名词解释配位化学

名词解释配位化学
名词解释配位化学

名词解释

1,配位化合物:一类具有特征化学结构的化合物,由中心原子或离子(统称中心原子)和围绕它的称为配位体(简称配体)的分子或离子,完全或部分由配位键结合形成。

2,价键轨道理论:

1.两个原子的成单电子若自旋相反则可两两配对形成共价键

2.共价键的形成是原子轨道的重叠,重叠程度越大,共价键越稳定

3.共价键有方向性和饱和性

3,晶体场理论要点:

1、中心离子与配体之间看作纯粹的静电作用

2、中心离子d轨道在配体(场)作用下,发生能级分裂。

3、d电子在分裂后的d轨道上重排,改变了d电子的能量。

4,分子轨道理论:分子轨道理论从分子整体出发,考虑电子在分子内部的运动状态,是一种化学键的量子理论.该理论的要点有:

1.在分子中电子不是属于某个特定的原子,电子不在某个原子轨道中运动,而是在分子轨道中运动.分子中每个运动状态则用波函数表示,即分子轨道;

2.分子轨道是由分子中原子的原子轨道线性组合而成,组成后形成的分子轨道数目与结合前的原子轨道数目相等(轨道杂化则是同一原子的不同原子轨道的重新组合,而且分子轨道是多中心的,原子轨道只有一个中心);

3.原子轨道线性组合得到分子轨道.其中能量高于原来原子轨道者成为反键分子轨道,能量低于原来原子轨道者称为成键分子轨道;

4.每个分子轨道都有对应的图像.

5,晶体场稳定化能:若d轨道不是处在全满或全空时,d电子分裂轨道后的总能量低于分裂前轨道的总能量。这个总能量的降低值,称为晶体场稳定化能。此能量越大,配合物越稳定。

6,姜泰勒效应:电子在简并轨道中的不对称占据会导致分子的几何构型发生畸变,从而降低分子的对称性和轨道的简并度,使体系的能量进一步下降,这种效应称为姜-泰勒效应。7,电子组态:电子组态指原子内电子壳层排布的标示。又称电子构型或核外电子排布。8,微观态:如果使用分子数分布并且区分具体的分子来描写的系统状态叫热力学系统的微观态。

9,单重态:根据泡里不相容原理,在同一轨道上的两个电子的自旋方向要彼此相反,即基态分子的电子是自旋成对的,净自旋为零,这种电子都配对的分子电子能态称为单重态(singlet state),具有抗磁性。

10,二重态:

11,三重态:分子处于激发的三重态,即分子中含有两个自旋不配对的电子。

电子激发态的多重度用M=2s+1表示,s为电子自旋量子数的代数和,其数值为0或1.根据pauli不相容原理,分子中同一轨道所占据的两个电子必须具有相反的自旋方向,即自旋配对。假如分子中全部轨道里的电子都是自旋配对的,即s=0,分子的多重度M=1,该分子体系便处于单重态,用符号S表示。大多数有机物分子的基态是处于单重态的。电子的跃迁过程中如果还同时伴随了自旋方向的改变,这时分子便具有了两个自旋不配对的电子,即s=1,分子的多重度M=3,分子处于激发的三重态,用符号T表示。处于分立轨道上的非成对电子,平行自旋要比成对自旋更稳定些(Hund定则),因此三重态能级总是比相应的单重态略低。

12,光谱项:标记粒子的一个能态的量子数称为光谱项符号.

光谱项符号是:

式中,n是主量子数;S是自旋角动量量子数,“2S+1”是光谱项的多重项,也可表示为M;L是角量子数;J是总量子数。

当L〉S时,由L和S确定的每一个光谱项,将会有2S+1个具有不同J值的光谱支项。由于J值不同的支项,其能量差别极小,所以由它们产生的光谱线,波长极为接近,称为多重线系。把原子中所有可能存在的状态的光谱项,用图解的形式表示即为原子能级图。

13,光谱基项:对于给定的电子组态,通常有多个光谱项,而基谱项是其中能量最低的光谱项. 14,电荷迁移光谱:电荷迁移光谱(charge-transfer band)是描述配合物在发生电子迁移跃迁(CT)时描述吸收光强度和波长的对应关系的光谱。

15,主要电荷迁移形式:当带电雾滴或粉尘撞击在导体上时,会产生电荷迁移;当气体离子流射在不带电的物体上时,也会产生电荷迁移。

16,配位取代反应:指配体取代配合物中另一种配体的反应。根据取代反应的快慢,常把配合物分为活性配合物和惰性配合物。金属水合配合物中水被取代的反应速率常作为活性或惰性的衡量标准。

17,活性与惰性配合物:化学性质活波和不活波的配合物。

18,反应效应:反应热效应:当系统发生了化学变化之后,系统的温度回到反应前始态的温度,系统放出或吸收的热量,称为该反应的热效应。研究化学反应中热与其他能量变化的定量关系的学科叫做热化学。

19,簇合物:原子簇化合物是以三个或三个以上的有限原子直接键合形成的多面体或缺顶多面体为特征的分子或离子。

.

