圆与圆的位置关系练习题

圆与圆的位置关系练习题
圆与圆的位置关系练习题

36圆与圆的位置关系

一、选择题

1.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,DE ∥BC ,且AD=2CD ,则以

D 为圆心DC 为半径的⊙D 和以

E 为圆心EB 为半径的⊙E 的位置关系是

( )

(A )外离; (B

)外切;

(C )相交; (D )不能确定.

2.已知半径分别为5cm 和8cm 的两圆相交,则它们的圆心距可能是( )

A .1cm

B .3cm

C .10cm

D .15cm

3.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( )

A.相交 B.内切 C.外切 D.内含

4.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d 的取值范围是( )

A .8d >

B . 2d >

C .02d ≤<

D . 8d >或02d ≤<

5.已知两圆半径分别为4和7,圆心距为3,那么这两个圆的位置关系是( ).

A. 内含

B. 内切

C. 相交

D. 外切

6.如图,已知⊙01与⊙02关于y 轴对称,点01的坐标为(- 4,

0).两圆相交于A 、B ,且01A ⊥02A ,则图中阴影部分的面积是

( )

A.4π – 8

B.8π – 16

C. 16π – 16

D.16π – 32

二、填空题

1.如图,⊙O1和⊙O2的半径为2和3,连接O1O2,交⊙O2于点P ,O1O2=7,若将⊙O1绕点P 按顺时针方向以30°/秒的速度旋转一周,请写出⊙O1与⊙O2相切时的旋转时间为_______秒.

2.已知⊙O1=7,则⊙O1、⊙O 2的位置关系是 ▲ .

3.已知⊙1O 和⊙2O 的半径分别为3cm 和5cm ,且它们内切,则12O O 等于 ▲ cm.

4.已知⊙O1的半径为3,⊙O2的半径为5, O1O 2=7,则⊙O1、⊙O 2的位置关系是

A D (第1题图)

5.如图,在△ABC 中,∠A=90,分别以B 、C 为圆心的两个等圆外切,两圆的半径都为2cm ,则图中阴影部分的面积为 .

6.已知ABC △的三边分别是a b c ,,,两圆的半径12r a r b ==,,圆心距d c =,则这两

个圆的位置关系是 .

7.如果半径为3cm 的⊙O1与半径为4cm 的⊙O2内切,那么两圆的圆心距O1O2= cm .

【原创】

8.要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小值是 .

第5题

选择题

1、C

2、C

3、B

5、B

6、B

填空题

1、【答案】 3或6或9

2、答案:相交

3、答案:2

4、答案:相交:

5、答案: 2cm

6、答案:相交

7、答案:1

8、答案: 72.

高中数学必修二直线与圆、圆与圆的位置关系练习题

1.已知直线和圆有两个交点,则的取值范围是() A. B. C. D. 2.圆x2+y2-2acos x-2bsin y-a2sin=0在x轴上截得的弦长是() A.2a B.2|a| C.|a| D.4|a| 3.过圆x2+y2-2x+4y- 4=0内一点M(3,0)作圆的割线,使它被该圆截得的线段最短,则直线的方程是() A.x+y-3=0 B.x-y-3=0C.x+4y-3=0 D .x-4y-3=0 4.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为() A.1或-1 B.2或-2 C.1 D.-1 5.若直线3x+4y+c=0与圆(x+1)2+y2=4相切,则c的值为() A.17或-23 B.23或-17 C.7或 -13 D.-7或13 6.若P(x,y)在圆 (x+3)2+(y-3)2=6上运动,则的最大值等于() A.-3+2 B.-3+ C.-3-2 D.3-2 7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是() A.相切 B.相交 C.相 离 D.内含 8.若圆x2+y2=4和圆x2+y2+4x-4y+4=0关于直线对称,则直线的方程是()

A.x+y=0 B.x+y-2=0 C.x-y-2=0 D.x-y+2=01. 9.圆的方程x2+y2+2kx+k2-1=0与x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是() A. B.2 C.1 D. 10.已知圆x2+y2+x+2y=和圆(x-sin)2+(y-1)2=, 其中0900, 则两圆的位置关系是() A.相交 B.外切 C.内 切 D.相交或外切 11.与圆(x-2)2+(y+1)2=1关于直线x-y+3=0成轴对称的曲线的方程是() A.(x-4)2+(y+5)2=1 B.(x-4)2+(y-5)2=1C.(x+4)2+(y+5)2=1 D.(x+4)2+(y-5)2=1 12.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1, 则实数a 的值为() A.0 B.1 C. 2 D.2 13.已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆 C1上,则方程: f(x,y)- f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是() A.与圆C1重 合 B.与圆C1同心圆 C.过P1且与圆C1同心相同的圆 D.过P2且与圆 C1同心相同的圆 14.自直线y=x上一点向圆x2+y2-6x+7=0作切线,则切线的最小值为___________. 15.如果把直线x-2y+=0向左平移1个单位,再向下平移2个单位,便与圆 x2+y2+2x-4y=0相切,则实数的值等于__________.

