高考立体几何题型与方法全归纳文科

高考立体几何题型与方法全归纳文科
高考立体几何题型与方法全归纳文科

2019高考立体几何题型与方法全归纳文科

配套练习

1、四棱锥P ABCD -中,PA ⊥底面ABCD ,23PA =,2BC CD ==,

3ACB ACD π

∠=∠=.

(Ⅰ)求证:BD ⊥平面PAC ;

(Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积。 【答案】

(Ⅰ)证明:因为BC=CD ,即BCD ?为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥.

因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故BD ⊥平面PAC 。 (Ⅱ)解:33

2sin 2221sin 21=??=∠??=

BCD CD BC S BCD . 由⊥PA 底面ABCD 知232331

31=??=??=?-PA S V BCD BDC P .

由,7FC PF =得三棱锥BDC F -的高为PA 8

1

,

故:41

32813318131=???=??=?-PA S V BCD BDC F

4

7

412=-

=-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ?∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点.

(Ⅰ)证明:EF P 平面PAD ; (Ⅱ)证明:平面PDC ⊥平面PAD ; (Ⅲ)求四棱锥P ABCD -的体积.

【答案】

(Ⅰ)证明:如图,连结AC .

∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点. 又E 是PC 的中点,EF AP P

∵EF ?平面PAD ,PA ?平面PAD ,所以EF P 平面PAD ;

(Ⅱ)证明:∵平面PAD ⊥ 平面ABCD ,CD AD ⊥,平面PAD I 平面ABCD AD =, 所以平面CD ⊥ 平面PAD ,又PA ?平面PAD ,所以PA CD ⊥ 又PA PD ⊥,,PD CD 是相交直线,所以PA ⊥面PCD 又PA ?平面PAD ,平面PDC ⊥平面PAD ;

(Ⅲ)取AD 中点为O .连结PO ,PAD ?为等腰直角三角形,所以PO AD ⊥, 因为面PAD ⊥面ABCD 且面PAD I 面ABCD AD =, 所以,PO ⊥面ABCD ,

即PO 为四棱锥P ABCD -的高. 由2AD =得1PO =.又1AB =.

∴四棱锥P ABCD -的体积12

33

V PO AB AD =??=

考点:空间中线面的位置关系、空间几何体的体积.

3、如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,CD PA ⊥, DB ADC ∠平分,E PC 为的中点,

45DAC ∠=o ,2AC =.

(Ⅰ)证明:PA ∥BDE 平面;

(Ⅱ)若,22,2==BD PD 求四棱锥ABCD E -的体积 【答案】(Ⅰ)设F BD AC =?,连接EF ,

CD PD ABCD CD ABCD PD ⊥∴?⊥,平面,平面Θ

PAD PA PD P PA PD PA CD 平面,,,又?=?⊥Θ AD CD PAD AD PAD CD ⊥∴?⊥∴平面,平面Θ

∵,45?=∠DAC ∴,DC DA =

∵DB 平分,ADC ∠F 为AC 中点,E 为PC 中点, ∴EF 为CPA ?的中位线.

∵EF ∥,PA EF BDE ?平面,PA BDE ?平面 ∴PA ∥BDE 平面.

(Ⅱ)底面四边形ABCD 的面积记为S ;

ABC ADC S S S ??+=222

3

22122221=??+??=

. 的中点,为线段点PC E Θ

11112

2232323

E ABCD V S PD -∴=?=???=.

考点:1.线面平行的证明;2.空间几何体的体积计算.

4、如图,在四棱锥P ABCD -中,底面ABCD 为菱形,其中2PA PD AD ===,60BAD ?∠=,Q 为AD 的中点.

(1) 求证:AD PQB ⊥平面;

(2) 若平面PAD ⊥平面ABCD ,且M 为PC 的中点,求四棱锥M ABCD -的体积. 【答案】

(1)PA PD =Q ,Q 为中点,AD PQ ∴⊥ 连DB ,在ADB ?中,AD AB =,60BAD ?∠=,

ABD ∴?为等边三角形,Q 为AD 的中点,

AD BQ ∴⊥,

PQ BQ Q ?=,PQ ?平面PQB ,BQ ?平面PQB , ∴AD ⊥平面PQB .