名词解释

(1)分析功能团:是在有机试剂分子中存在着一些基团,这些基团在不同的试剂分子中,但与一定的金属离子反应时,表现出一致的共性,这样的反应基团就称为这种离子 或这些离子的分析功能团。 (2)Cmc效应:溶液浓度在cmc以下时,溶液中基本上是单个表面活性剂分子,当表面吸附量随浓度增加而趋于饱和后,浓度超过cmc时,单个表面活性剂分子浓度不再增加,而是胶束浓度增加。 (3)螯合效应:是指在相同配位原子与统一金属离子生成相同数目配位化学键的情况下,由配体形成的螯合物,要比由简单配位形成的配合物稳定得多,这种螯合物具有特 殊稳定性称为螯合效应。 (4)熵效应:螯合试剂与金属离子形成螯合物的反应过程中,系统的熵变值比形成简单配合物反应的系统熵变值大,所以螯合试剂与金属离子更易形成螯合物。 (5)环效应:假定构成螯环的原子全部以单键联接,两共价键间的正常夹角为109.5°,也就是说在环结构中键夹角越接近109.5°越稳定。 (6)加重效应:随螯合试剂分子中憎水基团的加大,所形成的螯合物在水中的溶解度减小,检出限灵敏度提高,这种作用称为憎水基的加重效应。 (7)生色效应: (8)空间位阻效应:当取代基处于螯合剂某些特定位置时,能使螯合物的稳定性下降,由取代基位置而引起的螯合物稳定性下降的作用,称为取代基的空间位阻效应。(9)增溶效应:由亲水基团引起的溶解性增强称为亲水基团的增溶效应。 (10)软硬酸碱规则:硬碱优先与硬酸配位,软碱优先与软酸配位。 (11)溶剂化作用:在水溶液中,由于溶质能与水形成氢键,从而增进溶解度,这种作用称为溶剂化作用。 2.表面活性剂主要有哪几种类型?每一种写一个具体结构式。 答:分为阴离子表面活性剂,阳离子表面活性剂,两性表面活性剂,非离子型表面活性剂以及其他类型。 其中:阴离子表面活性剂——十四烷基磺酸钠 阳离子表面活性剂——氯化十六烷基三甲基铵 两性表面活性剂——十二烷基氨基丙酸 非离子型表面活性剂——聚氧乙烯烷基胺 其他类型——全氟辛酸钾

配位化合物知识点讲解(教师版)

1、配位化合物 (1)概念:金属离子或原子与某些分子或离子以配位键结合而形成的化合物称为配位化合物,简称配合物。 作为电子对接受体的金属离子或原子称为中心离子(原子),又称配合物的形成体,作为电子对给予体的分子或离子称为配体。 [Cu(H2O)4]2+的空间结构为平面正方形。 (2)配合物的结构 [Cu(NH3)4]SO4为例说明。 注意:离子型配合物是由内界和外界组成,内界由中心离子和配体组成。 (3)配合物的命名: 例如:[Cu(NH3)4]SO4硫酸四氨合铜 练习:对下列配合物进行命名 [Cu(NH3)4]Cl2K3[Fe(SCN)6] Na3[AlF6] 3、几种常见的配合物 实验:硫酸四氨合铜的制备。 现象:向CuSO4溶液中加入氨水,生成蓝色沉淀,继续加入氨水,沉淀溶解,得到深蓝色溶液。再加入乙醇,析出深蓝色的晶体。 有关反应的离子方程式为:Cu2++2NH3·H2O=Cu(OH)2↓+2OH- Cu(OH)2+4NH3=[Cu(NH3)4]2++2OH- 蓝色沉淀深蓝色溶液 在[Cu(NH3)4]2+里,中心离子是Cu2+,配体是NH3,NH3分子的氮原子给出孤电子对,以配位键形成了[Cu(NH3)4]2+: [Cu(NH3)4]2+的空间结构为平面正方形。 实验:硫氰化铁的制备。向氯化铁溶液中滴加硫氰化钾溶液。 现象:形成血红色溶液。有关反应的化学方程式为:FeCl3+3KSCN=Fe(SCN)3+3KCl

Fe(SCN)3呈血红色,它是一种配合物。上述实验可用于鉴定溶液中存在Fe3+。 呈血红色的是一系列配合物:Fe(SCN)2+、Fe(SCN)2+、Fe(SCN)3、Fe(SCN)4-、Fe(SCN)52-、Fe(SCN)63-,配位数从1~6。 注意:配位键的强度有大有小,因而有的配合物很稳定,有的不很稳定。许多过渡金属离子对多种配体具有很强的结合力,因而,过渡金属配合物远比主族金属配合物多。 [随堂练习] 1.铵根离子中存在的化学键类型按离子键、共价键和配位键分类,应含有() A.离子键和共价键B.离子键和配位键 C.配位键和共价键D.离子键答案:C 2.下列属于配合物的是() A.NH4Cl B.Na2CO3·10H2O C.CuSO4·5H2O D.Co(NH3)6Cl3 答案:CD 3.下列分子或离子中,能提供孤对电子与某些金属离子形成配位键的是() ①H2O ②NH3③F-④CN-⑤CO A.①②B.①②③ C.①②④D.①②③④⑤答案:D 4.配合物在许多方面有着广泛的应用。下列叙述不正确的是() A.以Mg2+为中心的大环配合物叶绿素能催化光合作用 B.Fe2+的卟啉配合物是输送O2的血红素 C.[Ag(NH3)2]+是化学镀银的有效成分 D.向溶液中逐滴加入氨水,可除去硫酸锌溶液中的Cu2+ 答案:D 5.下列微粒:①H3O+②NH4+③CH3COO-④NH3⑤CH4中含有配位键的是() A.①②B.①③ C.④⑤D.②④答案:A 6.下列不属于配位化合物的是() A.六氟和铝酸钠B.氢氧化二氨合银(银氨溶液)C.六氰合铁酸钾D.十二水硫酸铝钾答案:D 7.指出配合物K2[Cu(CN)4]的配离子、中心离子、配位体、配位数及配位原子。 8.亚硝酸根NO2-作为配体,有两种方式。其一是氮原子提供孤对电子与中心原子配位;另一是氧原子提供孤对电子与中心原子配位。前者称为硝基,后者称为亚硝酸根。 [Co(NH3)5NO2]Cl2就有两种存在形式,试画出这两种形式的配离子的结构式。