圆与圆的位置关系 学案

圆与圆的位置关系学案 活动1,请以点o 为起始点,移动你手上的硬币,观察归纳两个圆的位置关系有几种情况?用铅笔刻描画出你得出的情况。 课堂练习:【A 组】 1、右图中有两圆的位置关系有 , 未出现的位置关系是 2、判断对错 1)、若两圆有两个公共点,则两圆相交( ) 2)、如果两圆没有交点,所以这两圆的位置关系是外离。( ) 3)若两圆只有一个交点,则这两圆外切. ( ) 4)、当O 1O 2=0时,两圆是同心圆. ( ) 3、⊙O 1和⊙O 2的半径分别为2cm 和5cm,在下列情况下,分别求出两圆的圆心距d 的取值范围:

(1)外离________ (2)外切________ (3)相交____________(4)内切________ (5)内含___________ 4、⊙O1和⊙O2的半径分别为3cm和4cm,求⊙O1和⊙O2的位置关系.设: (1)O1O2=8cm______ (2)O1O2=7cm _______ (3)O1O2=5cm ______ (4)O1O2=1cm _________ (5)O1O2=0cm _______ 5:如图⊙O的半径为5cm,点P是⊙O外一点, OP=8cm。若以P为圆心作⊙P与⊙O相切,求⊙P的半径? 【B组】 6:如图,在网格图中,(每个小正方形的边长均为1个单位)⊙A的半径为1,⊙B的半径为2, 1)、使⊙A与静止的⊙B外切,那么⊙A 由图示位置需向右平移个单位。 2)、使⊙A与静止的⊙B内切,那么⊙A由图示位置需向右平移个单位。 A B 【C组】 7在ABC中,AB=3,BC=5,AC=6,分别以顶点A,B,C为圆心的三个圆两两外切,求这三个圆的半径分别是多少? 8、分别以1厘米、2厘米、4厘米为半径,用圆规画圆,使他们两两外切。如何画最快?

中考试题专题之圆与圆的位置关系试题及答案

20XX 年中考试题专题之 23-圆与圆的位置关系试题及答案 一.选择 1. (20XX 年泸州)已知⊙ O 1与⊙ O 2的半径分别为 5cm 和 3cm ,圆心距 020=7cm ,则两圆 的位 置关系为 A .外离 B .外切 C .相交 D .内切 2. (20XX 年滨州 )已知两圆半径分别为 2 和 3,圆心距为 d ,若两圆没有公共点,则下列结 论正确的是( ) A . 0 d 1 B . d5 C . 0 d 1或 d 5 D . 0≤ d 1或 d 5 3.( 20XX 年台州市 ) 大圆半径为 6,小圆半径为 3,两圆圆心距为 10,则这两圆的位置 系为( ) A .外离 B .外切 C. 相交 D .内含 4.( 2009 桂林百色)右图是一张卡通图,图中两圆的位置关系( ) A .相交 B .外离 C .内切 D .内含 5.若两圆的半径分别是 1cm 和 5cm ,圆心距为 6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 6( 20XX 年衢州)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C . 4 D . 3 7.( 20XX 年舟山)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C . 4 D . 3 8. .(20XX 年益阳市)已知⊙ O 1和⊙ O 2的半径分别为 1和 4,如果两圆的位置关系为相交, 那 么圆心距 O 1O 2 的取值范围在数轴上表示正确的是 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 A . B . C . D . 10.. (2009肇庆) 10.若⊙O 1与⊙O 2相切,且 O 1O 2 5 , ⊙ O 1的半径 r 1 2,则⊙O 2的 半径 r 2 是( ) B . 5 9. ( 20XX 年宜宾)若两圆的半径分别是 A. 内切 B. 相交 C.外切 2cm 和 3cm,圆心距为 5cm ,则这两个圆的位置关 D. 外离 C . 7 系是

《圆与圆的位置关系》 学案

28.2.4《圆与圆的位置关系》 学案 教学目标: 1.使学生了解圆与圆位置关系的定义, 2.掌握用数量关系来识别圆与圆的位置关系。 重点难点: 用数量关系识别圆与圆的位置关系是本节课的教学重点,又是本节课的教学难点。 研讨过程: 一、认识生活中有关圆与圆的位置关系的一些图形 在现实生活中,圆与圆有不同的位置关系,如下图所示: 圆与圆的位置关系除了以上几种外,还有其他的位置关系吗?我们如何判断圆与圆的位置关系呢?这些问题待学习完这节课后就可以得到解决。 二、用公共点的个数阐述两圆的位置关系 请同学们在纸上画一个圆,把一枚硬币当作另一个圆,在纸上移动这枚硬币,观察两圆的位置关系和公共点的个数。 上图(1)、(2)、(3)所示,两个圆没有公共点,那么就说两个圆相离,其中 又叫做外离, 又叫做内含。 中两圆的圆心相同,这两个圆还可以叫做同心圆。如果两个圆只有一个公共点,那么就说这两个圆相切,上图(4)、(5)所示.其中 又叫做外切, 又叫做内切。如果两个圆有两个公共点,那么就说这两个圆相交,如图 所示。 (填写序号) 奥运会五环

