水下机器人的运动方式

水下机器人的运动方式
水下机器人的运动方式

水下机器人的运动方式

水下机器人,也称无人遥控潜水器。一种工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称潜水器。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。

无人遥控潜水器主要有,有缆遥控潜水器和无缆遥控潜水器两种,其中有缆遥控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。

它的工作方式是由水面母船上的工作人员,通过连接潜水器的脐带提供动力,操纵或控制潜水器,通过水下电视、声呐等专用设备进行观察,还能通过机械手,进行水下作业。目前,无人遥控潜水器主要有,有缆遥控潜水器和无缆遥控潜水器两种,其中有缆遥控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。

随着海洋开发活动越来越频繁和深进,在超越潜水极限的恶劣水下环境中,搭载传感器、仪器设备的水下机器人很自然地成为人类延伸自己感知能力的主要工具之一。水下机器人通过控制台上的多个旋钮即可控制机器人前进、后退、转弯、上升、下沉;灯光强弱和摄像头焦距;云台俯仰等;机器人可携带定位声纳、图像扫描声纳、多参数水质检测传感器(YSI)、辐射传感器、机械手、金属测厚计等;可实时进行水下视频检测和观测。

水下机器人运动控制中普遍采用的位置传感器为短基线或长基线水声定位系统,速度传感器为多普勒速度计。影响水声定位系统精度的因素主要包括声速误差、应答器响应时间的丈量误差、应答器位置即间距的校正误差。而影响多普勒速度计精度的因素主要包括声速c、海水中的介质物理化学特性、运载器的颠簸等。由于水下机器人运行的环境复杂,水声信号的噪声大,而各种水声传感器普遍存在精度较差、跳变频繁的缺点,因此水下机器人运动控制系统中,滤波技术显得极为重要。

传统的水下机器人滤波算法采用线性平滑、神经网络滤波等。固然在一定程度上解决了工程实践的需求,但由于没有考虑机器人系统的运动特性,滤波效果不十分理想。卡尔曼滤波方法由于在最优估计时充分利用了已经建立的系统运动模型,使滤波的实际效果更加接近真实数据的要求。但标准卡尔曼滤波方法必须清楚地了解系统噪声和量测噪声的统计特性,由于相关水声传感器受各种因素影响波动很大,噪声的统计特性不易获得。为此,引进带渐消因子的自适应卡尔曼滤波方法,可成功地解决这一题目。

基于开源软件Ardusub的水下机器人ROV控制系统

基于开源软件Ardusub的水下机器人ROV控制系统 摘要:随着海洋资源开发以及水下领域作业任务的增加,水下机器人在水下作 业中发挥着越来越重要的作用。ROV作为水下作业的重要工具,对运动控制算法 要求较高,采用开源软件ArduSub,结合一种模糊串级PID控制算法实现ROV控 制系统的设计,重点对ArduSub的特点、适应配置及PID控制算法原理,包含运 动和姿态方面进行了阐述,能够良好实现ROV的水下控制。 1引言 随着海洋资源开发以及水下领域作业任务的增加,水下机器人在水下作业中 发挥着越来越重要的作用。其中ROV续航持久,成本相对较低,逐渐成为水下作 业的重要工具。ROV工作于水下环境,具有非线性、易受环境影响等特点,对运 动控制算法要求较高,同时要求整个控制系统要有较好的实时性和可靠性。 2开源软件ArduSub简介 ArduSub水下机器人的控制器是一个完整的开源解决方案,提供远程操作控 制(通过智能潜水模式)和全自动的执行任务。作为DroneCode软件平台的一部分,它能够无缝地使用地面控制站的软件,可以监控车辆遥测和执行强大的任务规划 活动。它还受益于DroneCode平台的其他部分,包括模拟器,日志分析工具,为 车辆管理和控制和更高层次的api。 其主要特点在于以下几个方面: 反馈控制和稳定性:ArduSub控制器基于多旋翼自动驾驶系统,具有精确的 反馈控制,可主动维持方向。 深度保持:使用基于压力的深度传感器,ArduSub控制器可以将深度保持在 几厘米内。 航向保持:默认情况下,ArduSub在未命令转动时自动保持其航向。 相机倾斜:通过操纵杆或游戏手柄控制器与伺服或万向节电机进行相机倾斜 控制。 灯光控制:通过操纵杆或游戏手柄控制器控制海底照明。 无需编程:ArduSub控制器适用于各种ROV配置,无需任何自定义编程。大 多数参数可以通过地面控制站轻松更改。 兼容性好:ArduSub兼容许多不同的ROV框架,支持PWM输出。 由于以上特征,使得ArduSub成为一款可以很好适用于水下机器人RPV控制 系统的开源软件。 ArduSub兼容基于串行和以太网的通信接口。使用的硬件自动驾驶仪必须支 持选择的选项。Pixhawk仅支持串行连接,但可以通过配套计算机连接到以太网。其他autopilots原生支持以太网。ArduSub软件主要用于通过ArduSub进行接口,ArduSub是一种开源的跨平台用户界面,适用于所有类型的无人机。该接口通过 系绳连接到ArduSub控制器并显示车辆状态信息,并允许更新参数和设置。最重 要的是,QGC与用于指挥车辆的操纵杆或游戏手柄控制器连接。 ArduSub包含一个高级的电机库,支持多个框架,例如具有6自由度推进器 定位的BlueROV配置(图1所示)、带有并排垂直推进器的矢量ROV(图2所示)、采用单垂直推进器的ROV(图3所示)等等。 在传感器和执行器方面,除了标准的板载传感器(IMU,指南针),ArduSub