名词解释配位化学

名词解释 1,配位化合物:一类具有特征化学结构的化合物,由中心原子或离子(统称中心原子)和围绕它的称为配位体(简称配体)的分子或离子,完全或部分由配位键结合形成。 2,价键轨道理论: 1.两个原子的成单电子若自旋相反则可两两配对形成共价键 2.共价键的形成是原子轨道的重叠,重叠程度越大,共价键越稳定 3.共价键有方向性和饱和性 3,晶体场理论要点: 1、中心离子与配体之间看作纯粹的静电作用 2、中心离子d轨道在配体(场)作用下,发生能级分裂。 3、d电子在分裂后的d轨道上重排,改变了d电子的能量。 4,分子轨道理论:分子轨道理论从分子整体出发,考虑电子在分子内部的运动状态,是一种化学键的量子理论.该理论的要点有: 1.在分子中电子不是属于某个特定的原子,电子不在某个原子轨道中运动,而是在分子轨道中运动.分子中每个运动状态则用波函数表示,即分子轨道; 2.分子轨道是由分子中原子的原子轨道线性组合而成,组成后形成的分子轨道数目与结合前的原子轨道数目相等(轨道杂化则是同一原子的不同原子轨道的重新组合,而且分子轨道是多中心的,原子轨道只有一个中心); 3.原子轨道线性组合得到分子轨道.其中能量高于原来原子轨道者成为反键分子轨道,能量低于原来原子轨道者称为成键分子轨道; 4.每个分子轨道都有对应的图像. 5,晶体场稳定化能:若d轨道不是处在全满或全空时,d电子分裂轨道后的总能量低于分裂前轨道的总能量。这个总能量的降低值,称为晶体场稳定化能。此能量越大,配合物越稳定。 6,姜泰勒效应:电子在简并轨道中的不对称占据会导致分子的几何构型发生畸变,从而降低分子的对称性和轨道的简并度,使体系的能量进一步下降,这种效应称为姜-泰勒效应。7,电子组态:电子组态指原子内电子壳层排布的标示。又称电子构型或核外电子排布。8,微观态:如果使用分子数分布并且区分具体的分子来描写的系统状态叫热力学系统的微观态。 9,单重态:根据泡里不相容原理,在同一轨道上的两个电子的自旋方向要彼此相反,即基态分子的电子是自旋成对的,净自旋为零,这种电子都配对的分子电子能态称为单重态(singlet state),具有抗磁性。 10,二重态: 11,三重态:分子处于激发的三重态,即分子中含有两个自旋不配对的电子。 电子激发态的多重度用M=2s+1表示,s为电子自旋量子数的代数和,其数值为0或1.根据pauli不相容原理,分子中同一轨道所占据的两个电子必须具有相反的自旋方向,即自旋配对。假如分子中全部轨道里的电子都是自旋配对的,即s=0,分子的多重度M=1,该分子体系便处于单重态,用符号S表示。大多数有机物分子的基态是处于单重态的。电子的跃迁过程中如果还同时伴随了自旋方向的改变,这时分子便具有了两个自旋不配对的电子,即s=1,分子的多重度M=3,分子处于激发的三重态,用符号T表示。处于分立轨道上的非成对电子,平行自旋要比成对自旋更稳定些(Hund定则),因此三重态能级总是比相应的单重态略低。

配位化学简答题

#[Fe(H2O)6]2+价键理论晶体场理论解释 答价键理论:在[Fe(H2O)6]2+中,H2O的配位原子为电负性较大的O,不易给出电子对,对Fe2+的d 电子排布影响小;中心原子Fe(II)的价电子构型为d6,没有空d轨道,只能用外层d轨道形成sp3d2杂化,外轨型,有4个单电子,高自旋;在[Fe(CN)6] 4–中,CN–的配位原子为电负性较小的C,易给出电子对,对Fe2+的d电子排布影响大,Fe2+ 的6个单电子被挤到3个d轨道,空出2个d轨道,可用内层d轨道形成d2sp3杂化,内轨型,没有单电子,反磁性。 #CN-、CO异同 异1、CN-为带负电荷的阴离子,CN-是比CO强的路易斯碱。 2、CN-形成的6配键比CO强,但CN-接受d电子形成反馈pai键的能力不如CO。 3、在作桥基配位时,CN-总是一头以C原子与一个金属离子结合,一头以N原子与另一个金属离子结合。 4、CN-与过渡金属离子多形成单一型的配离子。 同:配体CN-、CO是等电子体,他们具有相同的结构特征,与过渡金属形成的配合物,既含有6键又含有反馈pai键,构成6——pai双键结构。 #Pt(C2H4)Cl3成键 Pt(5d86S06P0)采用dsp2杂化。它用三个空dsp2杂化轨道接受配体的孤对电子(Cl-)形成3个6键,1个空dsp2杂化轨道接受乙烯的成键pai电子形成6键,与此同时,Pt(II)中d 轨道上的电子,则和乙烯分子中的空反键π*轨道形成另一个三中心配键,在这个三中心配键中,Pt(II)是电子的给予体,乙烯分子是电子对的接受体,这种6配键和反馈pai配键的协同作用的结果,使蔡斯盐相当稳定。 #Re-Re成键 取Re-Re键轴方向为Z轴方向。Re(III)具有d4构型,每个Re原子用其dx2-y2轨道与s、Px、Py轨道杂化,形成4个dSP2杂化,共接受4个Cl-配体,形成4个正常的6键。每个Re还剩4条d轨道,其中 2个Re(III)的dZ2轨道互相重叠形成6键,dXZ、dYZ轨道相互重叠形成pai键,dXY轨道相互重叠形成deta键。 # 超分子化学和分子识别 超分子化学是研究两种以上的化学物种通过分子间相互作用缔结成为具有特定结构和功能的超分子体系的科学。简言之,超分子化学是研究多个分子通过非共价键作用而形成的功能体系的科学。 分子识别:是指主体(受体)对客体(底物)选择性结合并产生某种特定功能的过程。常见的有冠醚的离子/分子识别,环糊精,杯芳烃离子/分子识别等。 过渡金属颜色的解释 过渡金属离子常常具有d1到d9电子构型,在溶液中他们易与各种配体形成配合物而具有颜色,因为发生d-d跃迁。跃迁所需的能量一般在可见光范围内,所以配合物常常具有颜色。 #晶体场理论 1、晶体场理论认为,配体的孤电子对并没有进入中心原子的轨道,配体除与中心原子的核产生静电吸力外,还对中心原子的d轨道产生斥力。即在配合物中,中心原子处在由配体(负离子或极性分子)所形成的静电场中,中心原子和配体之间作用为静电作用。 2、在配体静电场作用下,中心原子原来简并的5个d轨道能级发生分裂,有的能量升高,有的能量降低。轨道分裂后,最高能级的d轨道与最低能级的d轨道之间的能量差称为分裂能。 3、配合物中心原子能级分裂的结果,使配合物得到稳定化能CFSE。