三、用数量关系识别两圆的位置关系 思考:如果两圆的半径分别为3和5,圆心距(两圆圆心的距离)d 为9,你能确定他们的位置关系吗?若圆心距d 分别为8、6、4、2、1、0时,它们的位置关系又如何呢? 利用以上的思考题让同学们画图或想象,概括出两圆的位置关系与圆心距、两圆的半径具有什么关系。 (1)两圆外离 d R r ?> +; (2)两圆外切d R r ?=+; (3)两圆外离R r d R r ?-<<+; (4)两圆外离d R r ?=-; (5)两圆外离0d R r ?≤<-; (填<、=、>号) 两圆的位置关系可表示成下列数轴的形式。 要判断两圆的位置关系,要牢牢抓住两个特殊点,即外切和内切两点,当圆心距刚好等于两圆的半径和时,两圆 ,等于两圆的半径差时,两圆 。若圆心距处于半径和与半径差之间时,两圆 ,大于两圆半径和时,两圆 ,小于两圆半径差时,两圆 。 四、例题与练习 例1、已知⊙A 、⊙B 相切,圆心距为10 cm ,其中⊙A 的半径为4 cm ,求⊙B 的半径。(提示:分两种情况讨论) 解:设⊙B 的半径为R . (1) 如果两圆外切,那么 (2) 如果两圆内切,那么 所以⊙B 的半径为 cm 或 cm 。 例2、两圆的半径的比为2:3,内切时的圆心距等于8c m ,那么这两圆相交时圆心距的范围是多少? 解: 练习:课本P54 练习1、2、3 五、小结 这节课我们同样也用数量关系来体现圆与圆的位置关系。在识别圆与圆的位置关系时,关系式比较多,也难于忘记,如果同学们能够掌握用数轴来体现圆与圆的位置关系,理解起来就会更深刻,记忆也会更容易。 六、作业 P55 习题8、9 教学反思: 0R-r R+r 外离相交外切内切内含d

与圆有关的位置关系(习题)

与圆有关的位置关系(习题) ?巩固练习 1.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下 列说法中不正确 ...的是() A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内 C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外 2.如图,若△ABC的顶点都在⊙P上,则点P的坐标是______. 第2题图第3题图 3.小英家的圆形镜子被打碎了,她拿了如图所示(网格中每个小正方形的边长 均为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是__________. 4.已知⊙O1,⊙O2的半径分别是r1=2,r2=4,若两圆相交,则圆心距O1O2可 能取的值是() A.2 B.4 C.6 D.8 5.如图,在矩形ABCD中,AB=6,BC=4,⊙O是以AB为直径的圆,则直线 CD与⊙O的位置关系是() A.相离B.相切C.相交D.无法确定 D C B A 第5题图第6题图 6.如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°.点 P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是______. 7.如图,PA,PB是⊙ O的两条切线,切点分别为A,B.如果OP=4,PA= 那么∠AOB=_______.

A 第7题图 第8题图 8. 如图,AB 是⊙O 的直径,点D 在线段AB 的延长线上,DC 切⊙O 于点C .若∠A =25°,则∠D =_________. 9. 如图,P A ,PB 是⊙O 的两条切线,切点分别为A ,B ,AC 是⊙O 的直径.若 ∠BAC =35°,则∠P =________. 10. 已知宽为3 cm 的刻度尺的一边与⊙O 相切,另一边与⊙O 的两个交点处的 读数如图所示(单位:cm ),则⊙O 的半径为__________cm . 11. 如图1,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称 图形,∠ACB =90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,且CE =5 cm .如图2,将量角器沿DC 方向平移2 cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,则AB 的长为________cm .(结果保留根号) E C B A A B C D 图1 图2 ? 思考小结 1. 判断与圆有关的位置关系,关键是找准_____和_______,在直线与圆位置关 系中,它们分别代表____________________和_________________. 2. 已知圆锥的母线长为l ,底面圆的半径为r ,借助扇形及其所围成圆锥间的等 量关系,推导圆锥的侧面积公式S =πlr .(写出证明的关键环节)