AUV水下机器人运动控制系统设计(李思乐)

中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目:AUV水下机器人运动控制系统研究报告 课程名称:运动控制技术 姓名:李思乐 学号:21100933077 院系:工程学院机电工程系 专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。 关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1 所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2 机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV

水下机器人设计概述

水下机器人设计概述 摘要:由于海洋开发利用越来越受到人们重视,水下机器人有着广阔的应用前景。但是目前为止,还没有成熟固定的水下机器人设计方法。本文通过论述水下机器人的构成、水下机器人的构成、排水量的初步估算、艇形选择、重量重心的计算、浮力浮心的计算、阻力的测定与计算、有效功率的计算等阐明了水下机器人基本的设计思路。此外探讨了计算机在水下机器人设计中的应用。 关键字:水下机器人、设计、计算机辅助设计 一.水下机器人的构成 水下机器人由控制系统、载体、观通系统三大系统组成。控制系统是处理和分析内部和外部各种信息的综合系统,根据这些信息形成对载体的控制功能。观通系统是利用摄像机、照相机、照明灯、声纳、及多种传感器收集有关外界和系统工作的所有信息的装置。而载体则是装载控制系统和观通系统的基础和构架。 二.根据选择设备,初步估算排水量 跟据水下机器人的用途不同,水下机器的设备也有很大的差别。通常是根据设计任务书,分析各种性能参数,确定出合适的设备。选择设备应该使水下机器人的重量最轻,因为无论是从使用还是从经济性角度讲,排水量越小是越有利的。由于潜水器要保持重量和浮力的平衡,所以可以分别从重量和浮力两个不同的角度研究排水量与各主要要素间的关系。三.艇型选择 潜水器根据使命任务和技术要求的不同,其外型尺寸、结构型式都有很大的差异。由于潜水器的航速不高,阻力性能对其外形要求不高,因而除采用水滴形和常规型艇型之外,更多的潜水器外型设计是出于使用维修方便、布置合理等方面考虑,因此其外型可能显得不规则,特别是无人带线遥控潜水器,其典型形式是框架式结构。 四.耐压壳材料选择 常用的耐压壳有高强度刚、铝合金、钛合金、复合材料(包括玻璃、陶瓷、丙烯酸朔料等等)。由于水下机器人主要受到静水压力的作用,所以选择耐压壳要综合考虑下潜的深度、耐压壳的形状、材料特性等因素。另外由于海水腐蚀性强,耐压壳还要有一定的抗腐蚀的能力。 四.潜水器推进与操纵方式选择 潜水器由于任务不同,对推进和操纵的要求也不同。但综合起来,潜水器主要要求巡航、搜索和悬停三种水下运行方式。由于在水下有海流存在,为满足潜水器的使命任务,一般要求潜水器在悬停或近乎悬停状态下作6个自由度或者至少5个自由度运动,在水流作用下也能够作相应的机动,因此在选择推力系统时,必须考虑在要求的方向发出推力和力矩。例如其搭配方式可以为:两个可在垂直面内作3600旋转的导管推力器加水平舵和首推力器、并联可旋转的喷水推进器等等。 五.阻力的确定。 由于水下机器人的主体上搭载的附体较多,且有些机器人的艇形是框架式的,所以用计算流体力学是很难得出其所受的阻力,即便算出也会因为误差太大而无法应用。所以阻力的确定主要是通过试验的方法。如果试验条件限制,或者机器人体积过大,则需要进行模型试验。根据相似理论,满足主要影响因素,保证模型和实体的弗罗德数或者雷洛数相等,测出水下机器人的摩擦阻力系数、形状阻力系数经过换算,得出实体的阻力。

【经营计划书】水下机器人创业策划书(终稿)

