拟、分子力学(MM),分子动力学(MD)模拟以及蒙特卡洛模拟(MC)。

分子动力学方法和MC 方法不仅可以直接模拟许多宏观化学现象,得出与实验结果相符合或可比较的结果,而且可以提供微观结构、运动以及它们和物系宏观性质关系的明确图像,有利于从中提取新概念和新理论。从另一方面来说,分子动力学模拟和MC 模拟又可视为一种“计算机实验”.它既可以由真实的粒子间相互作用势模拟液体和溶液,又可以由量子力学计算得出的相互作用势来计算液体和溶液的结构和性质,从而很方便地对相互作用势与宏观性质之间的关系进行考察,据此提出有关现象的理论。

2.2分子动力学模拟(MD)

MD 是在经典牛顿力学、统计热力学和分子力学的基础上建立起来。由于分子力学的发展,有系统的建立了许多适用于生化分子体系、聚合物、金属及非金属的力场,使得计算复杂体系的结构、热力学及光谱性质的能力和精准性大为提高。分子动力学是应用这些力场及牛顿运动力学原理的一种模拟方法。优点在于系统中粒子运动有正确的物理依据,精准性高,可同时获得系统的动态与热力学统计资料,并能广泛应用于各种系统及各类特性的探讨。其基本原理即为用牛顿经典力学计算许多分子在相空间中的轨迹。MD 假定分子中各原子的运动服从牛顿方程,用经典力学处理每个原子的运动,而采用经典分子力场来表达原子间的相互作用。

2.3蒙特卡洛模拟(MC)

MC模拟还可称为统计模拟或随机抽样模拟,即利用随机数进行模拟计算的方法。MC模拟方法是数理统计与计算机相结合的产物。该方法通过Metropolis 算法对吸附物进行插入和移除。该方法主要用来模拟吸附过程,模拟时T、V及μ保持恒定,体系粒子数发生波动。

三、文献综述

朱绘利等[1]首先采用分子动力学法模拟水和盐分子在反渗透膜中的扩散过程,获取粒子在体系中运动轨迹,并用聚类分析法分析了粒子运动的MSD 曲线得到扩散系数值。结果发现,水分子在膜中的扩散系数值远大于盐离子的扩散系

数值;盐离子的价态影响其在膜中的扩散系数的大小,且离子化合价越高,扩散越慢;膜材料的结构单体对水和盐分子的扩散系数影响较大,另外由于基团增加也使自由体积分数变小,从而使其扩散系数减小;水分子和盐离子在聚合物膜体系中是不断运动着的,且在大部分情况下做小幅度的振动,只有在合适的时间、位置和速度时从一个自由体积孔穴跳跃到另一自由体积孔穴。由此可见体系内自由体积的大小、分布都对渗透分子的扩散有影响。且自由体积分数越大,体系内的自由体积空穴越多,则渗透分子在体系内孔穴间的跳跃所需的距离越小,扩散越快。

图1. 扩散系数的分子动力学模拟

对水分子在8 种反渗透复合膜中的吸附溶解过程进行了巨正则蒙塔卡罗法模拟。在周期边界条件下,得到了298K 下水分子在膜中的吸附等温线,并采用双重吸附模型进行非线性最小二乘法拟合,进而得到溶解度系数和渗透系数。

结果表明,压力较低时,水分子以单分子形式优先在聚合物微孔区域被吸附,吸附速度较快;随着压力升高,水分子开始聚集成簇,且微孔区趋于饱和,水分子吸附在聚合物稠密区进行,速度变慢,并逐渐达到吸附平衡。低压时水分子在不同膜中吸附速率不同,达到吸附平衡时在不同膜中的浓度值也有很大差别。水分子在不同复合膜中的溶解度系数和渗透系数值差别较大,且聚合物膜体系的自由体积分数越大,溶解度系数越大;溶解度系数较大时,水分子在体系占据位置较多且均匀。

许辉等[2]运用分子动力学模拟的方法模拟了水分子和盐分子在膜中的扩散过程,并通过聚类分析法计算了其扩散系数。通过对分子在膜中扩散系数的分析,发现分子在膜内的扩散随着膜类型的不同而受制于不同的离子。

刘清芝等[3]对水分子和盐分子在反渗透膜内扩散过程进行分子模拟,得出如下结论:(1)水分子在膜内的扩散状态表明水分子与高分子链上的功能集团有明显的分子间相互作用。(2)通过对NaCl分子在8中反渗透膜中扩散过程的模拟发现NaCl 分子在膜内的扩散随着膜类型的不同而受制于不同的离子。适当调