直线和圆的位置关系练习题附答案

直线和圆的位置关系练习题 一、选择题:(每小题5分,共50分,每题只有一个正确答案) 1.已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为() A. 相离 B. 相切 C. 相交 D. 相交或相离 2.如右图,A、B是⊙O上的两点,AC是⊙O的切线, ∠B=70°,则∠BAC等于() A. 70° B. 35° C. 20° D. 10° 3.如图,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C, 下列结论中,错误的是() A. ∠1=∠2 B. PA=PB C. AB⊥OP D. 2 PA PC·PO 4.如图,已知⊙O的直径AB与弦AC的夹角为30°,过C点的切线PC与AB的延长线交于P,PC=5,则⊙O的半径为() A. 33 5 B. 63 5 C. 10 D. 5 5.已知AB是⊙O的直径,弦AD、BC相交于点P,那么CD︰AB等于∠BPD的() A. 正弦 B. 余弦 C. 正切 D. 余切 6.A、B、C是⊙O上三点,AB⌒的度数是50°,∠OBC=40°,则∠OAC等于() A. 15° B. 25° C. 30° D. 40° 7.AB为⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C,作弦CD ⊥AB,∠OCD的平分线交⊙O于点P,当C点在半圆(不包括A、B两点)上移动时,点P () A. 到CD的距离不变 B. 位置不变 C. 等分DB⌒ D. 随C点的移动而移动 (第3题图)(第4题图)

第5题图 第6题图 第7题图 8.内心与外心重合的三角形是( ) A. 等边三角形 B. 底与腰不相等的等腰三角形 C. 不等边三角形 D. 形状不确定的三角形 9.AD 、AE 和BC 分别切⊙O 于D 、E 、F ,如果AD=20,则△ABC 的周长为( ) A. 20 B. 30 C. 40 D. 2 135 10.在⊙O 中,直径AB 、CD 互相垂直,BE 切⊙O 于B ,且BE=BC ,CE 交AB 于F ,交⊙O 于M ,连结MO 并延长,交⊙O 于N ,则下列结论中,正确的是( ) A. CF=FM B. OF=FB C. BM ⌒的度数是22.5° D. BC ∥MN 第9题图 第10题图 第11题图 二、填空题:(每小题5分,共30分) 11.⊙O 的两条弦AB 、CD 相交于点P ,已知AP=2cm ,BP=6cm ,CP ︰PD =1︰3,则DP=___________. 12.AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,P 是BA 的延长线上的点,连结PC ,交⊙O 于F ,如果PF=7,FC=13,且PA ︰AE ︰EB = 2︰4︰1,则CD =_________. 13.从圆外一点P 引圆的切线PA ,点A 为切点,割线PDB 交⊙O 于点D 、B ,已知PA=12,PD=8,则=??DAP ABP S S :__________. B B D A C E F D C B A P

高中人教版数学必修2《圆与圆的位置关系》精品导学案

必修2 第四章 §4-3 圆与圆的位置关系 【课前预习】阅读教材P 129-132完成下面填空 1. 两圆的的位置关系 (1)设两圆半径分别为12,r r ,圆心距为d 若两圆相外离,则 ,公切线条数为 若两圆相外切,则 ,公切线条数为 若两圆相交,则 , 公切线条数为 若两圆内切,则 ,公切线条数为 若两圆内含,则 ,公切线条数为 (2) 设两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C ,若两圆相交,则两圆的公共弦所在的直线方程是 2.圆系方程 ①以点),(00y x C 为圆心的圆系方程为 ②过圆0:22=++++F Ey Dx y x C 和直线0:=++c by ax l 的交点的圆系方程为 ③过两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C 的交点的圆系方程为 (不表示圆2C ) 【课初5分钟】课前完成下列练习,课前5分钟回答下列问题

1. 已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( ) A.2(2)x ++2(2)y -=1 B.2(2)x -+2(2)y +=1 C.2(2)x ++2(2)y +=1 D.2(2)x -+2(2)y -=1 2.两个圆1C :2222x y x y +++-2=0与2C :2242x y x y +--+1=0的公切线有 且仅有( ). A .1条 B .2条 C .3条 D .4条 3.圆1C :22()(2)x m y -++=9与圆2C :2(1)x ++2()y m -=4外切,则m 的值 为( ). A. 2 B. -5 C. 2或-5 D. 不确定 4.两圆:x 2 + y 2 + 6 x + 4y = 0及x 2+y 2 + 4x + 2y – 4 =0的公共弦所在直线方程为 强调(笔记): 【课中35分钟】边听边练边落实 5. 已知圆1C :22660x y x +--=①,圆2C :22460x y y +--=②(1)试判 断两圆的位置关系;(2)求公共弦所在的直线方程.