(2)连接QC ,作MH QC ⊥于H .

H A

B

C

D P

M

Q

Q PQ AD ⊥,PQ ?平面PAD ,平面PAD ?平面ABCD AD =,平面PAD ⊥平面ABCD ,

PQ ABCD ∴⊥平面 , QC ?ABCD 平面 , PQ QC ∴⊥

//PQ MH ∴. ∴MH ABCD ⊥平面,

又12PM PC =

,1122222

MH PQ ∴=

=?=. 在菱形ABCD 中,2BD =,

01

sin 602

ABD S AB AD Λ=??

?1=2222???

∴2ABD ABCD S S ?==菱形

M ABCD V -1

3

ABCD S MH =??

菱形132=?1=.

5、如图,E 是矩形ABCD 中AD 边上的点,F 为CD 边的中点,2

43

AB AE AD ==

=,现将ABE ?沿BE 边折至PBE ?位置,且平面PBE ⊥平面BCDE .

⑴ 求证:平面PBE ⊥平面PEF ; ⑵ 求四棱锥P BEFC -的体积.

P

B

C

D F

E

(1)

(2)

【答案】(1) 证明:由题可知,4545ED DF DEF DEF ED DF EF BE AE AB ABE AEB AE AB =?

??

?∠=???

⊥???⊥?=??? ?∠=? ??⊥??

中中 ABE BCDE

ABE BCDE BE EF PBE PBE PEF EF BE EF PEF ?⊥?

??

=?⊥??

?⊥??⊥??

? ??I 平面平面平面平面平面平面平面平面 (2) 11

6444221422BEFC ABCD ABE DEF S S S S =--=?-??-??=,则

111433BEFC V S h =??=??=

6、已知四棱锥P ABCD -中,,PD ABCD ABCD ⊥平面是正方形,E 是PA 的中点,

(1)若PD AD =,求 PC 与面AC 所成的角 (2) 求证://PC 平面EBD (3) 求证:平面PBC ⊥平面PCD

【答案】(1)PD ⊥Q 平面ABCD ,DC ∴是直线PC 在平面ABCD 上的射影,PCD ∴∠是直线PC 和平

E D C

B

A

P

面ABCD 所成的角。又PD DA =Q ,四边形ABCD 是正方形,,DA DC ∴=PD DC ∴=,

045PCD ∴∠=;∴直线PC 和平面ABCD 所成的角为045

(2)连接AC 交BD 与O,连接EO, ∵E 、O 分别为PA 、AC 的中点 ∴EO ∥PC ∵PC ?平面EBD,EO ?平面EBD ∴PC ∥平面EBD (3)∵PD

平面ABCD, BC ?平面ABCD ,∴PD

BC ,

∵ABCD 为正方形 ∴ BC

CD ,

∵PD ∩CD=D, PD ,CD ?平面PCD ∴BC

平面PCD

又∵ BC ?平面PBC ∴平面PBC

平面PCD

7、在边长为4cm 的正方形ABCD 中,E F 、分别为BC CD 、的中点,M N 、分别为AB CF 、的中点,现沿AE AF EF 、、折叠,使B C D 、、三点重合,重合后的点记为B ,构成一个三棱锥.

(1)请判断MN 与平面AEF 的位置关系,并给出证明; (2)证明AB ⊥平面BEF ; (3)求四棱锥E AFNM -的体积. 【答案】(1)MN 平行平面AEF

证明:由题意可知点M N 、在折叠前后都分别是AB CF 、的中点(折叠后B C 、两点重合) 所以MN 平行AF

因为MN AEF AF AEF MN AF ???

????

面面平行,所以MN 平行平面AEF .

(2)证明:由题意可知AB BE ⊥的关系在折叠前后都没有改变.

因为在折叠前AD DF ⊥,由于折叠后AD AB 与重合,点D F 与重合,所以AB BF ⊥

因为=AB BE AB BF BE BEF BF BEF BE BF B ⊥??⊥??

????????面面,所以AB ⊥平面BEF .

(3)E AFNM E ABF E MBN V V V ---=- A BEF M BEN V V --=-

1133BEF BEN S AB S MB ??=?-?1111

2242123232

=????-???? 2= .