配位化学的创始人---维尔纳(AlfredWerner)

配位化学的创始人---维尔纳(Alfred.Werner) 上官亦卿 (西北大学化学系05级材料化学专业 西安 710069) 摘要:本文主要介绍配位化学之父——维尔纳发现配位理论的过程、所获得的成 就、与同时代科学家袁根生的争论以及简谈配位化学的发展。 关键词:维尔纳 配位化学理论 配位化学的发展 1913年诺贝尔奖金获得者,配位化学的奠基人维尔纳(1866—1919,瑞士)是第一个认识到金属离子可以通过不只一种“原子价”同其他分子或离子相结合以生成相当稳定的复杂物类,同时给出与配位化合物性质相符的结构概念的伟大科学家。 一、实践与挑战 配位化合物曾经是对无机化学家的一个挑战。在早期的化学中,他们似乎是不寻常的和反抗通常原子规律的。 通常元素都有固定的原子价,如Na +、O 2-、Cu +2/+3、P -3/+3/+5。然而,某些元素的化合物却难以用通常原子价图式去解释。例如Cr 的原子价是+3,为什么原子价都已经满足CrCl 分子和NH 分子,却依然能够相互作用形成CrCl ·6NH 分子?同样,PtCl 可以继续同NH 作用生成PtCl ·4NH ? 33332323对于CoCl 3·6H 2O 的有趣故事,人们知道的更早。1799年的塔萨厄尔(Tassaert)往CoCl 2溶液中加入氨水,先生成Co(OH)2沉淀,继续加入氨水则Co(OH)2溶解,放置一天后便析出一种橙色晶体,经过分析得知是CoCl 3·6NH 3,Co(OH)2在过量氨的存在下被氧化成3价。起初,人们把这种橙色晶体看成是稳定性较差的CoCl 3和6NH 3分子加合物;但事实却相反,当把它加热到150°C 时,却无法释放出氨;用稀硫酸溶解后,回流几个小时也不生成硫酸铵。这一特征引起了人们的注意[1]。 1847年前后,根特(F.A.Genth)进一步研究了三价钴盐与氨生成的几种化合物,并分析了他们的组成。结果表明:钴盐与氨的化合物不仅因氨分子的数量不同而有不同的颜色,而且钴氨盐中氯的行为也有所不同。 上述复杂的现象,显然不能用简单的原子价规律给予圆满说明,不少人在这方面常识,并未成功。 二、需要冲破旧理论的框子 原子价的概念需要扩充,但是当时的一些化学家却抱着僵死的观念不放。如

配合物的生成和性质讲解学习

配合物的生成和性质

配合物的生成和性质 一、实验目的 1、了解有关配合物的生成,配离子及简单离子的区别。 2、比较配离子的稳定性,了解配位平衡与沉淀反应、氧化还原反应以及溶液酸度的关系。 二、实验原理 由一个简单的正离子和几个中性分子或其它离子结合而成的复杂离子叫配离子,含有配离子的化合物叫配合物。配离子在溶液中也能或多或少地离解成简单离子或分子。例如:[Cu(NH 3)4]2+配离子在溶液中存在下列离解平衡: 32243NH 4Cu ])NH (Cu [+?++ )])(([)()(243342++?=NH Cu C NH C Cu C K d 不稳定常数K d 表示该离子离解成简单离子趋势的大小。 配离子的离解平衡也是一种化学平衡。能向着生成更难离解或更难溶解的物质的方向进行,例如,在[Fe(SCN)]2+溶解中加入F -离子,则反应向着生成稳定常数更大的[FeF 6]3- 配离子方向进行。 螯合物是中心离子与多基配位形成的具有环状结构的配合物。很多金属的螯合物都具有特征的颜色,并且很难溶于水而易溶于有机溶剂。例如,丁二肟在弱碱性条件下与Ni 2+生成鲜红色难溶于水的螯合物,这一反应可作检验Ni 2+的特征反应。 四、仪器及试剂