低成本水下机器人 策 划 书 申报项目: 低成本水下机器人 申报人: 孟永志 项目负责人: 孟永志 申报日期: 年4月17日

低成本水下机器人策划书 机器人项目创业计划执行概要 水下机器人从20世纪后半叶诞生,是工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称无人遥控潜水器,主要运用在海上救援。由于水下环境恶劣危险,人的潜水深度有限,所以水下机器人日益成为开发海洋的重要工具。在军事斗争中,无人化作战平台将在未来现代化战争中发挥重要的作用,无人舰艇将与无人地面战车、无人飞机一起在战场上进行高效卓越地作战。另外,无论战争期间还是和平时期,水下机器人还可以定期对航道、训练场、舰艇机动区实施定期或不定期检查,保障这些水域的作业安全。 载人潜水器由人工输入信号操控各种动作,由潜水员和科学家通过观察窗直接观察外部环境。其优点是由人工亲自做出各种核心决策,便于处理各种复杂问题,但是人生命安全的危险性增大,由于载人需要足够的耐压空间、可靠的生命安全保障和生命维持系统,这将为潜水器带来体积庞大、系统复杂、造价高昂、工作环境受限等不利因素。 有缆水下机器人(ROV)需要由电缆从母船接受动力,并且ROV不是完全自主的,它需要人为的干预。主要由水面设备(包括操纵控制台、电缆绞车、吊放设备、供电系统等)和水下设备(包括中继器和潜水器本体)组成。潜水器本体在水下靠推进器运动,本体上装有观测设备(摄像机、照相机、照明灯等)和作业设备(机械手、切割器、清洗器等)。潜水器的 水下运动和作业,是由操作员在水面母舰上控制和监视,电缆向本体提供动力和交换信息,中继器可减少电缆对本体运动的干扰。由于人们通过电缆对ROV进行遥控操作,电缆对ROV像“脐带”对于胎儿一样至关重要,但是由于细长的电缆悬在海中成为ROV最脆弱的部分,大大限制了机器人的活动范围和工作效率。 无缆水下机器人(AUV)又称自治水下机器人、智能水下机器人,是将人工智能、探测识别、信息融合、智能控制、系统集成等多方面的技术集中应用于同一水下载体上,在没有人工实时控制的情况下,自主决策、控制完成复杂海洋环境中的预定任务使命的机器人。是从简单的遥控式向监控式发展,即由母舰计算机和潜水器本体计算机实行递阶控制,它能对观测信息进行加工,建立环境和内部状态模型。操作人员通过人机交互系统以面向过程的抽象符号或语言下达命令,并接受经计算机加工处理的信息,对潜水器的运行和动作过程进行

水下机器人1

水下机器人 一、摘要 摘要:无人遥控潜水器,也称水下机器人。一种工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称潜水器。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。本文从过去、现在、未来三个时间段介绍了水下机器人,并且就其中的关键技术也简要做了介绍,全方面的认识了水下机器人。 关键字:水下机器人、潜水器、海洋 Abstract :No one remote control submersibles, also called the underwater robot. A kind of work in the limit of the underwater robot homework, can submerge instead of people finish some operating, and calls the scuba machine. Underwater environments are dangerous, the person's diving depth is limited, so underwater robot has become an important tool development of ocean. This article from the past, present, and future three time underwater robot is introduced, and the key technology is briefly introduced, all aspects of the understanding of the underwater obot. Key words: underwater robot、scuba machine、ocean 二、引言 海洋这一广阔的水域,蕴藏着丰富的矿产资源、海洋生物资源和能源,是人类社会可持续发展的重要财富。研究和合理开发海洋,是对人类的经济和社会发展具有重要的意义。随着科学技术的发展,人类已经进入了开发和利用海洋的时代。在各种海洋技术中,作为用在一般潜水技术不可能到达的深度进行综合考察和研究并能完成多种作业的水下机器人,使海洋开发进入了新时代。 从20世纪30年代,美国研制出了第一台现代意义上的潜水器开始,无人遥控潜水器,也称水下机器人,开始进入人类的发展史,虽然只有短短的几十年,但其却发挥了极大的作用,为人类在海洋等水域的探索开发提供了有力的支持。由于水下机器人目前多用于海洋,故也可称为海洋机器人。而且水下作业对于人来说是一项危险作业,特别是在深海作业更加的危险,在10000米深的深海中,其压力是地面压力的1000倍,那里是迄今为止人类难以到达的地方。海底,特别是深海海底对人类还是一个未知世界。水下机器人主要用于海洋开发、打捞、扫雷、侦察、援潜、救生等。 而在近几十年,水下机器人的发展是非常迅速的。在信息技术的支持下,其发展趋势向着以下几个方面发展:一是水深普遍在6000米;二是操纵控制系统多采用大容量计算机,实

水下机器人的运动方式

水下机器人的运动方式 水下机器人,也称无人遥控潜水器。一种工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称潜水器。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。 无人遥控潜水器主要有,有缆遥控潜水器和无缆遥控潜水器两种,其中有缆遥控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。 它的工作方式是由水面母船上的工作人员,通过连接潜水器的脐带提供动力,操纵或控制潜水器,通过水下电视、声呐等专用设备进行观察,还能通过机械手,进行水下作业。目前,无人遥控潜水器主要有,有缆遥控潜水器和无缆遥控潜水器两种,其中有缆遥控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。 随着海洋开发活动越来越频繁和深进,在超越潜水极限的恶劣水下环境中,搭载传感器、仪器设备的水下机器人很自然地成为人类延伸自己感知能力的主要工具之一。水下机器人通过控制台上的多个旋钮即可控制机器人前进、后退、转弯、上升、下沉;灯光强弱和摄像头焦距;云台俯仰等;机器人可携带定位声纳、图像扫描声纳、多参数水质检测传感器(YSI)、辐射传感器、机械手、金属测厚计等;可实时进行水下视频检测和观测。 水下机器人运动控制中普遍采用的位置传感器为短基线或长基线水声定位系统,速度传感器为多普勒速度计。影响水声定位系统精度的因素主要包括声速误差、应答器响应时间的丈量误差、应答器位置即间距的校正误差。而影响多普勒速度计精度的因素主要包括声速c、海水中的介质物理化学特性、运载器的颠簸等。由于水下机器人运行的环境复杂,水声信号的噪声大,而各种水声传感器普遍存在精度较差、跳变频繁的缺点,因此水下机器人运动控制系统中,滤波技术显得极为重要。 传统的水下机器人滤波算法采用线性平滑、神经网络滤波等。固然在一定程度上解决了工程实践的需求,但由于没有考虑机器人系统的运动特性,滤波效果不十分理想。卡尔曼滤波方法由于在最优估计时充分利用了已经建立的系统运动模型,使滤波的实际效果更加接近真实数据的要求。但标准卡尔曼滤波方法必须清楚地了解系统噪声和量测噪声的统计特性,由于相关水声传感器受各种因素影响波动很大,噪声的统计特性不易获得。为此,引进带渐消因子的自适应卡尔曼滤波方法,可成功地解决这一题目。

