低温腐蚀形成的原因及防范措施

低温腐蚀形成的原因及防范措施
低温腐蚀形成的原因及防范措施

低温腐蚀形成的原因及防范措施

一、低温腐蚀的定义:

发生在锅炉尾部受热面(省煤器、空预器)的硫酸腐蚀,因为尾部受热面区段的烟气和管壁温度较低,所以称为低温腐蚀。

二、低温腐蚀形成原因:

低温腐蚀的形成:燃料中的硫燃烧生成二氧化硫(S+O2=SO2),二氧化硫在催化剂的作用下进一步氧化生成三氧化硫(2SO2+O2=2SO3),SO3与烟气中的水蒸汽生成硫酸蒸汽(SO3+H2O=H2SO4)。硫酸蒸汽的存在使烟气的露点显著升高。由于空预器中空气的温度较低,预热器区段的烟气温度不高,壁温常低于烟气露点,这样硫酸蒸汽就会凝结在空预器受热面上,造成硫酸腐蚀。低温腐蚀常发生在空预器上,但是当燃料中含硫量较高、过剩空气系数较大,烟气中SO3含量较高,酸露点升高,并且给水温度较低(汽机高加停用)时,省煤器管也有可能发生低温腐蚀。

三、影响低温腐蚀的因素:

除壁温外,影响低温腐蚀的主要因素是烟气中的三氧化硫含量。随烟气中三氧化硫含量的增加,硫酸蒸汽的含量也相应增加,并使烟气中酸露点明显提高。后者使受热面容易结露并引起腐蚀,前者使腐蚀程度加剧。烟气中氧化硫的含量与下列因素有关:1、燃料中的硫分越多,则烟气中的三氧化硫含量也越多;2、火焰温度高,则火焰中原子氧的含量增加,因而三氧化硫也含量也增多;3、过量空气系数增加也会使火焰中原子氧的含量增加,从而使三氧化硫含量也增加;

4、飞灰中的某些成分,如钙镁氧化物和磁性氧化铁(Fe3O4)以及未燃尽的焦炭粒等有吸收或中和二氧化硫和三氧化硫的作用。故烟气中飞灰含量增加、切飞灰含上述成分又较多时,则烟气中三氧化硫量将减少。

5、当烟气中氧化铁(Fe2O3)或氧化钒(V2O5)等催化剂含量增加时,烟气中的三氧化硫将增加。

四、低温腐蚀的预防:

1、提高空预器管壁温度,使壁温高于烟气露点。如提高排烟温度,开热风再循环,加暖风器提高空预器入口温度。此法的优点是简便易行,缺点是锅炉效率降低。

2、在烟气中加入添加剂,中和SO3,阻止硫酸蒸汽的产生。此法的优点是不降低锅炉效率,缺点是增加运行成本,还要清除中和生成的产物。

3、用耐腐蚀的材料制造空预器,如采用玻璃管、搪瓷管或用陶瓷材料制作,防腐效果好,不降低锅炉效率,但成本高,漏风系数大。

4、采用低氧燃烧,减少烟气中的过剩氧,阻止和减少SO2转变为SO3。低氧燃烧可以降低引、送风机电耗,是一项经济价值很高和很有发展前途的技术措施,

但低氧燃烧要求锅炉具有完善的燃烧设备和燃烧检测仪表,并且要求运行人员有较高的技术水平。

5、烟气中硫酸蒸汽开始凝结的温度称为酸露点。通过检测酸露点温度,可以准确知道一定工况下的酸露点,由此调整排烟温度,达到节能和延长锅炉寿命的最佳条件。这种方法投资少,收效快,是最理想的预防措施。低温腐蚀的选材建议选用抗硫酸腐蚀相对比较好的,如:09CrCuSb,此钢种成本制造相对具有很高的性价比,其耐硫酸的腐蚀效果是316L不锈钢的3倍以上,价格是316L不锈钢的1/3都不到ND钢是目前国内外最理想的“耐硫酸低温露点腐蚀”用钢材,09CrCuSb(ND钢)钢无缝钢管/钢板主要的考核指标(70°50%H2SO4溶液中浸泡24小时),与碳钢、日本进口同类钢、不锈钢耐腐蚀能力相比较,是日本CR1R钢的1.8倍,是1Cr18Ni9钢的2.8倍,是Corten钢的8.6倍,是20g

钢的14倍。09CrCuSb(ND钢)钢是以锅炉;电炉的热交换、烟管、烟囱等用途为目的开发的具有优秀的耐硫酸露点腐蚀的热轧钢板、钢管。其优越的耐硫酸露点腐蚀的性能及非常高的性价比,是完全可以代替不锈钢,超越不锈钢(在耐硫酸露点腐蚀方面)的最好材料,ND钢具有重大经济意义,符合当今高效.长寿.节能.环保等“绿色”观念和国家发展政策导向。锅炉低温腐蚀的形成和防护锅炉尾部受热面(省煤器、空气预热器)的硫酸腐蚀,因为尾部受热面区哉的烟气和管壁温度较低,所以称为低温腐蚀。燃料中的硫燃烧生成二氧化硫