8、在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==.

(1)求证:平面EFG ⊥平面PDC ;

(2)求三棱锥P MAB -与四棱锥P ABCD -的体积之比.

【答案】(1)证明:∵MA ⊥平面ABCD ,PD ∥MA , ∴PD ⊥平面ABCD ,

又BC ?平面ABCD ,∴PD ⊥BC , ∵ABCD 为正方形,∴BC ⊥DC. ∵PD DC D I =,∴BC ⊥平面PDC .

在PBC ?中,因为G F 、分别为PB 、PC 的中点, ∴GF ∥BC ,∴GF ⊥平面PDC .

又GF ?平面EFG ,∴平面EFG ⊥平面PDC . (2)不妨设=1MA ,∵ABCD 为正方形,∴2PD AD ==, 又∵PD ⊥平面ABCD ,

所以P ABCD V -=13ABCD S PD ?正方形=8

3.

由于DA ⊥平面MAB ,且PD ∥MA , 所以DA 即为点P 到平面MAB 的距离,

三棱锥P MAB V -=13×1122??

?? ???

×2=23.

所以1

4P MAB P ABCD V V --:=:. 9、如图,在底面是直角梯形的四棱锥S-ABCD 中,

.2

1

,1,90=

===⊥=∠AD BC AB SA ABCD SA ABC ,面ο

(1)求四棱锥S-ABCD 的体积;(2)求证:;SBC SAB 面面⊥(3)求SC 与底面ABCD 所成角的正切值。 【答案】(1)解:

111111

()(1)11332624

v Sh AD BC AB SA ==??+??=?+??=

(2)证明:

BC

SA ABCD BC ABCD SA ⊥∴?⊥,面,面Θ又,A AB SA BC AB =⊥I Θ,SAB BC 面⊥∴

SAB BC 面?ΘSBC SAB 面面⊥∴

(3)解:连结AC,则SCA ∠就是SC 与底面ABCD 所成的角。

在三角形SCA 中,SA=1,AC=21122=+,22

2

1tan =

==

∠AC SA SCA 10、如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=o ,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正

弦值.

S

C

A

D

B

【答案】(Ⅰ)证明:连接CQ DP ,, 在ABE ?中,Q P ,分别是AB AE ,的中点,所以BE PQ 21

//==,

又BE DC 21

//==,所以DC PQ ==

//,又?PQ 平面ACD ,DC ?平面ACD , 所以//PQ 平面ACD

(Ⅱ)在ABC ?中,BQ AQ BC AC ===,2,所以AB CQ ⊥ 而DC ⊥平面ABC ,DC EB //,所以⊥EB 平面ABC

而?EB 平面ABE , 所以平面ABE ⊥平面ABC , 所以⊥CQ 平面ABE 由(Ⅰ)知四边形DCQP 是平行四边形,所以CQ DP //

所以⊥DP 平面ABE , 所以直线AD 在平面ABE 内的射影是AP , 所以直线AD 与平面ABE 所成角是DAP ∠

在APD Rt ?中,5122222=+=+=DC AC AD ,1sin 2=∠==CAQ CQ DP

所以55

5

1sin =

==

∠AD DP DAP

全国高考文科数学立体几何综合题型汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

立体几何知识点题型整理

立体几何总结(1)空间几何体的知识点: (2)点、直线、面的位置关系: (3)空间直角坐标系: 考点一空间几何体与三视图 1.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.画直观图时,与坐标轴平行的线段仍平行,与x轴、z轴平行的线段长度不变,与y轴平行的线段长度减半. 题型一三视图的考察 1、(2009·海南、宁夏) 一个棱锥的三视图如图,则该棱锥的全面积( 单位:cm2) 为( ) A.48+12 2 B.48+24 2 C.36+12 2 D.36+24 2 2、如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ( ) A.6 3 B.9 3 C.12 3 D.18 3 【方法技巧】 1.求三棱锥体积时,可多角度地选择方法.如体积分割、体积差等积转化法是常用的方法.2.与三视图相结合考查面积或体积的计算时,解决时先还原几何体,计算时要结合平面图形,不要弄错相关数量. 3.求不规则几何体的体积常用分割或补形的思想将不规则几何体转化为规则几何体以易于求解. 4.对于组合体的表面积要注意其衔接部分的处理.