圆与圆的位置关系练习题

36圆与圆的位置关系 一、选择题 1. 如图,在Rt △ ABC中,/ C=90°, AC=8 BC=6 DE// BQ 且AD=2CD 则以 D为圆心DC为半径的O D和以E为圆心EB为半径的O E的位置关系是 ( ) (A)外离;(B)外切; (第1题图) (C)相交;(D)不能确定. A. 1cm B. 3cm C. 10cm D. 15cm 2. 已知 半径分别为5cm和8cm的两圆相交,则它们的圆心距可能是( ) 3. 已知两圆的半径分别为3和4,圆心距 为1,则两圆的位置关系是( ) A?相交 E.内切 C.外切 D.内含

4.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距 d 的取值范围是( A. d>8 B . d>2 C . 0Edc2 D . d >8 或 0Edc2 5.已知两圆半径分别为 4和7,圆心距为3,那么这两个圆的位置关系是( ) A.内含 B.内切 C.相交 D.外切 6.如图,已知O 01与O 02关于y 轴对称,点01的坐标为(-4 , 0).两圆相交于 A B ,且01A 丄02A ,则图中阴影部分的面积是 ( ) A.4 n - 8 B.8 n - 16 C. 16 n - 16 D.16 n - 32 、填空题 1.如图,O 01和O O2的半径为2和3,连接 0102交O O2于点P , 0102=7若将O 01绕点 01与O 02相切时的旋转时间为 的位置关系是 3.已知O 01和O ° 2的半径分别为3cm 和5cm,且它们内切,则 °1。2等于 ▲ cm . 4.已知O 01的半径为 3,O 02的半径为 5, 010 2 =乙则O 01、O 0 2的位置关系是 P 按顺时针方向以 30° /秒的速度旋转一周,请写出 O O1、O 0 2

高考数学一轮总复习练习圆与圆的位置关系 (2)

1.已知圆M:x2+y2=2与圆N:(x-1)2+(y-2)2=3,那么两圆的位置关系是() A.内切B.相交C.外切D.外离 2.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m等于() A.21 B.19 C.9 D.-11 3.圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有() A.1条B.2条C.3条D.4条 4.已知圆M:x2+(y+1)2=4,圆N的圆心坐标为(2,1),若圆M与圆N交于A,B两点,且|AB|=22,则圆N的方程为() A.(x-2)2+(y-1)2=4 B.(x-2)2+(y-1)2=20 C.(x-2)2+(y-1)2=12

D.(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20 5.圆x2+y2-2x+F=0和圆x2+y2+2x+Ey-4=0的公共弦所在的直线方程是x-y+1=0,则() A.E=-4,F=8 B.E=4,F=-8 C.E=-4,F=-8 D.E=4,F=8 6.(2020·温州质检)已知圆M:(x-a)2+y2=4(a>0)与圆N:x2+(y-1)2=1外切,则直线x-y-2=0被圆M截得的弦长为() A.1 B. 3 C.2 D.2 3 7.(2019·慈溪中学月考)已知圆M:(x-4)2+(y-3)2=4和两点A(-a,0),B(a,0),a>0,若圆M上存在点P,使得∠APB=90°,则a的最大值为() A.4 B.5 C.6 D.7 8.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是() A.内切B.相交 C.外切D.外离 9.(2019·宁波期末)已知圆C:x2+y2-4x+a=0,则实数a的取值范围为________;若圆x2+y2=1与圆C外切,则a的值为________. 10.若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是____________. 11.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b应满足的关系式是() A.a2-2a-2b-3=0 B.a2+2a+2b+5=0

圆与圆的位置关系学案

4.2.2 圆与圆的位置关系(学案) 姓名: 一、复习引入:圆与圆的位置关系 设两圆1C 与2C 的半径分别为R r ,,圆心距为12=C C d 。 (二)自主探究:如何根据圆的方程,判断它们之间的位置关系? 类比回顾:

典例(教材P129页例3)已知圆2212880C x y x y +++-=:, 2224420C x y x y +---=:,试判断圆1C 与圆2C 的位置关系? (三)形成方法: 典例变式1:判定圆221210240C x y x y ++--=:,222440C x y x y +--=:的位置关系?

(四)问题再探: 思考1:在典例中,设两圆相交于A 、B 两点,如何求相交弦AB 的直线方程?你有什么发现? 思考2:在典例中,怎么求公共弦AB 的长? (五)提升练习: 典例变式2:已知圆2212880C x y x y +++-=:, 2222108410(0)C x y x y r r +---+=>:,当r 为何值时,两圆的位置关系为外切? 相交?内含?

(六)课堂小结: 绵中精品小练习及两个思考探究题: 探究1:对比直线的交点系方程,当圆2211110C x y D x E y F ++++=:与圆 2222220C x y D x E y F ++++=:相交时,方程 ()2222111222+0x y D x E y F x y D x E y F λ++++++++=可以表示什么曲线? 探究2:已知两圆2211110C x y D x E y F ++++=:与2222220C x y D x E y F ++++=: 当1C 与2C 相交时,直线()()()1212120l D D x E E y F F -+-+-=:表示两圆的公共弦方程。那么,当两圆相切或是相离时,直线l 是否有一定的几何特征呢?