整高分子链上基团对某个离子的相互作用可设计相应功能的膜。(3)在ICIC-HT/MPD 反渗透膜中,阴离子(Cl-,SO42-)的扩散系数均远大于阳离子(Mg2+,Ca2+,K+)的扩散系数。这与NaCl水体系中,Cl-的扩散系数远大于Na+的扩散系数的运动状况一致,该结果说明盐分子在膜内的扩散过程受哪个离子制约只与膜种类有关,与盐分子本身无关。

谌庄琳,贺高红等[4]采用分子动力学模拟方法, 探究了非常规双壁碳纳米管(DWCNT)在反渗透过程中, 不同内外管间距对管道内水分子与盐离子运动行为的影响。采用0.5 mol?L-1氯化钠水溶液模拟海水, 内管始终采用CNT(8,8)型, 并对盐水层施加恒力模拟反渗透压。重点考察盐离子数量分布与通水情况, 计算水分子平均力势, 并分析水分子氢键寿命与偶极矩分布。结果表明, 管间距不仅影响上述各项性质, 还会改变盐离子与水分子在碳管中的渗透特性。模拟结果显示, 小尺寸DWCNT可以有效实现盐水分离但水通量较小, 大尺寸DWCNT的水容量较大但阻盐效率不高, 而中尺寸DWCNT (即: 管间距为0.815 nm)则具有最佳的通水阻盐性能。

韩海波等[5]采用分子动力学模拟方法,得出在磁场作用下,纯水中水分子之间的氢键网络增强、结构有序性增强、分子簇平均尺寸增加;NaCl溶液中两种离子与水分子之间作用均减弱、水合离子尺寸减小、水合数目减少,水分子之间氢键作用减弱、水分子簇减小,接触离子对增加而桥接离子对减少。

实验测量了磁场对Na Cl 溶液红外光谱、紫外光谱、表面张力、渗透压和粘度的影响,结果表明磁处理后,钠离子和氯离子与水分子之间的作用力均减弱,水合离子的尺寸减小,磁场打乱了溶液中原本的氢键网络结构,与磁场对NaCl溶液影响的分子动力学模拟结果一致,验证了分子动力学模拟用于NaCl 溶液微观结构和动力学性质分析的可靠性。

施国忠等[6]以聚矾超滤膜为支撑膜,通过改性碳纳米管,设计和制备碳纳米管填充聚酞胺杂化反渗透膜。结果表明,在酸化碳纳米管一聚酞胺反渗透膜中,碳纳米管均匀分散于聚酞胺中,起着良好的水通道作用,酸化碳纳米管在碳纳米管一聚酞胺反渗透膜性能方面起着重要的作用,使得纯水通量显著增加。

海水淡化工艺多种多样,反渗透膜法受到各界工程师与学者的青睐,无论技术的改进还是反渗透膜材料的改性开发仅仅依靠分子模拟也还是不够的,还要尽快的将有用的模拟结果转换为实际行动,对技术进行改进,制备出先进高效的反渗透膜,并结合一定的实验室研究,将其应用于工业生产,进而造福人类。

References:

[1] 朱绘利,水和盐分子在反渗透膜中溶解扩散过程的分子模拟[D],中国海洋大学,2011

[2] 许辉,膜及水溶液内扩散过程的分子模拟[D],中国海洋大学,2008

[3] 刘清芝,反渗透膜及水溶液内扩散过程的分子模拟研究[D],中国海洋大学

[4] 谌庄琳,贺高红等.反渗透过程中双壁碳纳米管通水阻盐性能的分子动力学模拟,物理化学学报,2015,31(6):1025-1034

[5]韩海波,磁场对反渗透海水淡化中传质行为影响机制研究,哈尔滨工业大学,2013

[6]施国忠,碳纳米管填充聚酰胺反渗透膜的设计与制备,浙江大学,2011

《反渗透膜在海水淡化领域的应用及相关分子模拟

研究》综述

姓名:席富娟

学号:21528116

班级:工业生态与环境研究所2015级

课程名称:分子模拟

授课教师:何奕

提交日期:2015/10/26

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

实验:水分子扩散系数

《计算材料学》实验讲义 实验二:分子动力学模拟-水分子扩散系数 一、前言 分子动力学模拟的基本思想是将物质看成是原子和分子组成的粒子系统(many-body systems ),设置初始位能模型,通过分析粒子的受力状况,计算粒子的牛顿运动方程,得到粒子的空间运动轨迹,可以求得复杂体系的热力学参数以及结构和动力学性质。分子动力学模拟的理论是统计力学中的各态历经假说(Ergodic Hypothesis),即保守力学系统从任意初态开始运动,只要时间足够长,它将经过相空间能量曲面上的一切微观运动状态,系统力学量的系综平均等效力学量的时间平均,因此可以通过计算系综的经典运动方程来得到力学量的性质。比如,由N 个粒子组成的系综的势能计算函数为: int U U U VDW += (1-1) VDW U 表示粒子内和粒子之间的Van der Waals 相互作用;int U 表示粒子的内部势能(键角弯曲能,键伸缩能、键扭转能等);根据经典力学方程,系统中第i 个粒子的受力大小为: U k z j y i x U F i i i i i ??? ? ????+??+??-=-?= (1-2) 那么第i 个粒子的加速度可以通过牛顿第二定律得到: ()()i i i m t F t a = (1-3) 由于体系有初始位能,每个粒子有初始位置和速度,那么加速度对时间进行积分,速度对时间积分就可以获得各个任意时刻粒子的速度和位置: i i i a v dt d r dt d ==22 (1-4) t a v v i i i +=0 (1-5) 2002 1t a t v r r i i i i ++= (1-6) i r 和v 分别是系统中粒子t 时刻的位置和速度,0i r 和0i v 分别是系统中粒子初始时刻的位置和速度。依据各态历经假说,可获得任意物理量Q 的系综平均,因此得到体系的相关性质:

分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤 1.第一步 即模型的设定,也就是势函数的选取。势函数的研究和物理系统上对物质的描述研究息息相关。最早是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是LJ势函数,还有EAM势函数,不同的物质状态描述用不同的势函数。 模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。 2 第二步 给定初始条件。运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如:verlet算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。 一般意思上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为模拟实践足够长时,系统就会忘掉初始条件。当然,合理的初始条件可以加快系统趋于平衡的时间和步伐,获得好的精度。 常用的初始条件可以选择为:令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令初始位置随机的偏离差分划分网格的格子上,初始速度也是从玻尔兹曼分布随机抽样得到。 第三步 趋于平衡计算。在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统的能量,并且这个状态本身也还不是一个平衡态。 为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,我们增加或者从系统中移出能量,直到持续给出确定的能量值。我们称这时的系统已经达到平衡。这段达到平衡的时间成为驰豫时间。 分子动力学中,时间步长的大小选择十分重要,决定了模拟所需要的时间。为了减小误差,步长要小,但小了系统模拟的驰豫时间就长了。因此根据经验选择适当的步长。如,对一个具有几百个氩气Ar分子的体系,lj势函数,发现取h为0.01量级,可以得到很好的相图。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s的量级呢。如果模拟1000步,系统达到平衡,驰豫时间只有10-11s。 第四步 宏观物理量的计算。实际计算宏观的物理量往往是在模拟的最后揭短进行的。它是沿相空间轨迹求平均来计算得到的(时间平均代替系综平均)

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

数值模拟在铸造充型及凝固过程的应用进展

数值模拟在铸造充型及凝固过程的应用进展 摘要:综述了铸造过程中数值计算的基本理论,简要介绍了铸造充型及凝固当前国内外发展状况以及所存在的问题,并对铸造过程数值模拟的相关软件进行评述。最后指出合理地利用铸造模拟软件,能够优化铸件的微观组织,提高产品质量,降低产品成本,缩短产品设计和试制周期。 关键词:铸造;充型过程;数值模拟;模拟软件

The Application of Numerical Simulation in Mold Filling and Solidification Process Abstract:The basic theory of numerical calculations is summarized, and a brief introduction of the developing situation and existing problems of the casting mold filling and solidification process at home and abroad,reviewed the numerical simulation software of casting process. In the end, it also clearly shows that it can optimize the casting microstructure, improve the quality, decrease the cost and reduce the design and trial cycle for the products by using the numerical simulation software properly. Key words: Casting; Filling and Solidification process; Numerical Simulation; Simulation Software

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

MS分子动力学模拟具体实施步骤

第3章 铁基块体非晶合金‐纳米晶转变的动力学模拟过程 3.1 Discover模块 3.1.1 原子力场的分配 在使用Discover模块建立基于力场的计算中,涉及几个步骤。主要有:选择力场、指定原子类型、计算或指定电荷、选择non‐bond cutoffs。 在这些步骤中,指定原子类型和计算电荷一般是自动执行的。然而,在某些情形下需要手动指定原子类型。原子定型使用预定义的规则对结构中的每个原子指定原子类型。在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。 图 3-1 1)计算并显示原子类型:点击Edit→Atom Selection,如图3‐1所示 图3-2 弹出对话框,如图3‐2所示 从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe

原子都将被选中,原子被红色线圈住即表示原子被选中。再编辑集合,点击Edit →Edit Sets,如图3‐3、3‐4所示。 图3-3 图3-4 弹出对话框见图3‐4,点击New...,给原子集合设定一个名字。这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按 钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3‐5。 图3-5 在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。