题型二 平面图的直观图(斜二测面法) 1、如图所示的直观图,其平面图形的面积为 ( ) A .3 B.32 2 C .6 D .3 2 2、如图所示为一平面图形的直观图,则这个平面图形可能是 ( ) 答案 :C 题型四 其他类型:展开、投影、截面、旋转体等 1 、面积为3的等边三角形绕其一边中线旋转所得圆锥的侧面积是________. 答案 :2π 2、 如图,长方体ABCD -A1B1C1D1 中,交于顶点A 的三条棱长分别为AD =3 ,AA1 =4 ,AB =5 ,则从A 点沿表面到 C1 的最短距离为 ( ) A .5 2 B.74 C .4 5 D .310 考点三 球与空间几何体的“切”“接”问题 1.长方体、正方体的外接球其体对角线长为该球的直径. 2.正方体的内切球其棱长为球的直径. 3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线. 4.正四面体的外接球与内切球的半径之比为3∶1. 若正四面体的棱长为 a a R a a 12 6 ,46 ,36的半径为 正四面的内切球 径正四面体的外接球的半则正四面体的高为= (熟悉常见的补体,特殊的几何体如正三棱柱、正四棱柱、正六棱柱,注意如何确定球心的位置) 1.已知三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球的半径为( )A.3 B.6 C.36 D.9 2、在三棱锥BCD A -中,5,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为( )A.π102 B. π54 C. π21 D. π43 变式:在三棱锥BCD A -中,5,4,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为————(π2 77 ) 2、棱长为2的正四面体(四个面均为正三角形)外接球的表面积是( ) A π3 B π3 C π33 D π2 3 3、在三棱柱C B A ABC '''-中,已知ABC A A 平面⊥',2='==A A AC AB ,32=BC ,且此三棱柱的各个顶点都在一个球面上,则球的表面积为__________.

立体几何题型归纳

立体几何题型归纳 题型一线面平行的证明 例 1 如图,高为 1 的等腰梯形 ABCD 中,AM =CD =1 AB =1.现将△AMD 沿 MD 折起,使平面 AMD ⊥ 3 平面 MBCD ,连接 AB ,AC . 试判断:在 AB 边上是否存在点 P ,使 AD ∥平面 MPC ?并说明理由 【答案】当 AP =1 AB 时,有 AD ∥平面 MPC . 3 理由如下: 连接 BD 交 MC 于点 N ,连接 NP . 在梯形 MBCD 中,DC ∥MB ,DN =DC =1 , NB MB 2 在△ADB 中,AP =1 ,∴AD ∥PN . PB 2 ∵AD ?平面 MPC ,PN ?平面 MPC , ∴AD ∥平面 MPC . 【解析】线面平行,可以线线平行或者面面平行推出。此类题的难点就是如何构造辅助线。构造完辅助线, 证明过程只须注意规范的符号语言描述即可。本题用到的是线线平行推出面面平行。 【易错点】不能正确地分析 DN 与 BN 的比例关系,导致结果错误。 【思维点拨】此类题有两大类方法: 1. 构造线线平行,然后推出线面平行。 此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。在 此,我们需要借助倒推法进行分析。首先,此类型题目大部分为证明题,结论必定是正确的,我们以此 为前提可以得到线面平行。再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行 于该直线,而交线就是我们要找的线,从而做出辅助线。从这个角度上看我们可以看出线线平行推线面 平行的本质就是过已知直线做一个平面与已知平面相交即可。如本题中即是过 AD 做了一个平面 ADB 与平面 MPC 相交于线 PN 。最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。即先证AD 平行于 PN ,最后得到结论。构造交线的方法我们可总结为如下三个图形。

最新高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

立体几何题型归类总结

立体几何题型归类总结(总8 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

立体几何专题复习 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② r =d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ== 球球(其中R 为球的半径)

俯视图 二、【典型例题】 考点一:三视图 1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 . 第4题 第5题 2 2 侧(左)视图 2 2 2 正(主)视 3 俯视图 1 1 2 a