24.2点、直线、圆和圆的位置关系练习题

1 24.2点、直线、圆和圆的位置关系练习题 1.已知⊙O 的半径为5,圆心O 的坐标为(0,0),点P 的坐标为(3,4),那么点P 与⊙O 的位置关系是 2.已知⊙O 1、⊙O 2 的半径分别是 r 1=2,r 2=4,若两圆相交,则圆心O 1O 2D 可能的取值是( ) A.2 B.4 C.6 D.8 3.如图1所示,PA 、PB 是⊙O 的切线,切点分别是A 、B,如果∠P=60°,求∠AOB 的大小。 4.如图2所示,已知△ABC ,AC=BC=6,∠C=90°,O 是AB 的中点,⊙O 与AC 、BC 分别相切与点D 与点E.点F 是⊙O 与AB 的一个交点,连DF 并延长交CB 的延长线于点G,求CG 的长度。 5.如图3所示,已知直线AB 是⊙O 的切线,A 为切点,OB 交⊙O 与点C ,点D 在⊙O 上,且∠ADC=40°,求∠ADC 的大小。 6.如图4所示两圆相交于A 、B 两点,小圆经过大圆的圆心O, 点C 、D 分别在两圆上,若∠ADB=100°,求∠ACB 的大小。 7.已知:如图5所示,在△ABC 中,D 是AB 边上一点,圆O 经过D 、B 、C 三点,∠DOC=2,∠ACD=90°。 (1)求证:直线AC 是圆O 的切线; (2)如果∠ACB=75°,圆O 的半径为2,求BD 的长。 图5 B C A 图4C D 图3 A 图1P B

2 8.如图6所示,AB 是⊙O 的切线,A 为切点,AC 是⊙O 的弦,过O 坐OH ⊥AC 于点H,若OH=2,AB=12,BO=13. (1)求⊙O 的半径; (2)AC 的值。 9.如图7所示,已知⊙O 的外切等腰梯形ABCD , AD ∥BC,AB=DC,梯形中位线为EF. (1)求证:EF=AB; (2)若EF=5,AD:BC=1:4,求此梯形ABCD 的面积。 10.如图8所示,正方形ABCD 中,有一直径BC 的半圆,BC=2cm ,现有两点E 、F,分别从点B ,点A 同时出发,点E 沿线段BA 以1cm/s 的速度向点E 运动,点F 沿折线A-D-C 以2cm/s 的速度向点C 运动,设点E 离开点B 的时间为t(s). (1)当t 为何值时,线段EF 与BC 平行? (2)设1﹤t ﹤2,当t 为何值时,EF 与半圆相切? 图7 B B H O C B

新苏科版九年级数学上册:2.5 直线与圆的位置关系(1)学案

新苏科版九年级数学上册:2.5 直线与圆的位置关系(1)学案 时间 学习目标1.经历探索直线与圆的位置关系的过程; 2.理解直线与圆的三种位置关系——相交、相切、相离;3.能利用圆心到直线的距离d与圆的半径r之间的数量关系判别直线与圆的位置关系. 学习重点用“圆心到直线的距离与圆半径之间的数量关系”来描述“直线与圆的位置关系”的方法. 学习难点直线和圆相切:“直线和圆有唯一公共点”的含义. 学习过程: 【预习·导学】 我们已经学习过点和圆的位置关系,请同学们回忆: (1)点和圆有哪几种位置关系? (2)怎样判定点和圆的位置关系?(数量关系——位置关系) 【预习检测】 【教学内容】 实践探索一:直线和圆的位置关系 在纸上画一个圆,上下移动直尺.把直尺看作直线,在移动的过程中观察直线与圆的位置关系发生了怎样的变化? 直线与圆的三种不同位置关系与直线与圆的公共点个数有关.(1)直线和圆有两个公共点,叫做直线和圆相交. (2)直线和圆有唯一公共点,叫做直线和圆相切,这条直线叫圆的切线,这个公共点叫切点.

(3)直线和圆没有公共点时,叫做直线和圆相离. 【小组合作探究】 实践探索二:探究直线与圆的位置关系的数量特征 1.直线与圆的位置关系能否像点与圆的位置关系一样,也可以用数量关系来刻画它们的三种位置关系呢?1.学生自己画图探究,并进行全班交流研讨. (1)直线与圆相交 d <r ; (2)直线与圆相切 d =r ; (3)直线与圆相离 d >r . 【大班交流,师生互动】 例1 在△ABC 中,∠A =45°,AC =4,以C 为圆心,r 为半径的圆与直线AB 有怎样的位置关系?为什么? (1)r =2;(2)r =22;(3)r =3. d O (1)相交 r d .(2)相切 r d .(3)相离 r O O

圆与圆的位置关系课时练习题(附答案)

圆与圆的位置关系课时练习题(附答案) 课时提升作业(二十五) 圆与圆的位置关系一、选择题(每小题3分,共18分) 1.(2014?重庆高一检测)圆C1:x2+y2-4x=0和C2: x2+y2-4y=0的位置关系是( ) A.外切 B.相离 C.内切 D.相交 【解析】选D.C1的圆心为(2,0),r1=2, C2的圆心为(0,2),r2=2,|C1C2|= =2 ,所以|r1-r2|<|C1C2|