仿生水下机器人运动控制方法研究

仿生水下机器人运动控制方法研究 o 成 巍 李喜斌 孙俊岭 袁建平 徐玉如 哈尔滨工程大学水下机器人技术实验室 [摘 要] 近年来仿生技术在水下机器人上的应用已经成为水下机器人的重要研究方向之一。仿生水下机器 人采用尾鳍提供前进动力和改变航向,比传统的桨舵具有高效性和高机动性。本文根据仿生水下机器人水池 试验结果讨论了其运动性能,并在此基础上提出了仿生水下机器人运动控制方法,最后通过仿真试验验证了 该方法的可行性。运动控制研究,是仿生水下机器人其它使命的基础,具有重要的意义。 [关键词]水下机器人;仿生推进;智能控制 [Abstract] The application of the bionic technology in the fields of the Underwater Vehicle has been more attractive recently. Compared to the traditional propeller and rudder, the bionic UV inspired by the fish cruises and turns by its caudal fin, which gives more efficiency and more maneuverability. First we discuss the movement capability of the bionic UV according to the results of its water tank tests. Then we give a method of its motion control here. And the feasibility of the method was proved by simulation experiments at last. Motion control is meaningful for the bionic UV to complete other tasks. [Key Words] underwater vehicle, bionic propulsion, intelligent control. 0.引言 近年来,模仿水生动物推进方式的仿鱼尾推进系统应用于水下无人探测器的可行性已经得到了初步的验证。如美国MIT的RoboTuna [1]、美国Draper实验室的VCUUV[2]、日本东京工业大学的机器海豚[3]、哈尔滨工程大学的“仿生-Ⅰ”[4]等,都采用了具有较高巡游速度的金枪鱼或海豚作为模型,研究仿生推进和操纵系统,以期改善传统水下机器人推进和操纵性能,增强水下机器人的运动能力。仿生水下机器人采用尾鳍提供前进的动力和改变航向,与传统的采用桨舵的水下机器人在运动性能和控制方法上都有很大的差别。因此,研究仿生水下机器人的操纵控制方法成为其重要的研究方向之一。本文以“仿生-I”为研究对象,根据其船模试验水池(108×7×4m)试验了解其运动性能,并在此基础上讨论其运动控制方法。 1.“仿生-I”结构 仿生水下机器人“仿生-I”号,以蓝鳍金枪鱼为蓝本,长2.4m,最大直径0.62m,排水量329kg,负载能力70kg,潜深10m,配有月牙形 [作者简介] 成巍(1977–),河北张家口,博士生,研究领域:机器人运动控制与仿真、生物流体力学。

水下机器人发展概述

水下机器人发展概述 1水下机器人发展背景 在浩瀚的宇宙中,有一个蔚蓝色的星球,那是人类赖以生存的地方——地球。地球的表面积为5.1亿平方公里,而海洋的面积为3.6亿平方公里。地球表面积的71%被海洋所覆盖。在烟波浩渺的海洋深处,蕴藏着什么样的宝藏?是否存在着智慧生命?海底生物是怎样生活的?海底的地形地貌又是什么样的?所有这一切都使海洋充满了神秘的色彩,也吸引了无数科学家、探险家为之探索。从远古时代起,人们就泛舟于海上。从19世纪起,人们开始利用各种手段对海洋进行探察。20世纪,水下机器人技术作为人类探索海洋的最重要的手段,受到了人们普遍的关注。进入21世纪,海洋作为人类尚未开发的处女地,已成为国际上战略竞争的焦点,因而也成为高技术研究的重要领域。毫不夸张地说,本世纪是人类进军海洋的世纪。人类关注海洋,是因为陆上的资源有限,海洋中却蕴藏着丰富的矿产资源、生物资源和能源。另一个重要原因是,占地球表面积49%的海洋是国际海底区域,该区域内的资源不属于任何国家,而属于全人类。但是如果哪一个国家有技术实力,就可以独享这部分资源。因此争夺国际海底资源也是一项造福子孙后代的伟大事业。水下机器人作为一种高技术手段,在海底这块人类未来最现实的可发展空间中起着至关重要的作用,发展水下机器人的意义是显而易见的。 2水下机器人的定义与分类 2.1水下机器人的定义与概述 水下机器人也称作无人水下潜水器(unmannedunderwatervehicles,UUV),它并不是一个人们通常想象的具有类人形状的机器,而是一种可以在水下代替人完成某种任务的装置。在外形上更像一艘微小型潜艇,水下机器人的自身形态是依据水下工作要求来设计的。生活在陆地上的人类经过自然进化,诸多的自身形态特点是为了满足陆地运动、感知和作业要求,所以大多数陆地机器人在外观上都有类人化趋势,这是符合仿生学原理的。水下环境是属于鱼类的“天下”,人类身体的形态特点与鱼类相比则完全处于劣势,所以水下运载体的仿生大多体现在对鱼类的仿生上。目前水下机器人大部分是框架式和类似于潜艇的回转细长体,随着仿生技术的不断发展,仿鱼类形态甚至是运动方式的水下机器人将会不断发展。水下机器人工作在充满未知和挑战的海洋环境中,风、浪、流、深水压力等各种复杂的海洋环境对水下机器人的运动和控制干扰严重,使得水下机器人的通信和导航定位十分困难,这是与陆地机器人最大的不同,也是目前阻碍水下机器人发展的主要因素。 2.2水下机器人的分类 水下潜水器根据是否载人分为载人潜水器和无人潜水器两类。载人潜水器由人工输入信号操控各种机动与动作,由潜水员和科学家通过观察窗直接观察外部环境,其优点是由人工亲自做出各种核心决策,便于处理各种复杂问题,但是人生命安全的危险性增大。由于载人需要足够的耐压空间、可靠的生命安全保障和生命维持系统,这将为潜水器带来体积庞大、系统复杂、造