1、仪器 试管、滴定管 2、试剂 HgCl2(0.1mol·L-1)、KI(0.1 mol·L-1)、NiSO4(0.2 mol·L-1)、BaCl2(0.1mol·L-1)、NaOH(0.1mol·L-1)、1:1(NH3·H2O)、FeCl3(0.1mol·L-1)、KSCN(0.1 mol·L-1)、 K3[Fe(CN)6](0.1 mol·L-1)、AgNO3(0.1mol·L-1)、NaCl(0.1 mol·L-1)、CCl4、 FeCl3(0.5 mol·L-1)、NH4F(4 mol·L-1)、NaOH(2mol·L-1)、1:1H2SO4、HCl(浓)、NaF(0.1 mol·L-1)、CuSO4(0.1 mol·L-1)、K4P2O7(2 mol·L-1)、NiCl2(0.1 mol·L-1)、NH3·H2O(2 mol·L-1)、1%丁二肟、乙醚。 五、实验内容 1、配离子的生成与配合物的组成 (1)在试管中加入0.1 mol·L-1HgCl2溶液10滴(极毒!),再逐滴加入0.1 mol·L-1KI 溶液,观察红色沉淀的生成。再继续加入KI溶液,观察沉淀的溶解。 反应式:HgCl2+2KI=HgI2↓+2KCl HgI2+2KI=K2[HgI4] (1)在2只试管中分别加入0.2 mol·L-1NiSO4溶液10滴,然后在这2只试管 中分别加入0.1 mol·L-1BaCl2溶液和0.1 mol·L-1NaOH溶液, 反应式:NiSO4+BaCl2= Ba SO4↓+NiCl2 NiSO4+2NaOH= Ni(OH)2↓+Na2SO4

考!!配位化学复习题 (1)

配位化学复习题 1.试用图形表示下列配合物所有可能的异构体并指明它们各属哪一类异构体。 (1)[Co(en)2(H2O)Cl] (2)[Co(NH3)3(H2O)ClBr]+(3)Rh(en)2Br2] 2 (4)Pt(en)2Cl2Br2(5)Pt(Gly)3(6)[Cr(en)3][Cr(CN)6] 2.配合物[Pt(py)(NH3)(NO2)ClBrI]共有多少个几何异构体? 3.试举出一种非直接测定结构的实验方法区别以下各对同分异构体:(1)[Cr(H2O)6]Cl3和[Cr(H2O)5Cl]Cl2·H2O (2)[Co(NH3)5Br](C2O4)和[Co(NH3)5(C2O4)]Br (3)[Co(NH3)5(ONO)]Cl2和[Co(NH3)5(NO2)]Cl2 4.解释下列事实: (1)[ZnCl4]2-为四面体构型而[PdCl4]2-却为平面正方形? (2)Ni(II)的四配位化合物既可以有四面体构型也可以有平面正方形构型,但Pd(II)和Pt(II)却没有已知的四面体配合物? (3)根据[Fe(CN)6]4水溶液的13C-NMR只显示一个峰的事实,讨论它的结构。(4)主族元素和过渡元素四配位化合物的几何构型有何异同?为什么?(5)形成高配位化合物一般需要具备什么条件?哪些金属离子和配体可以满足这些条件?试举出配位数为八、九、十的配合物各一例,并说明其几何构型和所属点群。 5.阐述晶体场?分裂能的大小有何规律?分裂能与周期数有什么关系?

6. 为什么T d 场的分裂能比O h 场小? 如何理解四面体配合物大多数是高自旋的? 7.d n 离子哪些无高低自旋的可能?哪些有高低自旋之分?确定高低自旋的实验方法是什么?用什么参数可以判断高低自旋? 8.根据LFT 绘出d 轨道在O h 场和T d 场中的能级分裂图。标出分裂后d 轨道的符号 9.什么叫光化学顺序?如何理解电子云伸展效应? 10.指出下列配离子哪些是高自旋的?哪些是低自旋的?并说明理由。 (1) FeF 36- (2) CoF 36- (3) Co(H 2O)36+ (4) Fe(CN)36- (5) Mn(CN)46- (6) Cr(CN)36- (7) Co(NO 2)26- (8) Co(NH 3)36+ 11.LFSE 的意义是什么在ML 6 配合物中LSFE 随d 电子数的变化有何特征? 12.什么叫Jahn-Tel1cr 效应?d 轨道哪些构型易发生畸变,哪些不易畸变,为什么?指出下列离子中易发生畸变者(ML 6为O h ML 4为Td 或D 4h )。 (1) Co(H 2O)36+ (2) Ti(H 2O)36+ (3) Fe(CN)46- (4) CoCl 24- (5)Pt(CN)24- (6) ZnCl 24- (7) Co(en)23+ (8) FeCl 4- (9) Mn(H 2O)26+ 13.试从Jahn-Teller 效应解释Cu 2+化合物的构型常常是四条、短键二条长键即近似为平面正方形四配位的结构。 14.已知第一过渡系M 2+离子半径如下表,写出他们在O h 弱场中的d 电子构型解释离子半径变化的规律。

大学无机化学知识点总结讲解

无机化学,有机化学,物理化学,分析化学 无机化学 元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学 普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学 结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学 化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。

无机化学 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、 系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态函 数的变化量只与始终态有关,与系统状态的变化途径无关。 3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部 分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。 4、 化学计量数()ν对于反应物为负,对于生成物为正。 5、反应进度νξ0 )·(n n sai k e t -==化学计量数 反应前反应后-,单位:mol 第二节:热力学第一定律 0、 系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温 物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 1、 系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对系统做功, W>O ;系统对环境做功,W<0。 2、 体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其他形式的功称为非体积功。 3、 热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的全部能量之 和称为热力学能,又叫内能。 4、 气体的标准状态—纯理想气体的标准状态是指其处于标准压力θ P 下的状态,混合气体 中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。 液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θP 时的状态。