《圆与圆的位置关系》练习题

《圆与圆的位置关系》练习题 一、选择 1. (泸州)已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为( ) A .外离 B .外切 C .相交 D .内切 2. (滨州)已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( ) A .01d << B .5d > C .01d <<或5d > D .01d <≤或5d > 3.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 4. .(益阳市)已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2 的取值范围在数轴上表示正确的是 5.(肇庆)10.若1O ⊙与2O ⊙相切, 且125 O O =,1O ⊙的半径12r =,则2O ⊙的半径2 r 是( ) A . 3 B . 5 C . 7 D . 3 或7 6. (遂宁)如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A.B ,且O 1A ⊥O 2A ,则图中 阴影部分的面积是 A.4π-8 B. 8π.16π 7.(常德市)如图4,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的 长为( ) A .4cm B .5cm C .6cm D .8cm 8.(荆州年)如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径分别为6,3,则 图中阴影部分的面积是( ) A .π B .π C .3π D .2π 9.(乌鲁木齐市)若相交两圆的半径分别为1和2,则此两圆的圆心距可能是( ). A .1 B .2 C .3 D .4 10.(陕西省)图中圆与圆之间不同的位置关系有 ( ) A .2种 B .3种 C .4种 D .5种 二、填空 11.(济宁市)已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是 . 12. (齐齐哈尔市)已知相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,则这两个圆的圆 心距是_____________. 13.(锦州)如图所示,点A.B 在直线MN 上,AB=11cm ,⊙A 、.⊙B 的半径均为1cm ,⊙A 以每 秒2cm 的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0),当点A 出发后____秒两圆相切. 14. (重庆)已知1O ⊙的半径为3cm ,2O ⊙的半径为4cm ,两圆的圆心距12O O 为7cm ,则1O ⊙与 2O ⊙的位置关系是 . 15. (莆田)已知1O ⊙和2O ⊙的半径分别是一元二次方程()()120x x --=的两根,且122 OO =,则1O ⊙和2O ⊙的位置关系是 . 16.(宜昌)如图,日食图中表示太阳和月亮的分别为两个圆, 这两个圆的位置关系是 . 17.(绍兴市)如图,A ⊙,B ⊙的半径分别为1cm ,2cm ,圆心距AB 为5cm .如果A ⊙由图示位置沿直线AB 向右平移3cm ,则此时该圆与B ⊙的位置关系是__________. 18.(威海)如图,⊙O 1和⊙O 2的半径为1和3,连接O 1O 2,交⊙O 2于点P ,O 1O 2=8,若将⊙O 1绕点P 按顺时针方向旋转360°,则⊙O 1与⊙O 2共相切_______次. 19.(大兴安岭)已知相切两圆的半径分别为cm 5和cm 4,这两个圆的圆心距是 . 20.(佛山市)已知ABC △的三边分别是a b c ,,,两圆的半径12r a r b ==,,圆心距d c =,则这两个圆的位置关系是 . 三、解答 21.(兰州)如图16,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A .与大 圆相交于点B .小圆的切线AC 与大圆相交于点D ,且CO 平分∠ACB . (1)试判断BC 所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC .AD .BC 之间的数量关系,并说明理由; (3)若8cm 10cm AB BC ==,,求大圆与小圆围成的圆环的 面积.(结果保留π) B . D . A . C .

圆与圆的位置关系

精心整理第三讲直线与圆的位置关系、圆与圆的位置关系 第一部分知识梳理 一.直线与圆的位置关系 1.直线与圆的三种位置关系

如图,设⊙O的半径为r,圆心O到直线l的距离为d,得出直线和圆的三种位置关系: (1)直线l和⊙O相离?d r > 此时:直线和圆没有公共点. (2)直线l和⊙O相切?d r = . (1)如果一条直线与圆只有一个公共点,那么这条直线是圆的切线. (2)到圆心的距离等于半径的直线是圆的切线. (3)经过半径的外端且垂直与这条半径的直线是圆的切线. 证明直线是圆的切线的两种情况: (1)当不能说明直线与圆是否有公共点时,应当用“圆心到直线的距离等于半径

长”来判定直线与圆相切. (2)当已知直线与圆有公共点时,应当用判定定理,即“经过半径外端且垂直于半径的直线是圆的切线”,简单地说,就是“联半径,证垂直”. 二.圆与圆的位置关系 1.圆与圆的五种位置关系 在同一个平面内,两个不等的圆的位置关系共有五种:外离、外切、相交、内切、 ( ( ( ( ( 2. 注:当两圆相切时分为两种情况:外切和内切. 3.相交两圆的性质 相交两圆的性质:相交两圆的连心线垂直平分两圆的公共弦. 注:当两圆相交时分为两种情况:圆心在公共弦的同侧和圆心在公共弦的两侧. 第二部分例题精讲