水下机器人中文说明书最新

智能泳池清洗机安全提示 (1) 智能泳池清洗机安全特征 (2) 1. 智能泳池清洗机的使用 (3) 1.1 放置小车和连接电源 (4) 1.2 机器放入水中和启动 (5) 1.3 机器的关闭和清洁 (6) 1.4 遥控器的使用 (8) 2. 智能泳池清洗机的参数及养护 (9) 2.1 智能泳池清洗机技术参数 (9) 2.2 智能泳池清洗机部位说明 (10) 2.3 关于保养 (12) 2.4 存储 (13) 2.5 机器的有限质量保证 (13)

智能泳池清洗机安全提示! 1、在操作机器前请您仔细地阅读这本手册。 2、机器在水下工作时,禁止人员使用游泳池,以免造成人员伤害。 3、不得把智能泳池清洗机作为清扫游泳池之外的任何用途。 4、禁止机器在岸上行走,以免影响机器使用寿命。 5、智能泳池清洗机采用了安全保护设计,当机器提出水面将立即停机。 6、机器工作的时候,无需有人监督其工作,清洗相应时间后自动停机。 7、请不要打开机器,机器内部没有用户需要的任何维修的零件配件(过滤袋除外)。 8、如果长时间不使用机器,请洗净过滤袋,关闭机器的电源、拔掉电源箱的市电插头,然后把机器放置在一个干燥的地方。 9、机器报废后,请不要自己处理,交给当地经销商来处理。

智能泳池清洗机安全特征 1.采用安全的24V直流电压。 2.全自动的岸上保护功能。 3.智能出水停机功能,叶轮在1秒内减速,从而避免对人体的意外伤害。

智能泳池清洗机包装里的东西! 1、智能泳池清洗机主机 2、操作说明书 3、电源控制盒 4、放置小车 5、遥控器 6、一节23A 12V电池 7、备用过滤袋一个 8、 20米电缆一根 9、VCD视频光盘

六自由度机器人运动分析及优化

本科毕业论文(设计) 题目(中文)六自由度机器人运动分析及优化 (英文) Motionanalysis and optimization of 6-DOF robot 学院信息与机电工程学院院 年级专业 2013级汽车服务工程(中德)) 学生姓名吴子璇正 学号 130154494 7 指导教师安康安 完成日期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要................................................. I Abstract ............................... 错误!未定义书签。 1 绪论 (1) 1.1 课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (4) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (6) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3