配位化学题库

一、 单选题 1、近代配位化学的奠基人是( )。 (A) 阿仑尼乌斯 (B) 路易斯 (C) 鲍林 (D) 维尔纳 2、下列配合物中,具有平面四边形构型的是( )。 (A) [Zn(CN)4]2- (B) Ni(CO)4 (C) [Ni(CN)4]2- (D) [ZnCl 4]2- 3、已知M 为配合物的中心原子,A 、B 和C 为不同的单齿配体,在具有下列化学式的配合物中,不存在几何异构体的是( )。 (A) MA 4B 2 (B) MA 2BC (平面四边形) (C) MA 2BC (四面体) (D) MA 2B 2C 2 4、下列配离子中可能产生Jahn-Teller 效应的有( )。 (A) [Fe(CN)6]4- (B) [CoF 6]3- (C) [CrCl 6]3- (D) [FeF 6]3- 5、在下列配合物或配离子中,没有形成反馈π键的是( )。 (A) [Co(CN)6]4- (B) [Ru(NH 3)5(N 2)]2+ (C) FeF 63 (D) K[PtCl 3(C 2H 4)] 6、对于[Co(CN)6]3-配离子,下列论述正确的是( )。 (A) [Co(CN)6]3-是高自旋 (B) CN -为弱场配体 (C) [Co(CN)6]3-是反磁性的 (D) 以上说法均不正确 7、根据晶体场理论判断下列配离子中具有取代活性的是( )。 (A) [Fe(CN)6]4- (B) [FeF 6]3- (C) [Cr(CN)6]3+ (D) [Ni(H 2O)6]2+ 8、反位效应最大的卤素离子为( )。 (A) F - (B) Cl - (C) Br - (D) I - 9、关于CO 和N 2的表述正确的是( )。 ① N 2和CO 为等电子体 ② N 2和CO 均可以作为配体 ③ N 2的σ给予能力比CO 弱 ④ N 2的π接受能力比CO 强 (A) ①③④ (B) ①④ (C) ①②③ (D) ①②③④ 10、关于CO 中毒机制,正确的表述是( )。 (A) 引起呼吸道感染 (B) 与细胞色素C 不可逆配位,导致生物氧化系统损伤 (C) 与O 2反应生成CO 2,导致氧的供应不足 (D) 争夺血红蛋白中氧的结合位置,破坏体内氧的运输系统 11,分子中既存在离子键,共价键还存在配位键的有( ) A.42SO Na B.3AlCl C .[Co(NH 3)6]Cl 3 D .KCN 12,下列离子中,能较好地掩蔽水溶液中Fe 3+离子的是( ) A .F - B .Cl - C .Br - D .I - 13,下列各配合物具有平面正方形或八面体的几何构型,其中CO 32-离子作为螯合剂的是( ) A .[Co(NH 3)5CO 3]+ B .[Co(NH 3)3CO 3]+ C .[Pt(en)CO 3] D .[Pt(en)( NH 3)CO 3] 14、已知M 为配合物的中心原子,A 、B 、C 为不同的单齿配体,在具有下列化学式的配合物中,只有两种几何异构体的是( )。 A .MA 5 B B .MA 2B C (平面正方形)

配位化学课外作业doc资料

配位化学课外作业及复习题 1.分别用价键理论,分子轨道理论处理下列小分子配体,并指出其前线轨道: N2, NO, CO, O2 2.用价键理论讨论下列分子或离子的成键: (1) SF6, (2) Fe(CN)64-, (3) NH4, (4) BH4, (5) Fe(CO)5 3.用分子轨道理论讨论解释为什么下列化合物中中心原子(金属)可以处于0价态而保持稳定: (1) Fe(CO)5, (2) Cr(CO)6 (3) Ni(CO)4 4.计算配离子Mn(H2O)62+和Mn(CN)64-的磁矩,并分别用价键理论,晶体场理论解释计算结果。 5.讨论下列化合物中杂原子的成键特性,并比较化合物的偶极矩大小: N H O S Se Te 6.根据以下一些化学键(单键)的键能(kJ?mol-1)数据: 化学键N-O P-O O-O S-O 键能(kJ?mol-1)176 502 142 469 (1)总结以上化学键键能变化规律,并解释之。 (2)推测并比较C-O和Si-O键能的相对大小。 7.已知NO2(红棕色气体)是具有顺磁性的单电子分子,易发生聚合作用生成抗磁性的二聚体 N2O4(无色)。与NO2相关的一些物种的键角、键长数据如下: NO2: N NO2-: N 1 [NO2]+: O O 115pm N2O4:N N O O 175pm 1 1 8 p m 134 (1)试以价键理论讨论NO2的成键特性,并解释上述物种的键角变化。 (2)解释NO2和N2O4的上述性质。 (3)各级NO2-的结构,推测O3,SO2的分子结构。 8.讨论以下化合物分子的键角和键长变化。