冶金过程物料模拟(水模拟)技术

5 冶金过程水模拟 【实验性质】综合性实验;学时:4 5.1实验目的 冶金过程多是在高温状态下完成,很难对冶金过程的进行直接的观察与测试,因此通常采用物理模拟实验的方法对冶金传输过程加以研究,最为常用的方法是水模实验。冶金传输过程主要典型的反应有两种,一是全混流,另一种是活塞流,以这两种流动现象为基础,开设两个水模实验,一是钢包内钢水流动过程的水模实验研究,另一个是中间包内钢水流动过程的水模实验研究,前者为选作项目后者为比作项目。通过水模实验研究,要求学生掌握以下学习内容: (1) 钢包或中间包的水模型建立方法; (2) 如何保证这两个典型流动水模实验中水的流动与实际钢水流动的相似; (3) 对钢包或中间包内模拟钢水的流动可视化显示; (4) 示踪剂的加入方法及主要研究指标(均匀混合时间、平均停留时间)的计算方法; 5.2实验原理及设备 钢包、中间包内钢液的流动,是钢液在重力作用下从钢包水口流入中间包,然后从中间包水口流出。这种情况,一般可视为粘性不可压缩稳态流动,同时可忽略化学反应的影响。根据相似理论,只要满足几何相似和动力学相似就可以保证模型和原型相似。 影响钢包、中间包内钢液流动状态的作用力主要有惯性力、重力和黏性力。根据相似理论,在中间包物理模拟中只要选择模型和原型的Re、Fr准数相等就可以保证模型和原型相似。根据流体力学原理,当流体流动的Re数大于第二临界值时,流体的湍动程度及流速的分布几乎不再受Re数的影响,此时流体的流动状态不再变化,且彼此相似,与Re数不再有关,也就是说流体流动进入第二自模化区域,当原型的Re数处于第二自模化区以内时,则模型的Re数不一定与原型的Re数相等,只要都处于第二自模化区域,Fr数相等就能满足相似条件。一般Re数的第二自模化区的临界值为1×104~1×105。 夹杂物是危害钢液、钢材质量的主要杂质,尽可能多的去除尽量夹杂物是炼钢的主要目标,钢包吹氩是炉外精炼的重要手段之一,它不仅具有均匀钢水温度、成分的作用,而且也是十分有效的去夹杂措施。通过钢包水模型实验,分析吹气时间及不同吹气量对去除夹杂行为的影响。通过中间包水模型实验,研究使用不同形状的挡墙对中间包内钢液流动的影响,测量其在中间包内的平均停留时间和滞止时间的变化,找出最佳的挡墙设置。 利用水模拟方法测量流体分子的停留时间分布,通常应用“刺激-响应”实验,其方法是:在容器入口注入流处输入一个刺激信号,信号一般使用示踪剂来实现。然后在容器出口处测量该输入信号的输出,即所谓响应,从响应曲线得到流体在中间包内的停留时间分布。刺激-响应实验相当于黑箱研究方法,即使流体在流动过程中其流动状态不易或不能直接测量,仍可从响应曲线分析其流动状况,因此这一方法在理想流动的反应器中得到了广泛采用。 冶金实验研究中常用的示踪剂有:若系统为高温实际反应器(中间包),既可采用灵敏的放射性同位素作为示踪剂,也可采用不参与反应的其他元素,如铜、金等。若系统为冷态模拟研究,常使用电解质、发光或染色物质作为失踪剂,例如水模型中常采用KCl溶液作为

扩散系数计算

扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为5 2 10/m s -。通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式: 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多,其量级为9 2 10/m s -。表7-3给出了某些溶质在液体溶剂中的扩散系数。 对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ; T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ; B M -溶剂B的摩尔质量,/kg kmol ; φ-溶剂的缔合参数,具体值为:水;甲醇;乙醇;苯、乙醚等不缔合的溶剂为; A V -溶质A 在正常沸点下的分子体积,3/cm mol ,由正常沸点下的液体密度来计算。 若缺乏此密度数据,则可采用Tyn-Calus 方法估算: 1.048 0.285c V V =,其中c V 为物质的临界

扩散系数计算

7、2、2扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,就是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度与压力有关,其量级为5 2 10/m s -。通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数与B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller)等提出的公式 : 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加与得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多, 其量级为92 10/m s -。表7-3给出了某些溶质在液体溶剂中的扩散系数。 对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ;