水下清洁机器人运动控制系统设计研究

? 117 ? ELECTRONICS WORLD? 技术交流 本文主要结合相关的研究背景设计了一种水下清洁机器人,作为一种水下设备的清洁维护的机器人,保障水下设备的正常运行。文章首先在引言部分对本文的研究背景及意义进行阐述,然后重点提出了水下清洁机器人运动控制系统的总体设计方案,并对其运动模型进行设计和仿真。 1 引言 海洋开发逐渐向特殊领域以及高深度领域转变,难度越来越大,人力开发已经完全不能够满足开发的需求,机器人开发已经成为了新趋势。本文主要在此背景下分析和研究水下清洁机器人的运动控制系统的设计。本文设计的水下清洁机器人主要是用于对水下的一些大型设备,例如海底搜救设备、勘测设备、取样设备等进行水下维护和修复等,能够在水下特殊环境中对海底设备进行维护和处理,能够较大程度上的促进海底开发技术的发展。 2 水下清洁机器人运动控制系统总体设计 2.1 水下清洁机器人运动控制流程 本文设计的水下清洁机器人的控制系统主要由主机、控制算法、控制电路、指令转换、机器人载体、采样设备等组成,具体的控制流程为:主机控制算法进行水下机器人的动力分配,并结合指令转换算法进行整理转换,结合控制电路开启操控箱,下达操作指令,机器人载体接到命令驱动机器人进行采样,采集样本之后将样本信息传递到主机处理系统当中,进行处理。 2.2 模拟运动控制平台结构设计 水下机器人的运动控制平台主要包括六个部分:步进电机、云台、安装板、推进器、U型板以及轴承等。其中云台主要实现的是2自由度的运动,包括水平和横向两个方向。本文模拟的控制平台主要实现的是3自由度的运动控制,除了上述2自由度之外,还包括前后摇摆自由度。由于多了一个自由度,因此需要对运动进行定位,该运动平台的定位主要由带套轴承和法兰轴组成固定左侧,由带套轴承和电机轴固定右侧,右侧的电机由法兰固定,由此就设计出了一个6自由度的模拟运动控制平台(边宇枢,高志慧,贠超,6自由度水下机器人动力学分析与运动控制:机械工程学报,2007)。 2.3 地面操控台结构设计 地面操控台主要是对上述的模拟运动控制平台进行控制,地面操控台主要包括显示器、操纵杆、按钮以及指示灯等。其中操纵杆有2个,一个用来控制云台的摄像机,一个用来控制模拟运动平台,面板主要是结合人体舒适度进行设计,角度定为70°(裴文良,郭映言,陈金山,申龙,水下机器人的研发及其应用:制造业自动化,2018)。 3 水下机器人运动模型及仿真分析 该部分主要对上述设计的水下机器人的运动模型以及仿真进行分析: 3.1 水下机器人的运动学建模 为了便于我们对机器人参数和变量的统一管理,可以定义以下 状态变量: 其中 ,,即用η1和η2分别表示稳定系下水下机器人的位置向量和方向向量,用v1和v2分别表示动态系下水下机器人的线速度和角度,用τ1和τ2表示在动态系下作用于水下机器人的力和力矩向量。 水下机器人的速度变量由稳定系转换成为动态系,从而通过动态控制器实现对运动的控制,同时要获得水下机器人的静态位置和姿态就必须要将水下机器人的速度变量由动态系转换成为稳定系,从而得到水下机器人的位置矢量。由此可知,在研究水下机器人状态时,需要分析和研究机器人速度变量的动态和静态的转变。 3.2 基于神经网络的轨迹控制器 本文主要设计了基于神经网络模型的水下机器人的运动轨迹控制器,具体的控制流程如下:当机体接收到信号后,传递到控制器,再通过执行器作用于机体,做出相应的动作,机器人本身还具有抗干扰的功能。输出与控制器之间用RBF网络连接。(朱大奇,陈亮,刘乾,一种水下机器人传感器故障诊断与容错控制方法:控制与决策,2009) 3.3 水下机器人神经网络轨迹控制的仿真 结合上述设计的基于神经网络模型的水下机器人的运动轨迹控制器,采用MATLAB进行仿真如下。该控制器设计的目的是实现对水下机器人运动状态的识别和跟踪,通过分析水下机器人的水下运动情况,结合轨迹参考实现了未知动力学的局部精确逼近和部分神经网络权值的收敛,从而奠定一定的学习控制器基础。 结合神经网络的训练实验得到,在神经网络权值的训练过程中,一些神经网络的权值最终收敛,可以作为神经网络的常数权值存储。在自适应神经网络控制器的作用下,将被控系统未知动态分量的局部精确逼近。 水下清洁机器人运动控制系统设计研究 (下转第121页)

水下机器人发展趋势

水下机器人发展趋势 关键词:水下机器人、智能水下机器人、智能体系、运动控制、通讯导航、探测识别、高效能源 随着人类海洋开发的步伐不断加快,水下机器人技术作为人类探索海洋最重要的手段得到了空前的重视和发展。作者对水下机器人进行了定义与分类。介绍了近年来国内外水下机器人的发展现状与发展趋势,重点针对智能水下机器人的主要关键技术及未来发展方向进行了分析。地球的表面积为5.1亿km2,而海洋的面积为3.6亿km2。占地球表面积71%的海洋是人类赖以生存和发展的四大战略空间——陆、海、空、天中继陆地之后的第二大空间,是能源、生物资源和金属资源的战略性开发基地,不但是目前最现实的,而且是最具发展潜力的空间。作为蓝色国土的海洋密切关系到人类的生存和发展,进入21世纪后,人类更加强烈的感受到陆地资源日趋紧张的压力,这是人类面临的最现实的问题。海洋即将成为人类可持续发展的重要基地,是人类未来的希望。水下机器人从20世纪后半叶诞生起,就伴随着人类认识海洋、开发海洋和保护海洋的进程不断发展。专为在普通潜水技术较难到达的区域和深度执行各种任务而生的水下机器人,将使海洋开发进人一个全新的时代,在人类争相向海洋进军的21世纪,水下机器人技术作为人类探索海洋最重要的手段必将得到空前的重视和发展[1]。 1海洋对人类的重要性