(S+O2→SO2),二氧化硫在催化剂的作用下进一步氧化生成三氧化硫

(2SO2+O2→2SO3),SO3与烟气中的水蒸气生成硫酸蒸气。硫酸蒸气的存在使烟气的露点显著升高。例如,燃油炉烟气中的水蒸气分压力约为

0.008-0.014Mpa,相应的热力学露点为41-52℃,如烟气中的硫酸蒸气浓度为10%时,露点升高至190℃。预热器管壁温度与烟气及空气的流速和温度有关,约等于烟气与空气的平均温度。由于空气预热器下部空气的温度较低,预热器下部的烟气温度不高,壁温常低于烟气露点。硫酸蒸气会凝结在预热器受热面上,造成了硫酸腐蚀。低温腐蚀常发生在空气预热器上,但是当燃料含硫量较高,过量空气系数较大,以致烟气中SO3含量较多,露点较高,且给水温度较低(如高压给水加热器停用)时,省煤器管也有可能发生低温腐蚀。解决方案:ND 钢是目前国内外最理想的“耐硫酸低温露点腐蚀”用钢材,09CrCuSb(ND钢)钢无缝钢管/钢板主要的考核指标(70°50%H2SO4溶液中浸泡24小时)腐蚀速率不大于14mg/cm·h,与碳钢、日本进口同类钢、不锈钢耐腐蚀能力相比教,是日本CR1R钢的1.84倍,是1Cr18Ni9钢的2.97倍,是Corten钢的8.63倍,是Q235B钢的14.11倍。09CrCuSb(ND钢)钢是以锅炉;电炉的热交换、烟管、烟囱等用途为目的开发的具有优秀的耐硫酸露点腐蚀的热轧钢板、钢管。其优越的耐硫酸露点腐蚀的性能及非常高的性价比,是完全可以代替不锈钢,超

越不锈钢(在耐硫酸露点腐蚀方面)的最好材料,ND钢具有重大经济意义,符合当今高效.长寿.节能.环保等“绿色”观念和国家发展政策导向。

低温腐蚀与积灰机理

低温腐蚀与积灰机理 燃料中的硫分在燃烧时与氧化合形成SO2,其中有小部分再被氧化,生成SO3。烟气中水蒸汽的露点温度是不高的,根据水蒸汽含量的多少,一般约为40~60℃,但如果烟气中含有SO3,则与水蒸汽形成硫酸蒸汽,使烟气的露点温度大大提高,称为酸露点。烟气中SO2氧化为SO3的转换率与燃烧方式及燃料种类有关。一般链条炉的转换率为2~3%,煤粉炉的转换率为0.5~0.8%。图1示出链条炉与煤粉炉中烟气露点温度与燃料折算含硫量的关系。 当锅炉受热面的壁温低于烟气的酸露点温度时,烟气中的硫酸蒸汽就开始凝结,在锅炉受热面上形成酸膜。引起受热面腐蚀。同时,凝结的酸膜粘附飞灰,并与受热面上的积灰起化学反应,引起积灰硬化,形成以硫酸钙为基质的水泥状物质,严重的积灰又使管壁温度降低,凝结的酸液更多,这样就使受热面的积灰与腐蚀越加严重,直到管子堵塞,造成严重的腐蚀与堵灰,对锅炉工作的影响很大。 由图可见,随壁温降低,受热面腐蚀速度呈波浪形曲线变化。这是由于腐蚀速度与硫酸 凝结量,硫酸浓度及管壁温度等多种因素有关。硫酸凝结量愈多,腐蚀愈严重,壁温愈高,腐蚀速度愈大,而腐蚀速度与硫酸浓度的关系不成正比,当硫酸浓度降低到56%左右时,腐蚀速度与硫酸浓度的关系不成正比。当硫酸浓度降低到56%左右时,腐蚀最为严重。因此,随受热面壁温降低,当达到酸露点a时,由于硫酸蒸汽凝结而使腐蚀速度增加,到b 点时达到最大。之后,由于壁温降低,使腐蚀速度减小,到C点时由于凝结的酸液浓度降低到56%,达到最大腐蚀速度区的浓度而使腐蚀速度增加。到d点时,达到水蒸汽露点大量水蒸汽开始凝结,此时,不仅烟气中的SO3溶于水中,而且烟气中的大量SO2也能直接溶于水中,形成亚硫酸溶液(H2SO3),同时烟气中HC L等也溶于水中,因而使腐蚀速度剧烈增加。由此可见,随受热面壁温降低,存在两个腐蚀强烈区,一个是在低于酸露点约20~30℃区域,一个是在水蒸汽露点以后,在两个腐蚀区之间,大致从水露点以上20℃到150℃之间,存在一个腐蚀轻微区,其腐蚀速度通常小于0.2mm/年。这样的腐蚀速度在工作中是允许的。 由以上腐蚀过程的分析可见,在设计空气预热器时,如果保持受热面的最低壁温大于酸露点温度,则受热面不会发生腐蚀,也不会引起粘结性积灰,因而工作十分可靠。但是,要满足这样的条件,锅炉排烟温度将过高,使锅炉效率降低,影响锅炉经济性。为此,通常将锅炉最低壁温设计在轻微腐蚀区,大致保持在30℃以上,使低温段的腐蚀不致十分严重。可是,在管式空气预热器中,实际运行时,在锅炉启动、停炉及低负荷运行时,由于烟气流 速降低,且分布不均匀,使部分烟管积灰,同时烟温降低,常使受热面壁温度降到水露点温度以下,从而引起严重的腐蚀与积灰,逐步将管子堵死和烂穿,严生影响锅炉的正常工作。

硫化氢腐蚀的机理及影响因素..