反渗透膜及水分子内的扩散过程的分子模拟研究

《反渗透膜在海水淡化领域的应用及相关分子模拟研究》综述 一、背景概述 在世界上很多国家和地区,水资源短缺是限制社会经济可持续发展的一个重要因素,由于海水资源储量丰富,海水淡化是解决水资源问题的重要途径,随着社会对节能和环境保护需求的逐渐加深,具有节能和环保特点的膜分离技术受到越来越多的关注,其应用也越来越广泛。各种膜分离技术中,反渗透技术是近年来国内应用最成功、发展最快、普及最广的一种,是50年代为海水淡化而提出的,是海水淡化的主要过程之一,同时为缓解我国淡水资源紧缺的现状,海水淡化技术的研究发展日益得到研究学者的关注,因而反渗透膜作为主要的水及其它液体分离膜之一,在分离膜领域占有重要地位,对于反渗透膜的合成、制备和应用等方面的研究就变得尤为重要。同时反渗透技术仍存在需要高压和经常更换膜组件的问题,因此急需对现有海水淡化技术进行改进。 据统计,全球有约80%的海水淡化工厂安装使用了反渗透膜技术设。随着反渗透膜法海水淡化技术的提高以及装置设备的大型化,现在海水淡化的日产量高达几十万吨到几百万吨之间同时海水淡化成本也逐步降低。据不完全统计,全球已经有1.4万多个海水淡化工程建成,大部分分布在中东等缺水较严重国家,这些淡化工程能生产淡化水6.4×107t/d。2005年,以色列建成了当时世界上最大Ashkelon海水淡化反渗透设备,该设备产水能力为3.3×105m3/d,纯水处理成本为0.53美元/t,且产水水质良好,有效地解决了以色列长期以来存在的供水问题。2009年英国在伦敦东部规划并建设一座海水淡化厂。在我国,反渗透海水淡化技术也较好的实现了产业化。大连石化于2004年建成反渗透膜法海水淡化脱盐项目的装置,该装置产水达量5650t/d,水利用率达45%,脱盐率达99.5%。 反渗透技术的关键取决于反渗透膜性能的改善。膜的性能与材料的性质密切相关,高性能的膜材料是发展膜技术的关键。从目前发展趋势来看,研究制备高性能的新型高分子膜材料对海水淡化技术显得至关重要。国外大多数国家都致力于研究耐氯性强、结构稳定等特点的新型膜材料。 对于膜设计的费时费力的原因有两个。一方面,水分子从海水中分离的机制是由膜及被分离体系原子尺度的静态结构以及在皮秒和飞秒范围内的动态行为所决定的;另一方面,又与试验手段的限制,通过试验不可能直接获得在分离过程中分子尺度的活动信息。 而目前对于理想的高分子反渗透膜的设计工作大部分还是基于试验方法,对膜材料加以设计和改性,其研究的层次也局限在实验现象和反应机理上,得到的也只是一些宏观数据,而宏观的现象是微观的分子、原子尺度的宏观表现,要想从本质上研究物质在膜中的扩散情况,必须从分子/原子尺度来研究,而分子模拟方法可以从分子/原子尺度来研究问题,因此与试验方法相比,用分子模拟的方法来进行高分子反渗透膜的研究和设计更有优势。 膜传质机理研究是膜领域的基础理论,贯穿于膜的合成、制备和应用三方面研究之中。扩散系数是膜传质机理研究的重要组成部分,是描述分离和传递现象的基本韧性数据.被用来对传质过程进行描述。为了迎合不断增长的分离过程集