海洋作为蓝色国土,首先是一个沿海国家的“门户”,是其与远方联系的便捷途径,并且“门户”的安全是国家安全的重要组成部分,早在2 500多年前古希腊海洋学家锹未斯托克就提出过“谁控制了海洋,谁就控制了一切”。很久以来人们就依赖于海洋航道进行大量的物品贸易,现在整个世界大部分的货物运输都依赖于海上运输,海洋运输是整个经济正常运转必要的一环。更重要的是,现在很多国家的石油、矿石等最基本的生产资料大部分都依赖于海洋运输,海洋运输的安全和对海洋的控制力成为一个国家生存的基本保障。 近年来再次掀起海洋热的浪潮是因为陆上的资源有限,很多资源已经开发殆尽,而海洋中蕴藏着丰富的能源、矿产资源、生物资源和金属资源等,人们急需开发这些资源以接替所剩不多的陆上资源来维持发展。更为重要的是,地球上半数以上面积的海洋是国际海域,这些区域内全部的资源属于全体人类,不属于任何国家。但目前的现状是只有少数国家有能力对这些资源进行初步开采,这些国家在其已探明的区域拥有优先开采权,相对于那些没有能力开采的国家这几乎就等于独享这部分资源。因此海洋已经成为国际战略竞争的焦点,争夺国际海洋资源是一项造福子孙后代的伟大事业。所以水下技术成为目前重点研究的高新技术之一,智能水下机器人作为高效率的水下工作平台在海洋开发与利用中起到至关重要的作用。 2水下机器人的定义与分类

水下机器人智能控制技术

水下机器人智能控制技术 机械工程学院张杰189020008 智能水下机器人作为一个复杂的系统集成了人工智能水下目标的探测和识别、数据融蛤智能控制以及导航和通信各子系统是一个可以在复杂海洋环境中执行各种军用和民用任务的智能化无人平台。目前主要采用的智能控制方法有:模糊控制、神经网络控制、专家控制、自适应控制、PID调节器、滑模控制等。本文比较全面地查阅了水下机器人运动控制理论相关的文献,阐述了几种主要控制方法的基本原理,给出了控制器结构的设计方法,对水下机 器人运行控制方法的选取、控制器的设计具有较好的参考意义。 水下机器人的运动控制是其完成特定任务的前提和保障,是水下机器人关键技术之一。 随着水下机器人应用范围的扩大,对其自主性,运动控制的精度和稳定性的要求都随之增 加,如何提高其运动控制性能就成了研究的一个重要课题。导致AUV难于控制的主要因素包括:①水下机器人高度的非线性和时变的水动力学性能;②负载的变化引起重心和浮心的改变;③附加质量较大,运动惯性较大,不能产生急剧的运动变化;④难于获得精确的水动力系数;⑤海流的干扰。这些因素使得AUV的动力学模型难以准确,而且具有强耦合和非线性的特点。目前已被采用的控制方法有:模糊控制、神经网络控制、专家控制、PID控制、自适应控制、S面控制等。 智能控制是一个由人工智能自动控制和运筹学的交叉构成的交叉学科近年来,智能控制技术成为水下机器人发展的一个重要技术水下机器人难于控制的原因有几个方面,水下机器人在运行中收到海流等外界极不稳定环境因素的干扰,使其控制变得更加困难;水下机器人各项参数的高度的非线性的特点;水下机器人的水动力性能在不同的海洋环境下会改变较明显;海底水下机器人水动力系数难以测量,不能获得一个较为准确的数据;水下机器人体积大质量大,因此所受惯性大,运动变化难以在较短的时间内实现;水下机器人在运动过程中重心和浮心易改变会引起控制较为困难等智能控制如果能用在水下机器人,可以更好的使其适应复杂的海洋环境。 智能控制系统的类型

AUV水下机器人运动控制系统方案设计书(李思乐)

封面

作者:PanHongliang 仅供个人学习 中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目: AUV水下机器人运动控制系统研究报告

课程名称:运动控制技术姓名:李思乐 学号: 21100933077 院系:工程学院机电工程系专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV 的动力学模型。为了便于分析,建立适合于描述AUV 运动的两种参考坐标系,即固定坐标系Eξηζ 和运动坐标系Oxyz,如图2-1 所示:包含5 个推进器,分别是艉部的2 个主推进器、艉部的1 个垂向推进器和艏部的2 个垂向推进器。左右对称于纵中剖面,上和下、前和后都不对称[2]。 图2-1AUV水下机器人物理模型 1.2微小型水下机器人动力学分析 微小型水下机器人总长 1.5m,采用锂电池作为能源,尾部为一对水平舵和一对垂直舵,单桨推进,可携带惯导设备、探测声纳、水下摄像机、深度计等设备,设计巡航速度约 2 节。首先建立适合描述水下机器人空间运动的坐标