高考立体几何题型与方法全归纳文科

2019高考立体几何题型与方法全归纳文科 配套练习 1、四棱锥中,⊥底面,,, . (Ⅰ)求证:⊥平面; (Ⅱ)若侧棱上的点满足,求三棱锥的体积。 【答案】 (Ⅰ)证明:因为BC=CD ,即BCD ?为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥. 因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故⊥平面。 (Ⅱ)解:33 2sin 2221sin 21=??=∠??=?πBCD CD BC S BCD . 由⊥PA 底面ABCD 知23233 131=??=??=?-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 8 1, 故:4 132813318131=???=??=?-PA S V BCD BDC F 4 7412=-=-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ?∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点. (Ⅰ)证明:EF P 平面PAD ; (Ⅱ)证明:平面PDC ⊥平面PAD ;

(Ⅲ)求四棱锥P ABCD -的体积. 【答案】 (Ⅰ)证明:如图,连结AC . ∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点. 又E 是PC 的中点,EF AP P ∵EF ?平面PAD ,PA ?平面PAD ,所以EF P 平面PAD ; (Ⅱ)证明:∵平面PAD ⊥ 平面ABCD ,CD AD ⊥,平面PAD I 平面ABCD AD =, 所以平面CD ⊥ 平面PAD ,又PA ?平面PAD ,所以PA CD ⊥ 又PA PD ⊥,,PD CD 是相交直线,所以PA ⊥面PCD 又PA ?平面PAD ,平面PDC ⊥平面PAD ; (Ⅲ)取AD 中点为O .连结PO ,PAD ?为等腰直角三角形,所以PO AD ⊥, 因为面PAD ⊥面ABCD 且面PAD I 面ABCD AD =, 所以,PO ⊥面ABCD , 即PO 为四棱锥P ABCD -的高. 由2AD =得1PO =.又1AB =. ∴四棱锥P ABCD -的体积1233 V PO AB AD =??= 考点:空间中线面的位置关系、空间几何体的体积. 3、如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,CD PA ⊥, DB ADC ∠平分,E PC 为的中点,45DAC ∠=o ,AC = O

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

立体几何常见重要题型归纳-高考立体几何题型归纳

立体几何常见重要题型归纳 阳江一中 利进健 题型一 点到面的距离 常见技巧:等体积法 例1:如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点. (1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1; (2)证明:平面D 1AC ⊥平面BB 1C 1C ; (3)求点D 到平面D 1AC 的距离. 解析:(1)11//,,,//,22 CD AB CD AB AF AB CD AF CD AF ==∴= ∴ 四边形AFCD 为平行四边形 ∴//CF AD 又AD ?面11ADD A ,CF ?面11ADD A ∴//CF 面11ADD A 2分 在直四棱柱中,11//CC DD , 又AD ?面11ADD A ,CF ?面11ADD A ∴1//CC 面11ADD A 3分 又11,,CC CF C CC CF ?=?面1CC F ∴面1CC F //面11ADD A 又1EE ?面11ADD A ,1//EE ∴面1CC F 5分 (2)122 BC CD AB === ∴ 平行四边形AFCD 是菱形 DF AC ∴⊥ ,易知//BC DF AC BC ∴⊥ 7分 在直四棱柱中,1CC ⊥面ABCD ,AC ?面ABCD 1AC CC ∴⊥ 又1BC CC C ?= AC ∴⊥面11BCC B 9分 又AC ?面1D AC ∴面1D AC ⊥面11BCC B 10分 (3)易知11D D AC D ADC V V --= 11分 ∴ 设D 到面1D AC 的距离为d ,则

高考文科立体几何大题

1. (2013年高考辽宁卷(文))如 图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点. (I) 求证:BC _平面PAC ; (II) 设Q为PA的中点,G为AOC的重心,求证:QG//平面PBC. 2.2013年高考陕西卷(文))如图,四棱柱ABCDAιBιCD的底面ABCt是正方形,O为底面中 心,AC⊥平面ABCD AB=AA=√2. (I )证明:A i BD // 平面CDB1; ( ∏ )求三棱柱ABDABD的体积.