水分子扩散加权磁共振成像在肝脏的临床应用

水分子扩散加权磁共振成像在肝脏的临床应用 发表时间:2018-03-07T13:03:21.997Z 来源:《健康世界》2017年28期作者:于洋洋李丽 [导读] 磁共振水分子扩散加权成像技术与表观扩散系数对于肝脏疾病的检测和诊断有着非常重要的临床意义。 山东省潍坊青州市人民医院医学影像科 262500 摘要:目的评估磁共振水分子扩散加权成像技术对于诊断肝脏疾病方面的临床价值。方法对30例病人与15例正常对照病人的腹部的正常脏器,同时选取40例病人的60个病灶(其中转移瘤10例18个病灶;肝癌9例13个病灶;肝囊肿10例13个病灶以及海绵状血管瘤11例16个病灶)进行磁共振水分子扩散加权成像并检测器表观扩散系数(ADC值)。结果正常的脏器,例如肾;肝;胆囊;胰腺;脾脏和肌肉的表观扩散系数分别为1.74x10-3mm2/ s;0.71x10-3 mm2/s;0.76x10-3mm2/s;0.81x10-3 mm2/s;2.87x10-3 mm2/s;1.01x10-3 mm2/s。转移瘤;肝癌;肝囊肿;海绵状血管瘤的表观扩散系数(ADC)分别为:1.21x10-3 mm2/s;0.98x10-3 mm2/s;3.05x10-3 mm2/s;2.87x10-3 mm2/s。其中恶性肿瘤,肝囊肿和血管瘤三者之间有显著性差异。(p<0.001)结论磁共振水分子扩散加权成像技术与表观扩散系数对于肝脏疾病的检测和诊断有着非常重要的临床意义。 关键词:磁共振水分子扩散加权成像成像;表观检测系数;肝肿瘤 随着放射技术的硬件和软件发展,磁共振水分子扩散加权成像技术(diffusion weighted imaging,DWI)在临床上得到了迅速广泛的发展和应用,例如进行早期脑梗死的诊断,除此之外,磁共振水分子扩散加权成像技术在肝脏的占位性病变的检出和诊断有着很重要的应用价值。笔者通过磁共振水分子扩散加权成像技术和表观扩散系数在肝脏疾病方面的应用探讨其在肝脏疾病领域的应用价值。 1. 资料与方法 1.1 资料来源 正常脏器组样本分别取自正常对照组15例(其中男性8例,女性7例,年龄22-60岁);及接受腹部MRI检查的患者30例(男性14例,女性16例,年龄10-64岁)。肝脏病变组选取了40位患者(男性22例,女性18例),一共60个病灶,其中转移瘤10例18个病灶;肝癌9例13个病灶;肝囊肿10例13个病灶以及海绵状血管瘤11例16个病灶。为了排除实验因素干扰,其中所有病灶的直径均大于1.5cm。在这40例病人中,有26例病人进行了B超检查;有24例病人进行了CT检查(双期或者三期的动态增强检查);21例进行了MR动态增强检查。并对10对肝硬化的患者进行了ADC值的检测。 1.2 MRI检测方法 所有患者的MRI检查采用Magnetom Vision 1.5T全身MR扫描仪,同时采用phased array surface multicoil 信号采集线圈。对上述患者的检查的参数为:层数14-18层,厚度为8mm,层间距为10%的层厚度,为0.8mm,矩阵为145-256,FOV视野为310mmX310mm-390mmX390mm。每个检测的序列均为患者一次屏气完成。每次扫描时间为15-25秒,并采用2D FLASH T1WI,并同时用MR高压注射器推送注钆喷替酸葡甲胺(Gd-DTPA,0.12 mmol/kg,3.5 ml/ s)。ADC测定中正常组织包括:肝脏,胰腺,肾脏,脾脏,胆囊以及竖脊肌。其中每个部位取4个较为感兴趣的区域,选择区域时应该避开血管,同时选择的面积要较大,包括不低于100像素。表观扩散系数按照公式计算:ADC =(ln[ S低/S高])/(b高-b低)。ADC检测值应该选取4个不同部位检测的ADC的平均值。不同部位的ADC值采用t检验进行比较,以p<0.05为有显著性差异。 2.实验结果 所有的病人均进行磁共振水分子扩散加权成像技术检测,所有的患者图像都可以见到化学位移伪影。各脏器的ADC值见表1. 表1 各脏器ADC值测量结果 3.讨论 笔者利用磁共振水分子扩散加权成像技术对腹部的正常与病变器官进行了ADC的检测,结果表明:磁共振水分子扩散加权成像技术与ADC检测可以帮助肝病变的诊断和鉴别;除此之外,磁共振水分子扩散加权成像技术还有一些问题需要进一步改进,应该增加患者样本数,并进行更深入的研究。 参考文献: [1]Marks MP,De Crespigny A,Lentz D,et al.Acute and chronic stroke:navigated spin-echo diffusion-weighted MR

扩散系数计算

它表达某个组分在介质中扩 0.0101T 1.75 (7—19) 722扩散系数 费克定律中的扩散系数D 代表单位浓度梯度下的扩散通量, 散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为 10 m 2/s 。通常对于二元气体 A 、 B 的相互扩散,A 在 B 中的扩散系数和 B 在A 中的扩散系数相等,因此可略去下标而 用同一符号D 表示,即 D AB = D BA =D 。 表7 — 1给出了某些二元气体在常压下( 1.013 105Pa )的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒( Fuller )等提出的公式: p[c V A )1/3 e V B )1/3]2 2 式中,D —A 、B 二元气体的扩散系数, m /s ; P —气体的总压,Pa ; T —气体的温度,K ; M A 、M B —组分 A 、 B 的摩尔质量,kg/kmol ; 7 V A 7 V B 3 、 —组分A 、B 分子扩散体积,cm 3 /mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到, 某些简单物质 则在表7-2种直接列出。 表7-1某些二元气体在常压下(5 )的扩散系数 系统 温度/K 扩散系数/(10-5m 2 /s) 系统 温度/K - 5 2 扩散系数/(10 m/s) H 2—空气 273 6.11 甲醇一空气 273 1.32 He —空气 317 7.56 乙醇一空气 273 1.02 02—空气 273 1.78 正丁醇-空气 273 0.703 Cl 2 —空气 273 1.24 苯-空气 298 0.962 H 2O —空气 273 2.20 甲醇一空气 298 0.844 298 2.56 H 2— CO 273 6.51 332 3.05 H 2— CO 2 273 5.50 NH 3 —空气 273 1.98 H 2— N 2 273 6.89 CO 2 —空气 273 1.38 294 7.63 298 1.64 H 2— NH 3 298 7.83 SO 2 —空气 293 1.22 He — Ar 298 7.29 7-2 原子扩散体积 3 v/(cm /mol) 分子扩散体积 3 工 V /( cm /mol) 原子扩散体积 3 v/(cm /mol) 分子扩散体积 3 工 V /( cm /mol) C 15.9 He 2.67 S 22.9 CO 18.0