硫化氢腐蚀的机理及影响因素 作者:安全管理网来源:安全管理网 1. H2S腐蚀机理 自20世纪50年代以来,含有H2S气体的油气田中,钢在H2S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2S不仅对钢材具有很强的腐蚀性,而且H2S本身还是一种很强的渗氢介质,H2S腐蚀破裂是由氢引起的;但是,关于H2S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。 因此,在开发含H2S酸性油气田过程中,为了防止H2S腐蚀,了解H2S腐蚀的基本机理是非常必要的。 (1) 硫化氢电化学腐蚀过程 硫化氢(H2S)的相对分子质量为34.08,密度为1.539kg/m3。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。 1

在油气工业中,含H2S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt等提出的H2S04中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2S中的H+的还原反应。总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。Sardisco,Wright和Greco研究了30℃时H2S-C02-H20系统中碳钢的腐蚀,结果表明,在H2S分压低于0.1Pa时,金属表面会形成包括FeS2,FeS,Fe1-X S在内的具有保护性的硫化物膜。然而,当H2S分压介于0.1~4Pa时,会形成以Fe1-X S为主的包括FeS,FeS2在内的非保护性膜。此时,腐蚀速率随H2S浓度的增加而迅速增长,同时腐蚀速率也表现出随pH降低而上升的趋势。Sardisco和Pitts发现,在pH处于6.5~8.8时,表面只形成了非保护性的Fe1-X S;当pH处于4~6.3时,观察到有FeS2,FeS,Fe1-X S形成。而FeS保护膜形成之前,首先是形成Fe S1-X;因此,即使在低H2S浓度下,当pH在3~5时,在铁刚浸入溶液的初期,H2S也只起加速腐蚀的作用,而非抑制作用。只有在电极浸入溶液足够长的时间后,随着FeS1-X逐渐转变为FeS2和FeS,抑制腐蚀的效果才表现出来。根据Hausler等人的研究结果,尽管界面反应的重 2

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版)

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0148

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(最新版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

混凝土结构的腐蚀及防腐措施

混凝土结构一直被认为是一种节能、经济、用途极为广泛的人工耐久性材料,是目前应用较为广泛的结构形式之一.但随着结构物的老化和环境污染的加剧,其耐久性问题越来越引起国内外广大研究者的关注.由于勘察、设计、施工及使用过程中多因素影响,很多混凝土结构都先后出现病害和劣化,使结构出现了各种不同程度的隐患、缺陷或损伤,导致结构的安全性、适用性、耐久性降低,最终引起结构失效,造成资金的巨大浪费.从国外情况来看[1],美国与钢筋腐蚀有关的损失占总腐蚀的40%;前苏联工业建筑的腐蚀损失占工业固定资产的16%,仅混凝土和钢筋的腐蚀损失占GDP的1·25%; 1999年,澳大利亚公布的腐蚀损失为GDP 的4.2%.除此之外,北欧、英国、加拿大、印度、日本、韩国及海湾地区等不少国家都存在以基础结构设施为主的腐蚀.中国面临的问题同样很严峻.根据中国工程院2001~2003年《中国工业和自然环境腐蚀调查与对策》中的统计, 1998年中国建筑部门(包括公路、桥梁建筑)的腐蚀损失为1000亿人民币[2].近年来,中国建筑行业的发展速度突飞猛进,一批批建筑物拔地而起,但钢筋混凝土基础的耐久性问题也逐渐暴露出来.所以,重视和加强钢筋混凝土基础结构的腐蚀性与防腐措施的研究已迫在眉睫. 1 腐蚀机理分析 1·1 混凝土的腐蚀机理 混凝土的腐蚀是一个很复杂的物理的、物理化学的过程.由于混凝土腐蚀机理的复杂性,对混凝土腐蚀的分类还没达成一个共同的认识,但一般都倾向于采用前苏联学者B·M.莫斯克文为代表所提出的分类方法[3].将混凝土的腐蚀分为3类:溶蚀性腐蚀、某些盐酸溶液和镁盐的腐蚀、结晶膨胀型腐蚀. 所以,混凝土的腐蚀机理可从以下3类入手:物理作用、化学腐蚀、微生物腐蚀. 1·1·1 物理作用 物理作用是指在没有化学反应发生时,混凝土内的某些成分在各种环境因素的影响下,发生溶解或膨胀,引起混凝土强度降低,导致结构受到破坏.物理作用主要包括2类:侵蚀作用和结晶作用. (1)侵蚀作用:当环境中的侵蚀性介质(如地下软水,河流、湖泊中的流水)长期与混凝土接触时,将会使混凝土中的可溶性成分(如Ca(OH)2)溶解.在无压力水的环境下,基础周围的水容易被溶出的Ca(OH)2饱和,使溶解作用终止.侵蚀作用仅仅发生在混凝土表面,影响不大.但在

蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析 王印培陈进 (华东理工大学化机所上海200237) 摘要:某奥氏体不锈钢制蒸汽过热器管在加碱煮炉过程中发生断裂。采用力学性能测定宏微观检验及能谱分析,对该断裂管进行了分析研究。结果表明,蒸汽过热管断裂失效是由碱脆造成的。 主题词:碱脆;不锈钢;失效分析 1 概述 某炼油厂新建制氢装置的转化炉蒸汽过热器管在中压汽包加碱煮炉过程中多处发生断裂。蒸汽过热器管外径Φ89mm,壁厚6.5mm,材料为1Cr19Ni9奥氏体不锈钢。经现场检查,断裂均发生于与集汽管相连的蒸汽过热器的弯管上,裂纹大多位于焊接热影响区,为环向裂纹,在裂口周围管外有结碱。典型的裂纹宏观形貌见图1和图2。 图1 蒸汽过热器直管段裂纹宏观形貌图2 蒸汽过热器弯头裂纹宏观形貌