3. (2013年高考福建卷(文))如图,在四棱锥P- ABCD 中,PD _ 面ABCD , AB∕∕DC , AB _ AD , BC =5, DC =3, AD = 4, .PAD =60 .(1)当正视图方向与向量AD的方向相同时,画出四棱锥P- ABCD的正视图.(要求标出尺寸,并画出演算过程); ⑵若M为PA的中点,求证:DM / /面PBC ; (3) 4. 如图,四棱锥 P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角形,∠ APD=90°,面 PAD⊥面 ABCD,且 AB=1,AD=2, E、F分别为 PC和BD的中点. (1)证明:EF// 面 PAD (2)证明:面PDC⊥面PAD; (3)求四棱锥 P— ABCD的体积. A B 求三棱锥D- PBC的体积.

5. (2013年高考广东卷(文))如图4,在边长为1的等边三角形 ABC 中,D ) E 分别是AB )AC 边上的点,AD =AE , F 是BC 的中点,AF 与DE 交于点G , 将 :ABF 沿AF 折起, (1)证明:DE //平面BCF ; (2) 证明:CF _平面ABF ; 2 ⑶ 当AD 时,求三棱锥F - DEG 的体积V F DEG 3 _ 6. (2013年高考北京卷(文))如图,在四棱锥P-ABCD 中,AB∕∕CD , AB _ AD , CD =2AB ,平面 PAD _ 底面 ABCD , PA _ AD , E 和 F 分别是CD 和PC 的中点,求证: (1) PA _ 底面 ABCD ;(2) BE//平面 PAD ;(3)平面 BEF _ 平面 PCD 得到如图5所示的三棱锥 A - BCF ,其中BC 洱

立体几何常见题型归纳

立体几何常见题型归纳 考点1 概念辨析 例1、设m ,n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个说法: ①,//m n m n αα⊥?⊥;②//,//,m m αββγαγ⊥?⊥;③//,////m n m n αα? ④,//αγβγαβ⊥⊥?,说法正确的序号是:_________________ 例2、对于平面α和共面的直线m 、,n 下列命题中真命题是 ( ) (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n (C )若,m n αα?∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n 辨析: (1)两条异面直线在同一平面内射影一定是相交的两条直线.( ) (2)在平面内射影是直线的图形一定是直线. ( ) (3)直线a 与平面α内一条直线平行,则a ∥α.( ) (4)两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. ( ) (5)平行于同一直线的两个平面平行. ( ) (6)平行于同一个平面的两直线平行. ( ) (7)直线a 与平面α内一条直线相交,则a 与平面α相交. ( ) (8)直线l 与平面α、β所成角相等,则α∥β.( ) (9)垂直于同一平面的两个平面平行. ( ) (10)垂直于同一直线的两个平面平行. ( ) (11)垂直于同一平面的两条直线平行. ( ) (12)若直线a 与平面α平行,则α内必存在无数条直线与a 平行. ( ) (13)有两个侧面是矩形的棱柱是直棱柱. ( )(14)各侧面都是正方形的棱柱一定是正棱柱. ( ) 考点2 三视图 例1、下图是一个多面体的三视图,则其全面积为__________ 例2、如图,一个空间几何体的正(主)视图、侧(左)视图都是面积为32 ,且一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为__________ 例3、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),那么可得这个几何体的体积是_________ 22 2 2 1 1 正视 左视 俯视(例3图)

空间立体几何高考知识点总结与经典题目

空间立体几何 知识点归纳: 1. 空间几何体的类型 (1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。 (2)旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。 如圆柱、圆锥、圆台。 2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。正棱柱:底面多边形是正多边形的直棱柱。 正棱锥:底面是正多边形且所有侧棱相等的棱锥。 正四面体:所有棱都相等的四棱锥。 3. 空间几何体的表面积公式 棱柱、棱锥的表面积:各个面面积之和 _ 2 圆柱的表面积:S =2 rl 2 r2圆锥的表面积:S =理「I ?二r 2 2 圆台的表面积:S =理rl 7 r?二RI ?二R 球的表面积:s= 4 R2 4 ?空间几何体的体积公式 1 柱体的体积:V = S底 h 锥体的体积:v = - S底h 3底 1 ---------- 、, 4 3 台体的体积:V = —( S上?S上S T S下)h 球体的体积:V R 3 '3 5.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 画三视图的原则: 长对正、宽相等、高平齐。即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。 6 .空间中点、直线、平面之间的位置关系 (1) 直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。 (3)平面与平面的位置关系:平行;相交。 7. 空间中点、直线、平面的位置关系的判断 (1)线线平行的判断: ①平行公理:平行于同一直线的两直线平行。 ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相 交,那么这条直线和交线平行。 ③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ④线面垂直的性质定理:垂直于同一平面的两直线平行。 (2)线线垂直的判断: ①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 ②线线垂直的定义:若两直线所成角为,则两直线垂直 ③一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ①线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平 面平行。 ②面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ①线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这 个平面。 ②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ④如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个 (5)面面平行的判断:

立体几何题型总结

立体几何类型题 如图所示,在四棱锥P ABCD -中,PD ⊥平面ABCD , 又 //AD BC ,AD DC ⊥, 且33PD BC AD ===. (Ⅰ)画出四棱准P ABCD -的正视图; (Ⅱ)求证:平面PAD ⊥平面PCD ; 并求 PE EB (Ⅲ)求证:棱PB 上存在一点E ,使得//AE 平面PCD ,的值. (Ⅰ)解:四棱准P ABCD -的正视图如图所示. ………………3分 (Ⅱ)证明:因为 PD ⊥平面ABCD ,AD ?平面ABCD , 所以 PD AD ⊥. ………………5分 因为 AD DC ⊥,PD CD D =I ,PD ?平面PCD ,CD ?平面PCD , 所以AD ⊥平面PCD . ………………7分 因为 AD ?平面PAD , 所以 平面PAD ⊥平面PCD . ………………8分 (Ⅲ)分别延长,CD BA 交于点O ,连接PO ,在棱PB 上取一点E ,使得1 2 PE EB =.下证//AE 平面 PCD . ………………10分 因为 //AD BC ,3BC AD =, 所以 13OA AD OB BC ==,即12OA AB =. 所以 OA PE AB EB = . 所以 //AE OP . ………………12分 因为OP ?平面PCD ,AE ?平面PCD , 所以 //AE 平面PCD . ………………14分 2如图所示,四棱锥P ABCD -的底面ABCD 是直角梯形,AD BC //,AB AD ⊥, AD BC AB 2 1 ==,PA ⊥底面ABCD ,过BC 的平面交PD 于M ,交PA 于 N (M 与D 不重合) . (Ⅰ)求证:BC MN //; (Ⅱ)求证:CD PC ⊥ ; (Ⅲ)如果BM AC ⊥,求此时PM PD 的值. 证明:(Ⅰ)因为梯形ABCD ,且AD BC //, 又因为?BC 平面PAD ,?AD 平面PAD , 所以//BC 平面PAD . 因为平面I BCNM 平面PAD =MN , 所以BC MN //. ……………………4分 (Ⅱ)取AD 的中点Q ,连结CQ . 因为AD BC //,AD BC 2 1 = , 所以AQ BC //,且AQ BC =. 因为AB BC =,且AB AD ⊥, 所以ABCQ 是正方形. 所以BQ AC ⊥. 又因为BCDQ 为平行四边形,所以且//CD BQ 所以⊥CD AC . 又因为PA ⊥底面ABCD , 所以PA ⊥CD . 因为A AC PA =I , 所以⊥CD 平面PAC , 因为PC ?平面PAC , 所以⊥CD PC . (Ⅲ)过M 作//MK PA 交AD 于K ,连结BK . 因为PA ⊥底面ABCD , O E D C B A P C N M P D B A K A B D P M C Q A B D P M C

2018高考文科立体几何大题

立体几何综合训练1、证明平行垂直 1.如图,AB 是圆O 的直径,PA⊥圆O 所在的平面,C是圆O 上的点.(1)求证:BC⊥平面PAC; (2)若Q 为PA的中点,G为△AOC 的重心,求证:QG∥平面PBC.2.如图,在四棱锥P﹣ABCD 中,AB ∥ CD,AB⊥AD ,CD=2AB ,平面PAD⊥ 底面ABCD ,PA⊥ AD .E和F分别 是CD 和PC 的中点,求证:(Ⅰ) PA⊥底面ABCD; (Ⅱ)BE∥平面PAD; (Ⅲ)平面BEF⊥平面PCD .