例1如图,已知Rt ABC ?中,∠C=90°,AC=3,BC=4 (1)圆心为点C、半径长R为2的圆与直线AB有怎样的位置关系? (2)圆心为点C、半径长R为4的圆与直线AB有怎样的位置关系? (3)如果以点C为圆心的圆与直线AB有公共点,求⊙C的半径R的取值范围. . 已知Rt ABC ?中,∠ABC=90°,AB=3,BC=4,以B为圆心作⊙B. (1)若⊙B与斜边AC只有唯一一个公共点,求⊙B的半径长R的取值范围. (2)若⊙B与斜边AC没有公共点,求⊙B的半径长R的取值范围. 例2已知:直线AB经过⊙O上的点C,并且

《直线和圆的位置关系》教学设计实施方案范立琰

《直线和圆地位置关系》教学设计 (课时:第一课时撰稿人:范立琰) 【课标分析】理解直线与圆有相交、相切、相离三种位置关系:了解切线地概念. 【教材分析】这部分内容包括直线和圆地三种关系,探索圆地切线地性质,探索圆地切线地判定方法,以及作三角形内切圆地方法.探索并证明切线长定理,并运用切线长定理进行有关地论证和计算. 本节课主要研究直线和圆地三种位置关系. 【学生分析】首先让学生感受生活中反映直线与圆位置关系地现象,然后让学生动手操作,在这一过程中引导学生归纳出直线与圆地几种位置关系,进一步归纳出直线与圆地不同位置关系中d与r地大小关系,然后对d=r地情形特别关注,这就是圆和直线地相切关系,从而讨论得出切线地性质,再通过旋转实验地办法探索切线地判定条件.在此基础上能做出三角形地内切圆.在教学中主要让学生探索归纳,当遇到困难时教师给予适当指导,这样可以充分发挥学生地主观能动性,还能增进同学们地友谊,培养学生地合作能力. 【教学过程】 d

它们分别是相交、相切、相离. (1)当直线与圆有两个公共点时,叫做直线和圆相交. (2)当直线和圆有唯一公共点时,叫做直线与圆相切,这条直线叫做圆地切线.这个唯一地公共点叫做切点.

当直线与圆相交时当直线与圆相切时当直线与圆相离时

作AB地垂线段CD.

点在圆内r.-------------------- dr 版权申明 本文部分内容,包括文字、图片、以及设计等在网上搜集整理. 版权为个人所有 This article includes some parts, including text, pictures, and design. Copyright is personal ownership.DXDiTa9E3d 用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律

点和圆的位置关系 专题练习题 含答案

点和圆的位置关系专题练习题 1.⊙O的半径为5 cm,点A到圆心O的距离OA=3 cm,则点A与⊙O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定 2.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是( ) A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定 1.⊙O的半径为5 cm,点A到圆心O的距离OA=3 cm,则点A与⊙O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定 2.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是( ) A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定 5.过一点可以作_________个圆;过两点可以作_______个圆,这些圆的圆心在两点连线的___________________上;过不在同一条直线上的三点可以作________个圆. 6.下列关于确定一个圆的说法中,正确的是( ) A.三个点一定能确定一个圆B.以已知线段为半径能确定一个圆 C.以已知线段为直径能确定一个圆D.菱形的四个顶点能确定一个圆 7.下列命题中,错误的有( ) ①三角形只有一个外接圆;②三角形的外心是三角形三条边的垂直平分线的交点;③等边三角形的外心也是其三边的垂直平分线、高及角平分线的交点;④任何三角形都有外心. A.3个B.2个C.1个D.0个 8.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( ) A.点P B.点Q C.点R D.点M 9.直角三角形的外心是________的中点,锐角三角形的外心在三角形的_________,钝角三角形的外心在三角形的__________. 10.如图,一只猫观察到一老鼠洞的三个洞口A,B,C,这三个洞口不在同一条直线上,请问这只猫应该在什么地方才能最省力地同时顾及三个洞口?作出这个位置.

数学:河南省大峪二中《圆与圆的位置关系》单元测试(人教版九年级)

数学:河南省大峪二中《圆与圆的位置关系》单元测试(人教版九年级) 一.选择 1. (2009年泸州)已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为 A .外离 B .外切 C .相交 D .内切 2. (2009年滨州)已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( ) A .01d << B .5d > C .01d <<或5d > D .01d <≤或5d > 3.(2009年台州市)大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为( ) A .外离 B .外切 C.相交 D .内含 4.(2009桂林百色)右图是一张卡通图,图中两圆的位置关系( ) A .相交 B .外离 C .内切 D .内含 5.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 6(2009年衢州)外切两圆的圆心距是7,其中一圆的半径是4,则另一圆的半径是 A .11 B .7 C .4 D .3 7.(2009年舟山)外切两圆的圆心距是7,其中一圆的半径是4,则另一圆的半径是 A .11 B .7 C .4 D .3 8. .(2009年益阳市)已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是 B . 3 1 0 2 4 5 D . 3 1 0 2 4 5 A . 3 1 0 2 4 5 C . 3 1 0 2 4 5

相关文档
最新文档