蒸汽过热器与中压汽包相连通,管外被转化炉炉气加热,管内为过热蒸汽。转化炉投入运行前先烘炉并对中压汽包进行加碱煮炉,煮炉碱液按每立方米各加入NaOH,Na2PO44kg的要求配制,并保证65%~75% 液位。经采样分析炉水碱度达到不小于45mg?L要求。烘炉与煮炉先后结束后(10d),转化炉对流段入口温度保持在525℃,中压汽包仍保压运行。运行一天后发现蒸汽过热器泄漏蒸汽,漏点不断扩大,迫使转化炉降温停炉。根据现场操作记录,在煮炉过程中,蒸汽过热器的蒸汽温度在200℃以上的时间达78h,其中300℃以上的达60h。 2 化学成分分析与铁素体含量测定 对蒸汽过热器直管、弯头和焊缝金属的化学成分进行分析,结果见表1。由表可见,蒸汽过热器直管与弯头的化学成分符合GB13296-1991对1Cr19Ni9钢的要求。 采用铁素体含量测定仪对蒸汽过热器中已开裂的直管、弯头及其焊缝处的铁素体含量进行测定,结果直管的铁素体含量平均为1.5%(共8点),最高为1.84%;弯头的铁素体含量平均为0.35%(共8点),最高为0.38%;焊缝处铁素体含量平均为319%,最高为6.47%。可见,蒸汽过热器管铁素体含量正常。 3 蒸汽过热器管内壁渗透液检验 为检验过热器管焊缝以外其它部位是否有裂纹,将过热器直管(部分)及弯头沿对称轴切开,进行内壁渗透液检验。结果显示,除了已穿透的裂纹及部分分叉外,未发现其它裂纹。 4 力学性能测试 力学性能试样均为两种状态,即过热器管的使用态和重新固溶热处理状态。重新固溶热处理工艺为1050℃水冷。 4.1 拉伸性能 按GB6397-1986标准,在过热器直管段取样,试样为矩形截面全厚度试样。拉伸试验按GB228-1987标准进行。试验温度为室温。试样数量为使用态和重新固溶态各两根。试验结果见表2。

尾部受热面的积灰、磨损和低温腐蚀的预防和检修

论文 锅炉尾部受热面的积灰、磨损和腐蚀 的预防和检修 关键词:受热面积灰磨损腐蚀预防处理 作者:高俊义 单位:佳木斯第二发电厂生技处 住址:黑龙江省佳木斯市前进区 时间:2003年7月

锅炉尾部受热面的积灰、磨损和腐蚀 的预防和检修 高俊义 (佳木斯第二发电厂黑龙江省佳木斯市 154008) 摘要:大容量锅炉尾部受热面的积灰、磨损和腐蚀时有发生,对锅炉机组的安全、经济、稳定运行产生很大影响,本文主要阐述了大容量锅炉受热面积灰、磨损和腐蚀的原因、预防措施及发生这些缺陷后的一些处理方法。 关键词:受热面积灰磨损腐蚀预防检修 The boiler suffers the prevention for of accumulating the ash, wear awaying with corrosion of hot with fix GaoJunYi Summary:Big capacity boiler tail department some for reason for suffering the safety for of accumulating the ash, wear awaying with decaying having take placing, to boiler machine set of hot, economy, stabilizing circulating producing very big influence, this text primarily discussing the big capacity boiler suffering the hot area ash, wear awaying with corrosion, prevention measure and take placing these blemishs empress handle the method. Key phrase:Suffer the hot Accumulate the ash Wear away Decay Prevention Maintain 1前言 我国电站锅炉和工业锅炉以燃煤为主,而动力用煤质量偏劣,含灰量和含硫量等均较高,容易形成受热面的沾污、积灰、腐蚀和磨损。这将会给锅炉带来很多的问题,如积灰的清除、传热条件变差、受热面的寿命下降等问题。目前,随着锅炉容量的增大,炉内沾污、结渣、腐蚀等问题更为严重。这是由于如下众多的因素引起的:炉膛容积增大,清灰困难,烟道尺寸增大,烟速和烟温容易分布不均匀;

锅炉尾部受热面低温腐蚀分析及预防

锅炉尾部受热面低温露点腐蚀分析及预防 徐州天能姚庄煤矸石热电有限公司孙乐场 [摘要] 借徐州天能姚庄热电公司锅炉尾部受热面腐蚀一事,分析了烟气中SO3的形成和硫酸蒸汽的凝结是工业锅炉运行时低温段受热面管道腐蚀发生的根本原因。介绍了低温受热面管道的腐蚀过程,并对降低腐蚀提出了可行的预防措施 [关键词] 省煤器空预器腐蚀露点措施 0引言 响应节能减排、资源综合利用号召,徐州天能姚庄热电公司3台SHF20-2.45/400-SⅡ型燃煤锅炉技改为SHS20-2.45/400-QJ型燃焦炉煤气锅炉。运行一年后,3台炉空预器、省煤器出现不同程度的损坏。经检查分析省煤器、空气预热器的损坏,低温露点腐蚀是主要原因,在受热面的温度低于烟气的露点时,烟气中的水蒸气和硫燃烧后生成的三氧化硫结合成的硫酸会凝结在受热面上,严重地腐蚀受热面。 1低温腐蚀机理 1.1三氧化硫及硫酸的生成 焦炉煤气中含有硫,硫与空气中的氧气作用生成SO2,在炉膛内SO2继续被氧化,生成SO3,SO3与水蒸气结合生成硫酸蒸气的概率很大,硫酸蒸气将在温度比较低的空气预热器上凝结。硫酸浓度为零时,纯水沸点为45.45℃,随浓度增高,沸点也随之升高。烟气中只要含有少量硫酸蒸气,就会使露点大大超过纯水的露点;当硫酸蒸气的浓度为10%时,露点可达190℃左右。尽管烟气中硫酸蒸气的浓度很低,凝结下来的液体中的硫酸浓度却可以很高。因此,必须严格控制烟气中SO3含量,即控制燃料中的硫含量。 1.2 三氧化硫的生成及转化率的确定 烟气中三氧化硫生成的机理极其复杂。一般以为一部分是在工艺生产过程中产生的,一部分是在尾部烟道中产生的。 在工艺生产过程中,主要是原子氧的作用而生成三氧化硫,而原子氧主要是在燃烧反应中形成的。如: CO+O2→CO2+O H+O2→OH+O