充型过程的水模拟实验

充型过程的水模拟实验 实验学时:3h 实验性质:验证性实验要求:必开所属课程:材料成形工艺 一、实验目的 ⒈了解在充填过程中浇注系统各组元产生的主要物理现象及带来的后果; ⒉了解几种典型浇注系统的结构及其优缺点。 ⒊了解阶梯式浇注系统的优缺点,掌握阶梯式浇注系统的要领。 二、实验内容 ⒈在充填过程中浇口杯出现的水平旋涡及吸气现象;垂直旋涡及捕渣效果; ⒉有机玻璃模型直浇口中的吸气现象及防止措施; ⒊横浇道中各断面压力分布,充满情况; ⒋不同横浇道捕渣效果的观察。 三、实验用仪器设备和材料 ⒈ZS-1型浇注系统水模拟实验台; ⒉各种浇注系统有机玻璃模型、U型测压计(用水,自制)、乳胶管、钢板尺、支架; ⒊聚苯乙烯泡沫颗粒(渣团的“模拟物”)。 四、实验方法和步骤 ⒈浇口杯中水平和垂直旋涡及吸气现象; ⑴将二元浇注系统模型1(等截面直浇道)放到水力模拟实验台架上,按以下次序 进行观察和测量水平旋涡出现和消除时,浇口杯中液面的高度。(注意用阀门控制水量)(a)浇注在浇口杯的中部;图1—2(a) (b)浇注在浇口杯的侧壁上;图1—2 (b) 实验时注意观察浇口杯液面深度和浇注高度对形成水平涡流的影响、液体流入直浇道的状况、吸气情况,并放入模拟渣团,绘简图记录之。 图1—1 模型1 图1—2 ⑵将模型2(图1—3)放到水力模拟实验台支架上,观察垂直旋涡出现的情况及渣 团的运动。 浇注时让下落的流股靠近浇口杯的侧壁,开始浇注时应慢,保持一定的液面高度,绘简图记录渣团的运动。 ⒉有机玻璃直浇道中的吸气现象及防止措施 ⑴将模型1放到实验台架上,保持浇口杯液面呈接近充满状态,观察直浇道上三个 小孔有何现象,然后与测压计胶管连接并测出三个小孔的压力值,填入表1中。

扩散系数

布朗运动的扩散系数 刘佳杰 201202008010 摘 要:布朗运动即为分子无规则的运动,布朗运动中的扩散系数与分子的大小形状有何关系,我们设计了试验,进行求解。 关键词:布朗运动 扩散系数 因素 一、气体扩散系数 挥发性液体之气体扩散系数可藉由Winklemann’s method 来检测,在有限内径的垂直毛细管中保持固定的温度和经过毛细管顶部的空气流量,可确定液体表面的分子扩散到气体中的蒸气分压。 已知质传速率: ???? ????? ??=Bm T A A C C L C D 'N (1) D = 扩散速率 (m 2/s) C A = A 物质于界面间的饱和浓度 (kmol/m 3) L =质传有效距离(mm) C Bm =蒸气的对数平均莫耳浓度 (kmol/m 3) C T = 总莫耳浓度=C A +C Bm (kmol/m 3) 液体的蒸发速率: (2) ρL = 液体密度 ??? ????? ??=dt dL M ρ'N L A

???? ????? ??=??? ????? ??Bm T A L C C L C D dt dL M ρ (3) at t=0 , L=L 0 做积分 t C C C ρMD 2L L Bm T A L 202??? ? ?????? ??=- (4) ()()t C C C ρMD 2L 2L L L L Bm T A L 000??? ? ?????? ??=+-- (5) ()()0A T Bm L 0A T Bm L 0L C MDC C ρL L C C C MD 2ρL L t ???? ??+-???? ????? ??=- (6) M = 分子量 、 t = 时间 其中 ???? ????? ??=a abs T T T Vol kmol C 1 , 其中 Vol =22.4 m 3 (7) T 1B C C = (8) T a v a 2B C P P P C ??? ? ??-= (9) )C ln()C (C C B2 B1B2B1Bm -= (10) T a v A C P P C ??? ? ??= (11) (二)线型最小平方法 最小平方法或称最小平方差法 (least-squares method) 的最基础型──线型的 (linear)。今有一组实验数据基本上呈现线型的态势,则若以b ax y +=表示直线方程式,其中a 代表斜率 (slope),b 代表截距 (intercept),则最小平方法就是在使误差的平方和达到最小,即使下式最小化 (minimize) ()[]2 n 1i i i b ax y E ∑+-== 因此