水下机器人发展概述

水下机器人发展概述 --船舶102 赵书孝 1005080224 无人遥控潜水器,也称水下机器人。一种工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称潜水器。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。无人遥控潜水器主要有,有缆遥控潜水器和无缆遥控潜水器两种,其中有缆避控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。 特别是近10年来,无人遥控潜水器的发展是非常快的。从1953年第一艘无人遥控潜水器问世,到1974年的20年里,全世界共研制了20艘。特别是l974年以后,由于海洋油气业的迅速发展,无人遥控潜水器也得到飞速发展。到1981年,无人遥控潜水器发展到了400余艘,其中90%以上是直接;或间接为海洋石油开采业服务的。1988年,无人遥控潜水器又得到长足发展,猛增到958艘,比1981年增加了110%。这个时期增加的潜水器多数为有缆遥控潜水器,大约为800艘上下,其中420余艘是直接为海上池气开采用的。无人无缆潜水器的发展相对慢一些,只研制出26艘,其中工业用的仪8艘,其他的均用于军事和科学研究。另外,载人和无人混合理潜水器在这个时期也得到发展,已经研制出32艘,其中28艘用于工业服务。 无人有缆潜水器研制与发展 无人有缆潜水器的研制开始于70年代,80年代进入了较快的发展时期。1987年,日本海事科学技术中心研究成功深海无人遥控潜水器“海鲀3K”号,可下潜3300米。研制“海鲀3K”号的目的,是为了在载人潜水之前对预定潜水点进行调查而设计的,供专门从事深海研究的,同时,也可利用“海鲀3K”号进行海底救护。“海鲀3K”号属于有缆式潜水器,在设计上有前后、上下、左右三个方向各配置两套动力装置,基本能满足深海采集样品的需要。1988年,该技术中心配合“深海6500”号载人潜水器进行深海调查作业的需要,建造了万米级无人遥控潜水器。这种潜水器由工作母船进行控制操作,可以较长时间进行深海调查。这种潜水器可望在1992年内建成,总投资为40亿日元。日本对于无人有缆潜水器的研制比较重视,不仅有近期的研究项目,而且还有较大型的长远计划。目前,日本正在实施一项包括开发先进无人遥控潜水器的大型规划。这种无人有缆潜水器系统在遥控作业、声学影像、水下遥测全向推力器、海水传动系统、陶瓷应用技术水下航行定位和控制等方面都要有新的开拓与突破。这项工作的直接目标是有效地服务于200米以内水深的油气开采业,完全取代目前由潜水人员去完成的危险水下作业。在无人有缆潜水技术方面,始终保持了明显的超前发展的优势。根据欧洲尤里卡计划,英国、意大利将联合研制无人遥控潜水器。这种潜水器性能优良,能在6000米水深持续工作250小时,比现在正在使用的只能在水下4000米深度连续工作只有l2小时的潜水器性能优良的多。按照尤里卡EU-191计划还将建造两艘无人遥控潜水器,一艘为有缆式潜水器,主要用于水下检查维修;另一艘为无人无缆潜水器,主要用于水下测量。这项潜水工程计划将由英国;意大利、丹麦等国家的l7个机构参加。英国科学

水下机器人智能控制技术研究综述

水下机器人智能控制技术研究综述 【摘要】水下机器人的运动控制是当今世界水下机器人研究领域的一个研究热点,目前主要采用的智能控制方法有:模糊控制、神经网络控制、专家控制、自适应控制、PID调节器、滑模控制等。本文比较全面地查阅了水下机器人运动控制理论相关的文献,阐述了几种主要控制方法的基本原理,给出了控制器结构的设计方法,对水下机器人运行控制方法的选取、控制器的设计具有较好的参考意义。 【关键词】水下机器人;控制技术;神经网络控制;模糊控制;自适应控制 1.引言 水下机器人的运动控制是其完成特定任务的前提和保障,是水下机器人关键技术之一。随着水下机器人应用范围的扩大,对其自主性,运动控制的精度和稳定性的要求都随之增加,如何提高其运动控制性能就成了研究的一个重要课题。导致AUV难于控制的主要因素包括:①水下机器人高度的非线性和时变的水动力学性能;②负载的变化引起重心和浮心的改变;③附加质量较大,运动惯性较大,不能产生急剧的运动变化;④难于获得精确的水动力系数;⑤海流的干扰。这些因素使得AUV的动力学模型难以准确,而且具有强耦合和非线性的特点[1]。目前已被采用的控制方法有:模糊控制、神经网络控制、专家控制、PID控制、自适应控制、S面控制等[2]。 2.模糊控制 模糊控制是一种仿人的智能控制方式,它模仿和升华了人的控制经验与策略并将其体现在控制器中[3]。模糊控制器不依赖于被控制对象的精确数学模型,易于对不确定性系统进行控制,模糊控制器抗干扰能力强,响应速度快,并对系统参数的变化有较强的鲁棒性,模糊控制的实质是将基于专家知识的控制策略转换为自动控制策略。它所依据的原理是模糊蕴涵概念和复合推理规则。通常它以被控对象输出变量的偏差和偏差的变化率作为输入变量,而把被控量定为模糊控制器的输出变量,反映输入输出语言变量与语言控制规则的模糊定量关系及其算法结构[4]。实际应用中把采集到的控制信息经语言控制规则进行模糊推理和模糊决策,求得控制量的模糊集合,再经模糊判决得出输出控制的精确量,作用于被控对象,使被控过程达到预期的控制效果。模糊控制器一般由模糊化接口、知识库、模糊推理机、解模糊接口四个部分组成。如图1所示: 2.1 模糊自适应PID控制 PID控制算法中的比例控制动态响应迅速,不能消除静态误差。积分控制可以消除稳态误差,动态响应速度慢。如果在PID控制系统中加入模糊控制器,组成模糊PID控制,模糊PID控制系统是把PID控制和模糊控制的优点结合起来。既能有很快的响应速度,又能保证很好的稳态。模糊PID控制是首先将工

相关文档
最新文档