换热器的防腐蚀措施

编号:SM-ZD-43372 换热器的防腐蚀措施Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

换热器的防腐蚀措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1.采用能耐介质腐蚀的金属和非金属材料 2.采取有效的防腐蚀措施 (1)防腐涂层 在换热器与腐蚀介质接触表面,覆盖一层耐腐蚀的涂料保护层,涂层要有较好的耐蚀性、防渗性和较好的附着力和柔韧性。对水冷系统,管内清洗干净后进行预膜处理。 (2)金属保护层 常用方法有衬里、复合板(管)、金属喷涂、金属堆焊等。

(3)电化学保护 阴极保护因费用太高,一般不用。阳极保护是接以外用电源的阳极保护换热器,金属表面生成钝化膜而得到保护。 (4)防应力腐蚀措施 ①胀接结构,其胀管率越大,残余应力越大,则在腐蚀介质中其电极电位越高,腐蚀倾向越大。在同一种腐蚀介质中,与焊接结构相比较,胀接结构,特别当胀接时胀管率较大时,更容易产生应力腐蚀,因而在保证胀接强度及密封性的条件下,胀接压力不宜过高以控制胀接后残余应力的大小,减小产生应力腐蚀的可能性。必要时可改变换热管与管板的连接形式,如用强度焊加轻微贴胀的结构代替原先的胀接结构,这种结构既减小了结构的残余应力,又能防止只焊接而产生缝隙腐蚀的可能,通过改变换热管与管板的连接形式来减小结构的残余应力,对预防换热器的应力腐蚀破裂是有效、可行的。

水冷壁管高温腐蚀的机理

1 高温腐蚀是炉内高温烟气与金属壁面相互作用的一个复杂的物理化学过程,按其机理通常可分为三大类:硫化物(FeS2、H2S)型腐蚀、焦硫酸盐型腐蚀和氯化物型腐蚀。多年研究表明,水冷壁管发生高温腐蚀的区域是有规律的:通常多在燃烧高温区,即局部热负荷较高,管壁温度也较高的区域,如燃烧器区附近,其余区域的高温腐蚀明显减弱或根本不发生高温腐蚀;发生高温腐蚀的管子向火侧正面的腐蚀速度最快,管壁减薄量最大,背火侧则不发生高温腐蚀。 2 影响高温腐蚀的主要原因 2.1火焰冲墙和还原性气氛的存在是造成水冷壁高温腐蚀的主要原因 对切圆燃烧锅炉,当燃烧切圆直径过大、火焰中心未形成切圆或燃烧切圆偏移时,炉内空气动力场倾斜,燃烧器区域出现火焰冲墙和还原性气氛,从而发生高温腐蚀。 2.1.1高温火焰直接冲刷水冷壁 当含有较大煤粉浓度的高温火焰直接冲刷水冷壁管时,将大大加剧高温腐蚀的发生。其一,高温辐射热可加速硫酸盐的分解,加快腐蚀速度;其二,火焰中含有未燃尽的煤粉,在水冷壁附近缺氧燃烧,产生还原性气体;其三,未燃尽的煤粉颗粒随烟气冲刷水冷壁管时,磨损将加速水冷壁管上保护膜的破坏,加快金属管壁高温腐蚀的过程。 2.1.2存在还原性气体 由于着火延迟,未燃尽的煤粉在水冷壁附近进一步燃烧时,发生化学不完全燃烧,形成缺氧区,使炉膛壁面附近处于含有还原性气体(CO、H2)和腐蚀性气体(H2S)的烟气成分之中,没有完全燃烧的游离硫和硫化物与金属管壁发生反应,引起管壁高温腐蚀。 研究表明,烟气中CO浓度越大,高温腐蚀就越严重;H2S的浓度大于0.01%时,就会对钢材产生强烈的腐蚀作用;而当含氧量大于2%时,基本上不会发生高温腐蚀[1]。 2.2燃煤品质差是水冷壁高温腐蚀的必要条件 燃煤中硫、碱金属及其氧化物含量越大,腐蚀性介质浓度越大,出现高温腐蚀的可能性就越大。高硫煤产生的大量H2S、SO2、SO3、原子硫[S]不仅破坏管壁的Fe2O3保护膜,还侵蚀管子表面,致使金属管壁不断减薄,最终导致爆管事故。 燃用不易引燃的无烟煤和贫煤时,因着火点温度相对较高,燃烧困难,容易产生不完全燃烧,并使火焰脱长,在金属壁面附近形成还原性气氛,增加对管壁的腐蚀性。 煤粉的颗粒越大,也就越不易燃尽,比较容易形成还原性气氛,产生高温腐蚀。同时,颗粒越大,对壁面的磨损也越严重,破坏了水冷壁管外氧化保护膜,使烟气中腐蚀介质直接与管壁金属发生反应,使腐蚀加剧。 2.3过高的水冷壁管壁温度促进了水冷壁高温腐蚀的发生 研究表明,H2S等腐蚀性介质的腐蚀性在300℃以上逐步增强,即温度每升高50℃,腐蚀程度将增加一倍。对于亚临界大型电站锅炉,燃烧器区域的水冷壁管内汽水温度约在350℃左右,烟气侧水冷壁管温度多在420℃左右,正处于金属发生强烈高温腐蚀的温度范围之内。同时,管子局部壁面温度过高,易使具有腐蚀性的低熔点化合物粘附在金属表面,促进了管壁高温腐蚀的发生。 2.4运行因素的影响 当锅炉负荷发生变化时,若运行不当(如火嘴投停不当),就容易引起燃烧不稳定,产生还原性气氛,或造成烟气冲墙,继而发生高温腐蚀。因此,运行不当也是引起高温腐蚀的一个主要因素。 3高温腐蚀的防护措施