NO 2: N O 3: 116.8 1 NO 2- :N 1 SO 2 : 119.5 1 9. 讨论R-SH, R-S-CH 3, S 2-对金属离子的配位特性(配位位点)。 10. 画出卟吩的分子结构,讨论其成键特性及对金属离子(如Fe 2+)的配位特性。 11. 已知组氨酸(Histidine ,简称His )其分子结构为: N H N CH 2 CH COOH NH 2 (1)分别指出His 在pH 为7.4,7.59,7.8时的存在形式。 (2)在pH >14时,His 对金属离子的最大可能配位情况。 12. 根据中国化学会无机化学命名规则(1980年)关于配位化合物(coordination compound ,或 complex )的描述:由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(称配体,ligand ,用L 表示)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子),按一定的组成和空间构型所形成的化合物。讨论下列化合物是否为配位化合物: (1)AlCl 3, (2) NaCl, (3) H 2SO 4, (4) NaBH 4, (5) Fe(CO)5, (6) NH 4Cl, (7) FeSO 4?7H 2O, (8) SF 6, (9) Pt(NH 3)2Cl 2 13. 根据中国农学会无机化学命名规则关于配位化合物的描述: (1)指出孤对电子,空位,不定域电子等概念的含义; (2)指出配位反应与酸碱反应的联系。 14. 写出下列元素的原子的价层电子构型: (1)Cu, (2) N 和P, (3) Be, (4) Tl 15. N 2和CO 是等电子体,但CO 的化学性质活泼,而N 2却很不活泼,为什么? 16. 根据晶体场理论,画出Fe(II)与卟吩所形成的配合物中Fe 2+的d 轨道能级图。 17. 实验测定一些配合物的磁矩如下,由该实验事实预言这些配合物中心原子的未成对电子数, 杂化轨道类型,配合物的空间结构类型,属价键理论的内轨型还是外轨型,属晶体场理论的高自旋还是低自旋? [Fe(en)3]2+ 5.5BM [Co(SCN)4]2- 4.3BM [Mn(CN)4]2- 1.8BM [FeF 6]3- 5.9BM [Ni(CN)4]2- 0BM [Ni(NH 3)6]2+ 3.2BM

配位化学第一章作业

1.写出下列配合物或配离子的化学式 ?六氟合铝酸钠(III) ?二氯化一氰?四氨?水合钴(III) ?二氯化异硫氰酸跟?五氨合钴(III) ?五氨?亚硝酸根合钴(III) 离子 ?二(乙酰丙酮根)合铜(III) ?二氰化(u-氯)?二(氨基合铂(II)) 答:? Na3[AlF6] ? [Co(CN)(NH3)4(H2O)] ? [Co(NCS)(NH3)5]Cl2 ? [Co(NH3)5NO2]2+ ?[Cu(acac)2] ?[Pt2(NH2)2Cl2](CN)2 2.指出下列配体中的配位原子,并说明它是单齿还是多吃配体? (1)CH3-C=NO*H (2)CH2-N*HCH2CH2-N*H2 CH3-C=NO*H CH2-N*HCH2CH2-N*H2 (3) CH2COO*- -*00CH2C-*NHCH2N* CH2COO*- (4)ONO- (5)SCN-(6)RNC- (7)*NH(CH2COO*-)2 答:(1)配位原子为O,多齿配体;(2)配位原子为N,多齿配体;(3)配位原子为O和N,多齿配体;(4)配位原子为O,单齿配体;

(5)配位原子为S,单齿配体;(6)配位原子为N,单齿配体; (7)配位原子为N和O,多齿配体; 3.命名下列配合物或配离子 (1) K[Au(OH)4] (2)[Ce(en)3]Cl3 (3)[Co(H2O)4Cl2]Cl (4) [Cr(NH3)2(H2O)2(Py)2]Cl3 (5)[Co(NCS)(NH3)5]2+ (6) [Fe(CN)5(CO)]3- (7) Cl Cl Cl Al Al Cl Cl Cl (8) NH [(H3N)4Co Cr(NH3)2Cl2]Cl2 ONO 答:(1)四羟基合金(Ⅲ)酸钾 (2)三氯化三(乙二胺)合铈(Ⅲ) (3)氯化二氯?四水合钴(Ⅲ) (4)三氯化二氨?二水?二吡啶合铬(Ⅲ) (5)异硫氰根?五氨合钴(Ⅲ)离子 (6)五氰?羰基合铁(Ⅲ)离子 (7)二μ—氯双(二氯合铝(Ⅲ)) (8)二氯化μ—亚氨基—μ—亚硝酸根—二氯二氨合铬(Ⅲ)—四氨合钴 (Ⅱ)

配位化学在医学中的应用1

配位化学在医学中的应用 放射化学刘申宝 配位化学是研究金属的原子或离子与无机、有机的离子或分子相互反应形成配位化合物的特点以及它们的成键、结构、反应、分类和制备的学科。 现代配位化学的研究领域涉及有机化学、催化机理、物质结构、化学键理论以及生命现象中一系列与金属离子有关的重要问题,形成了金属有机化学、配位催化、配位场理论以及生物无机化学等新的、充满活力的边缘学科。同时配位化学还在医学领域诸如抗癌,杀菌,治疗心脑血管病等有广泛应用!配位化合物简称配合物,也叫错合物、络合物,为一类具有特征化学结构的化合物,由中心原子或离子(统称中心原子)和围绕它的称为配位体(简称配体)的分子或离子,完全或部分由配位键结合形成 配合物对生物体的重要性 在大多数情况下,生物体内的金属元素不是以自由离子形式存在,而是与配体形成生物金属配位化合物。这些在生物体内与金属离子配位并具有生物功能的配位体称为生物配体。 蛋白质是动物、植物和微生物细胞中最重要的有机物质。除含有碳、氢、氧、氮外,还含有少量硫,有些蛋白质还含有铁、锌、钴等金属。由蛋白质和金属离子结合形成。其中多数金属离子仅和蛋白质连接;少数除和蛋白质相连外,还和一个较小的分子相连,如血红蛋白中的铁(Ⅱ)除和蛋白质相连外,还和卟啉相连。金属蛋白质有重要的生理功能。如血红蛋白为运送氧所必需。铜蓝蛋白能催化铁(Ⅱ)的氧化,以利于铁(Ⅲ)和蛋白质结合形成运铁蛋白。运铁蛋白用于运送铁。铁蛋白则用于储存铁等。 血红蛋白分子结构维生素B12分子结构 一、金属配合物作为药物的运用 有些具有治疗作用的金属离子因其毒性大、刺激性强、难吸收性等缺点而不能直接在临床上应用,但若把它们变成配合物就能降低毒性和刺激性,利于吸收。