3.如图,四棱锥P﹣ABCD 中,PA⊥底面ABCD ,AB⊥AD ,点E在线段AD 上,且CE∥AB . (Ⅰ)求证:CE⊥平面PAD ; (Ⅱ)若PA=AB=1 ,AD=3 ,CD= , ∠ CDA=45 °,求四棱锥P﹣ABCD 的体4.如图,在四棱锥P﹣ABCD 中,底面ABCD 是矩形.已知 .M 是PD 的中点. Ⅰ)证明PB∥平面MAC Ⅱ)证明平面PAB⊥平面ABCD Ⅲ)求四棱锥p ﹣ABCD 的体积.

Ⅲ)若M 是PC 的中点,求三棱锥M ﹣ACD 的体积. 2、求体积问题 5.如图,已知四棱锥P﹣ABCD 中,底面ABCD 是直角梯形,AB ∥DC,∠ ABC=45 °,DC=1 ,AB=2 ,PA⊥平面ABCD ,PA=1 . (Ⅰ)求证:AB∥平面PCD; Ⅱ)求证:BC⊥平面PAC;

6.(2011? 辽宁)如图,四边形ABCD 为正方形,QA⊥平面ABCD , PD∥QA, OA=AB= PD. (Ⅰ)证明PQ⊥平面DCQ ; (Ⅱ)求棱锥Q﹣ABCD 的体积与棱锥P ﹣DCQ 的体积的比值.7.如图,四棱锥P﹣ABCD 的底面ABCD 是边长为 2 的菱形,∠ BAD=60 °,已知 PB=PD=2 ,PA= . (Ⅰ)证明:PC⊥ BD (Ⅱ)若E为PA 的中点,求三棱锥P ﹣ BCE的体积.

立体几何题型总结

立体几何题型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

立体几何——点线面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线在此平面内。 公理2:过不在一条直线上的三点,有且只有一个平面 公理3:如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线。 1、公理的理解与应用 例1 已知,αβ为不同的平面,A 、B 、M 、N 为不同的点,a 为直线, 下列推理错误的是 ( ) A. ,,,,A a A B a B a βββ∈∈∈∈?? B. ,,,,M M N N MN αβαβαβ∈∈∈∈?= C. ,,A A A αβα β∈∈?= D. ,,A B M A B M αβ∈∈、、、、且A 、B 、M 不共线αβ?、重合 例2 下列条件中,能得到平面α∥平面β的是( ) A. 存在一条直线a a ααβ,∥,∥ B. 存在一条直线a a a αβ?,,∥ C. 存在两条平行直线a b a b a b αββα??,,,,∥,∥ D. 存在两条异面直线a b a a b αβα?,,,∥,∥ 例3 对于直线,m n 和平面α,下列命题中的真命题是() A. 如果,,,m n m n αα??是异面直线,那么//n α B. 如果,,,m n m n αα??是异面直线,那么n 和α相交 C. 如果,//,,m n m n αα?共面,那么//m n D. 如果//,//,,m n m n αα共面,那么//m n 例4 已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的 中点,则AE SD ,所成的角的余弦值为( ) A .13 B .3 C D .23

高考文科数学立体几何试题汇编

图 2 1俯视图 侧视图 正视图2 11.(北京8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点, 则 P 到各顶点的距离的不同取值有( ) A .3个 B .4个 C .5个 D .6个 2.(广东卷6)某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A .1 6 B .1 3 C .2 3 D .1 3. (广东卷8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 4. (湖南卷7)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于 A . 3 B.1 C. 21 + D.2 5. 江西卷8).一几何体的三视图如右所示,则该几何体的体积为( ) A.200+9π B. 200+18π C. 140+9π D. 140+18π 6. (辽宁卷10)已知三棱柱 1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为 A . 317 B .210 C .13 2 D .310 B .. (全国卷11)已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 (A ) 23 (B )3 (C )23 (D )1 3 8. (四川卷2)一个几何体的三视图如图所示,则该几何体可以是( )

相关文档
最新文档