腐蚀机理

混凝土盐渍土腐蚀机理及影响因素 [摘要]通过对盐渍土地区混凝土腐蚀的机理分析, 指出了西部盐渍区富含的硫酸盐是造成混凝土物耐久性差的主要原因; 并详细阐述了国内外关于混凝土硫酸盐侵蚀影响因素的现状研究。 [关键词]盐渍土耐久性硫酸盐侵蚀 盐渍土就是指含盐分较高的土壤, 一般超过3% 的盐含量就可归结到盐渍 土的范围。我国西部地区盐渍土分布广泛, 新疆、青海、西藏、甘肃、宁夏以及内蒙古等地均有大面积的盐渍区。我国正在实施西部大开发战略, 因此大量基础设施就要建于盐渍土之上。以往的资料和调查表明, 一些道路、桥梁、建筑物、地下管道乃至电线杆等, 仅使用几年就遭受严重的腐蚀破坏, 不得不进行工程修复, 造成巨大经济损失。因此, 研究抗腐蚀混凝土在盐渍地区的耐久性问题, 具有非常重要的现实意义和深远的社会影响。 1、盐渍土对混凝土结构的腐蚀机理 盐渍土含盐量及含盐种类有很大差别, 其腐蚀性也有差异。氯盐主要腐蚀混凝土中的钢筋从而引起结构破坏; 硫酸盐主要是通过物理、化学作用破坏水泥水化产物, 使混凝土分化、脱落和丧失强度。1. 1 硫酸盐的化学腐蚀机理实际上硫酸盐侵蚀是一个比较复杂的过程。硫酸盐侵蚀引起的危害性包括混凝土的整体开裂和膨胀以及水泥浆体的软化和分解。不同的Ca、N a、K、M g 和Fe 的阳离子会产生不同的侵蚀机理和破坏原因, 如硫酸钠和硫酸镁的侵蚀机理就截然不同。1) 硫酸钠侵蚀首先是N a2SO 4 和水泥水化产物Ca (OH) 2 的反应, 生成的石膏(CaSO4·2H2O ) , 再与单硫型硫铝酸钙和含铝的胶体反应生成次生的钙矾石, 由于钙矾石具有膨胀性, 所以钙矾石膨胀破坏的特点是混凝土试件表面出现少数较粗大的裂缝。当侵蚀溶液中SO 2-4 浓度大于1000mg?L 时, 水泥石的毛细孔若为饱和石灰溶液所填充, 不仅有钙矾石生成, 而且在水泥石内部还会有二水石膏结晶析出。从氢氧化钙转变为石膏, 体积增大为原来的两倍, 使混凝土因内应力过大而导致膨胀破坏。石膏膨胀破坏的特点是试件没有粗大裂纹但遍体溃散。B iczok 认为: 侵蚀溶液浓度改变, 反应机理也发生变化。以N a2SO 4 侵蚀为例, 低SO 2-4 浓度(< 1000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 而在高浓度下(> 8000mg?L SO 2-4 ) , 主要产物是石膏; 在中等程度浓度下(1000mg? L~8000mg?L SO 2-4 ) , 钙矾石和石膏同时生成。在M gSO4 侵蚀情况下, 在低SO 2-4 浓度(< 4000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 在中等程度浓度下(4000mg? L~7500mg?L SO 2-4 ) , 钙矾石和石膏同时生成; 而在高浓度下(> 7500mg?L SO 2-4 ) , 镁离子腐蚀占主导地位。2) 硫酸镁与水化水泥产物的反应方程式如下:Ca (OH) 2+ M gSO4+ 2H2O→CaSO4·2H2O + M g (OH) 2 (3)硫酸镁侵蚀首先发生上式的反应, 然而上式生成的M g(OH) 2 与N aOH 不同, 它的溶解度很低(0. 01g?L , 而Ca (OH ) 2是1. 37g?L ) , 饱和溶液的PH 值是10. 5 (Ca (OH) 2 是12. 4,N aOH是13. 5) , 在此PH 值下钙矾石和C- S- H 均不稳定, 低的PH 值环境将产生以下结果: (1) 次生钙矾石不能生

锅炉过热器爆管原因分析及对策(正式)

编订:__________________ 审核:__________________ 单位:__________________ 锅炉过热器爆管原因分析及对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8363-82 锅炉过热器爆管原因分析及对策(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐

射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV 钢严重球化到5级时,钢的室温强度极限下降约11kg /mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1 MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,

常见垃圾焚烧锅炉的腐蚀成因与防范对策

常见垃圾焚烧锅炉的腐蚀成因与防范对策 焚烧,是城市生活垃圾处理的三大方法之一,其关键设备——生活垃圾焚烧锅炉诞生已有100多年历史。当今,采用焚烧技术处理生活垃圾,已成为众多发达国家和地区城市最重要的垃圾处理方式。 深圳市于1988年在国内建成第一座生活垃圾焚烧厂——深圳市政环卫综合处理厂,在此基础上成功进行引进垃圾焚烧锅炉提高蒸汽参数的技术改造,实现了向垃圾发电厂职能转变;与杭州锅炉厂合作开发国产150t/d垃圾焚烧炉,实现了焚烧锅炉的国产化.改革开放以来,国内已建成深圳清水河、龙岗和珠海、温州垃圾焚烧发电厂。目前上海浦东、江桥和杭州、宁波、厦门、广州等地正在筹建城市生活垃圾焚烧处理设施,垃圾焚烧工艺越来越受到有关地区和主管部门的重视。 生活垃圾焚烧锅炉是垃圾化学能转换为热能的关键设备,其工艺过程是将生活垃圾作为固体燃料,投入焚烧锅炉内,在高温条件下,垃圾中的可燃质与空气中的氧发生剧烈化学反应,放出热量,转化为高温燃烧气体和性质稳定的固态炉渣,完成生活垃圾的减容、灭菌过程,实现无害化处理。高温烟气通过余热锅炉产生蒸汽用于发电、供热,实现垃圾化学能向热能、电能的转换。生活垃圾焚烧锅炉与传统的燃煤、燃油锅炉相比较,其金属受热面因腐蚀导致事故频率要高得多,占其汽水系统事故频发率第一位。出于发电效益要求,目前垃圾焚烧锅炉工质已从低参数饱和蒸汽向中温中压过热蒸汽参数过渡。垃圾锅炉既要满足发电工质参数要求,又要避免工质过热段金属受热面超温,产生高温腐蚀现象,认真探讨垃圾锅炉腐蚀成因并研究其防范对策,对垃圾焚烧锅炉和整个电厂的安全运行,具有重要意义。 1垃圾锅炉独有的运行特征

(1)垃圾焚烧锅炉是以焚烧处理生活垃圾为目的,对生活垃圾进行焚烧,实现其减量化、无害化和余热利用的热力设备,其基本考核指标是日处理垃圾数量、焚烧后炉渣的热灼减率、余热锅炉工质参数和锅炉效率等。在额定出力范围内,锅炉蒸发量随垃圾处理量和垃圾发热量变化在一定范围内波动,锅炉蒸发量决定发电出力。垃圾焚烧锅炉热效率一般在80%以下,低于普通工业锅炉和电站锅炉。垃圾发电厂用电率一般为25%~35%,远高于普通火力发电厂。 (2)作为锅炉燃料的生活垃圾成分比较复杂,由各种不同类别固体废弃物混合构成,低位发热量较低,当前国内经济较为发达的城市一般为3350~6280kJ/kg;含水率高,一般为50%~70%;组分成分变化大,燃烧难以控制等特点。发达城市或地区的生活垃圾中橡胶、塑料所占比重较大,在焚烧过程中产生HCL、SOx等酸性气体,若不加以控制,会在锅炉金属受热面产生高温腐蚀和低温腐蚀。 (3)二恶英(Dioxin)类是垃圾焚烧过程中产生的有害物质,具有极强的致癌性。出于对该类物质排放控制要求,垃圾焚烧锅炉的运行除满足蒸汽品质外,还要求二恶英类必须在炉内充分裂解,垃圾焚烧锅炉运行还必须满足如下三T+E的燃烧工况: ①温度:Temperature炉膛烟气温度控制在850~950℃; ②时间:Time烟气在上述温度条件下停留2秒以上; ③湍流+空气:Turbulence + Excess air要求炉膛内烟气有足够的湍流强度,焚烧炉出口烟气含氧量控制在6%~12%。炉排型垃圾焚烧锅炉过剩空气系数一般为1.6~2.0,远大于普通工业锅炉与电站锅炉。 2常见的生活垃圾焚烧锅炉腐蚀成因 生活垃圾作为燃料,具有含水率高,低位发热量低,组分成分变化大等特点,在运行过程中,其特有的燃烧工况对锅炉的金属受热面产生腐蚀,主要有以下几方面原因:

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

点蚀腐蚀机理

点蚀的理论模型 M M e +→+ 22244O H O e OH -++→ 点蚀研究方法: 1) 电化学方法 2) 氯化铁试验法: 试验溶液为10%FeCl ·6H2O 溶液,其中稍许加入1/20NHCl 溶液以进行酸化,根据试样的孔蚀数量、大小、深度或是重量的改变来评定。 2 应力腐蚀测试方法 1) 四点弯曲法: δ=12Ety/(3L 2-4A 2) L :外侧支点间的距离; A :内外支点间的距离。 2) C 形环法 Δ=d 0-d 外径=δπD 2/4EtZ ; 3) WOL 试样 3/2(3.46 2.38)I Pa H K BH a =+ Δ应力加载前后的外径变化,δ应力值,t 厚度,D 平均直径,Z 修正项,E 弹性系数。 环境脆化机理主要包括活性通道腐蚀机理(APC )和氢脆开裂(HE )。不足处是没有与裂纹内溶液化学性质的研究结合起来。 不锈钢的开裂主要理论有: 1) 吸附理论 B 原子吸附于裂纹尖端,造成A-A0之间的结合力下降和破坏。这个理论能很好的解释SC C 对环境物质的依赖关系以及很好的解释缓蚀剂的作用。 2) 电化学理论 应力腐蚀开裂是一种因金属表面阳极溶解而产生的现象,应力有加速阳极溶解的作用。 3) 膜破裂理论 应力作用导致膜破裂形成新鲜表面,促进阳极溶解。 4) 隧道腐蚀理论 腐蚀从(111)面上生成的蚀孔底部和缝隙部分开始发展,与此同时,在应力的作用下产生塑性破裂,左右隧道相互连接,在应力作用下产生塑性破裂,左右隧道相互连接,最后造成断裂。 5) 腐蚀产物楔入理论 裂纹内产生的腐蚀产物的楔入作用造成裂纹的扩展。 6) 氢脆理论 奥氏体主要是阳极溶解,但是马氏体容易形成氢脆。在裂纹尖端有与阳极反应相应的阴极反应,所生成的氢进入钢中。

设备防腐蚀办法

设备防腐蚀办法引言 防腐蚀的方法总的来说可以分为两大类:一是正确地选择防腐蚀材料和其他防腐蚀措施;二是选择合理的工艺操作及设备结构。严格遵守化工生产的工艺规程,可以消除不应当发生的腐蚀现象,而即使采用良好的耐腐蚀材料,在操作工艺上不腐蚀规程,也会引起严重的腐蚀。目前,化工生产中常用的防腐蚀方法有以下几种。 1 正确选材和设计 了解不同材料的耐蚀性能,正确地、合理地选择防腐蚀材料是最行之有效的方法。众所周知,材料的品种很多,不同材料在不同环境中的腐蚀速度也不同,选材人员应当针对某一特定环境选择腐蚀率低、价格较便宜、物理力学性能等满足设计要求的材料,以便设备获得经济、合理的使用寿命。 2 调整环境 如果能消除环境中引起腐蚀的各种因素,腐蚀就会终止或减缓,但是多数环境是无法控制的,如大气和土壤中的水分,海水中的氧等都不可能除去,且化工生产流程也不可能随意更改。但是有些局部环境是可以被调整的,如锅炉进水先去除氧(加入脱氧剂亚硫酸钠和肼等),可保护锅炉免遭腐蚀;又如空气进入密闭的仓库前先出去水分,也可避免贮存的金属部件生锈;为了防止冷却水对换热器和其他设备造成结垢和穿孔,可在水中加入碱或酸以调节PH值至最佳范围(接近中性);炼油工艺中常加碱或 氨使生产流体保持中性或碱性。温度过高时,可在器壁冷却降温,或在设备内壁砌衬耐火砖隔热,等。这些都是改变环境且不影响产品和工艺的前提下采用的方法,在允许的前提下,建议工艺中选用缓和的介质代替强腐蚀介质。 3

加入缓蚀剂 通常,在腐蚀环境中加入少量缓蚀剂就可以大大减缓金属的腐蚀,我们一般将它分为无机、有机和气相缓蚀剂三类,其缓蚀机理也各不相同。 1无机缓蚀剂 有些缓蚀剂会使阳极过程变慢,称之为阳极型缓蚀剂,它包括促进阳极钝化的氧化剂(铬酸盐、亚硝酸盐、铁离子等)或阳极成膜剂(碱、磷酸盐、硅酸盐、苯甲酸盐等),它们主要在阳极区域反应,促进阳极极化。一般阳极缓蚀剂会在阳极表面生成保护膜,这种情况下的缓蚀效果较好,但也存在一定风险,因为如果剂量不充足,会造成保护膜不完整,膜缺陷处暴露的裸金属面积小,阳极电流密度大,更容易发生穿孔。另一类缓蚀剂是在阴极反应,如钙离子、锌离子、镁离子、铜离子、锰离子等与阴极产生氢氧根离子,形成不溶性的氢氧化物,以厚膜形态覆盖在阴极表面,因而阻滞氧扩散到阴极,增大浓差极化。除此之外,也有同时阻滞阳极和阴极的混合型缓蚀剂,但加入量一般都需要先通过试验才可确定。 2有机缓蚀剂 有机缓蚀剂是吸附型的,吸附在金属表面,形成几个分子厚的不可视膜,可同时阻滞阳极和阴极反应,但对二者的影响力稍有不同。常用无机缓蚀剂有含氮、含硫、含氧及含磷的有机化合物,其吸附类型随有机物分子构型的不同可分为静电吸附、化学吸附及π键(不定位电子)吸附。有机缓蚀剂的发展很快,用途十分广泛,但是使用它同时也会产生一些缺点,如污染产品,特别是食品类,缓蚀剂可能对生产流程的这一部分有利,但进入另一部分则变为有害物质,也有可能会阻抑需要的反应,如酸洗时使去膜速度过缓,等。 3气相缓蚀剂 这类缓蚀剂是挥发性很高的物质,含有缓蚀基团,一般用来保护贮藏和运输中的金属零部件,以固体形态应用居多。它的蒸汽被大气中的水分解出有效的缓蚀基团,吸附在金属表面,达到减缓腐蚀的目的。另外,它也是一种吸附性缓蚀剂,被保护的金属表面不需要除锈处理。

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(新编版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅析垃圾焚烧炉过热器腐蚀原因及解决措施(新编版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(新编版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

相关文档
最新文档