扩散系数计算

扩散系数计算 WTD standardization office [WTD 5AB- WTDK 08- WTD 2C]

费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为lOFX/s。通常对于二元气体A、B的相互扩散,A在B中的扩散系数和B在A中的扩散系数相等,因此可略去下标而用同一符号D表示,即D\严D^D。 表7 - 1给出了某些二元气体在常压下(l.O13xia s P6/)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller)等提出的公式: 0.010 IT175 I丄+ 丄 (7-19) 式中,D-A、B二元气体的扩散系数?; P-气体的总压,Pa;了-气体的温度,K ; Mg 组分A、B的摩尔质量,kg/kmol; -组分A、B分子扩散体积, cm3/mol o 般有机化合物可按分子式由表7 - 2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 表7 - 1某些二元气体在常压下(1.013x10,P“)的扩散系数

注:已列出分子扩散体积的,以后者为准。 式7- 1 9的相对i 吴差一般小于1 0%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的 小得多,其量级为1O3X/S 。表7 - 3给出了某些溶质在液体溶剂中的扩散系数。 表7 - 3溶质在液体溶剂中的扩散系数(溶质浓度很低) 对于很稀的非电解质溶液(溶质A+溶剂B ),其扩散系数常用Wilke-Chang 公 式估算: 式中,0^-溶质A 在溶剂B 中的扩散系数(也称无限稀释扩散系数),,沪“; 丁-溶液 的温度,K ; 卩-溶剂B 的粘度,Pa s ; D AB = 7.4x10小 (删“片 ^7^ m 2 / s (7 — 2 1)

实验设计分子扩散系数测定

实验设计:丙酮分子扩散系数测定 一、实验原理 扩散属于由于分子扩散所引起的质量传递,扩散系数在工业中是一项十分重要的物性指标。 在如图所示的垂直细管中盛以待测组分的液体A,该组分通过静止气层Z扩散至管口被另一头气流B带走。紧贴液面上方组分A的分压为液体A在一定温度下的饱和蒸汽压,管口处A的分压可视为零,组分A的汽化使扩散距离Z不断增加。记录时间t与Z的关系即可计算A在B中的扩散系数。 液体A通过静止气体层的扩散为单相扩散,此时传递速率: N A =D/(RTZ) ·P/P Bm ·(P A1 -P A2 ) 可写成: N A =ρ/RT·D/Z·ln(P B2 /P B1 ) (a) 设S为细管的截面积,ρ为液体A密度。在dt时间内汽化的液体A的量应等于液体A扩散出管口的量,即 SN A dt=ρSdZ/N A 或: N A =ρ/M A ·dZ/dt (b) 二、计算公式 T形管: 横管为两端开口的普通玻璃管,用于气体流通;竖管为下端封口的毛细管,用于盛放丙酮溶液(丙酮为被测气体),由于使用了毛细管,可以将被测气体的扩散视为一维的竖直扩散。

真空泵: 可生成20-60kPa的负压,使毛细管中扩散出的气体迅速离开管口,以保证管口处被测气体浓度不变(接近零)。 游标卡尺: 实验中使用精度为0.1mm的游标卡尺,可以通过显微镜对毛细管内的液位进行测量。 显微镜: 由于游标卡尺刻度较密,且置于水浴箱中,要借助显微镜进行读数。 水浴箱: 毛细管浸于水浴池中,使毛细管内液体保持恒温。另外,温度高时扩散较快,可加快实验速度。实验中要求设定为50度。 系统时钟:可成倍加快实验速度,减少实验中的等待时间。 扩散系数:D=BρRT/(2M A P) ·1/ln(P B2/P B1) ρ—丙酮密度,797kg/m3; T—扩散温度,实验中要求设定为232K; —丙酮分子量,58.05; M A P—大气压,100kPa; P B2—空气在毛细管出口处的分压,可视为P; P B1—空气在毛细管内液面处的分压,P B1=P-P A*,P A*为丙酮的饱和蒸气压,232K时P A*=50kPa; B—以时间t为横坐标,Z2为纵坐标作图得到的直线的斜率。 实验时每隔10-15分钟测量一次扩散距离Z的数据,以Z2为纵坐标,时间为横坐标作图可得到B,将所有数据带入计算公式即可求得扩散系数。 三、注意事项 1.开始测量数据后,不要改变水浴温度,温度对扩散速率有影响。 2.测量时真空泵要一直开启。 3.计算时要注意单位的统一。 试验步骤: 进入实验后,水浴加热器与真空泵均未开启,鼠标点击两个红色开关即可打开相应的设备。

相关文档
最新文档