最新配位化学1第一讲精编版

2020年配位化学1第一讲精编版

幻灯片1 配位化学导论引言配位化学2012年9月2日 幻灯片2 举例(例子): 顺铂 顺铂 核磁共振造影剂 造影剂 配合物的配位化合物,复合物幻灯片3 血红蛋白的血红素中心 血红蛋白,注意,这个 卟啉环膨胀 向组氨酸(左),但 成为flatterwhen氧 高度(右)

血红蛋白,注意,这个 卟啉环膨胀 向组氨酸(左),但 当氧气变得平坦 高度(右) 肌红蛋白的结构,铁被多肽链包围 肌红蛋白。的管状结构表示的多肽链,和直线部分表示 螺旋区域。肌红蛋白。的管状结构表示的多肽链,和直线部分表示 螺旋区域。 幻灯片4 幻灯片5 1掌握配位化学的基础知识,基础理论,基本反应及理论。 2 3了解配合物在材料化学,生命科学,催化化学,药化学等相关领域的应用。4 幻灯片6 部分OneAn配位化学 幻灯片7 配位化学的历史

里堡1597 匿名1731 Tassaert 1798 蒙德1890 Vauquelln 1813 幻灯片8 BLOMSTRAND的结构式CoCl3·6NH3 CoCl3·6NH3 约根森提出的结构式 CoCl3·5NH3 CoCl3·4NH3 幻灯片9 IrCl3·3NH3 幻灯片10 现代协调化学维尔纳配位化学

阿尔弗雷德·维尔纳(1866年至1919年):在1892年,一个年轻的薪水的演讲有机化学ZTH。 两种类型的化合价:主价(初级价) 副价(二次价) 实线 CoCl3·6NH3 虚线 副价指向空间的固定位置(二级效价直接向固定在空间的几何位置) 大胆小说(厚颜无耻的虚构)的直觉 幻灯片11 IrCl3·3NH3 CoCl3·5NH3 CoCl3·4NH3 CoCl3·6NH3 沃纳也预测了不同空间结构的配合物存在的异构体(异构体)的数量。:例如:CoCl3·4NH3有两种异构体 1907年,沃纳是完全成功的准备两种异构体,一个明亮的绿色和另一种紫罗兰的颜色。 幻灯片12 有一本书称为:

铜离子配合物的合成及应用讲解

铜离子配合物的合成及应用 吴天昊袁航张俊焦卓浩唐琦王琪席鑫张存忠次仁旺加 中南大学化学化工学院应用化学1301班 指导老师张寿春 摘要:铜元素是普遍存在于动植物中的生命必需的微量元素之一,在生命过程中起着重要作用。许多金属酶和金属蛋白的活性部位均含有双核铜(Ⅱ)结构单元。此外,铜的配位点较多,有很好的配位性能,能够跟绝大多数配体形成铜配合物,使得铜在配位催化上的研究更加方便。铜配合物在催化、光电材料等方面的应用逐渐成为研究重点。本文介绍了一些配合物的常用合成方法并对铜离子配合物的应用前景作出了介绍与展望。 关键词:配位化学;金属配合物;铜离子;合成方法;光学应用;医学应用 1.引言 近年来.由于金属配合物在日常生活和工业上都有广泛的应用,尤其过渡金属对探索和研究药物分子抗菌、抗肿瘤的作用机制具有重要意义。在催化、光学材料以及电学材料等方面具有新型功能的金属配合物的研究也受到人们的广泛关注。铜元素在动植物中是普遍存在的,它是生命必需的微量元素之一,在生命过程中起着重要作用。许多金属酶和金属蛋白的活性部位均含有双核铜(Ⅱ)结构单元.铜化合物具有多变的配位结构和活化小分子的催化特性,常被用作双取代过氧化物分解的催化剂。此外,铜的配位环境易于调变,结构的易变性导致合成了多种单核或多核的铜配合物。铜配合物以其独特的性能、结构优势,在催化、光电材料等方面的应用逐渐成为研究重点。我国的铜资源丰富,分布广泛,铜的开采技术也相当成熟,因此,获取铜的成本并不高,这为铜在配位化学各领域中的应用提供了先决条件。 2.铜离子配合物简介 铜是人类发现最早的金属之一,是人类广泛使用的一种金属,属于重金属,电子排布式:1s22s22p63s23p63d104s1 最常见的价态是+1和+2。铜的配位环境易于调变,结构的易变性导致合成了多种单核或多核的铜配合物。 2.1 Cu(I)配合物 中心离子为一价铜离子的单核配合物称为Cu(I)配合物。Cu(I)的核外电子排布为d10,d轨道填充电子全满使铜原子的电荷排布趋于对称。为维持该对称,亚铜配合物倾向于四面体构型。配体位于四面体的顶点,彼此远离并降低静电排斥。

配位化学论文1

姓名:刘乐班级:应用化学071 学号:0604200137 本学期学习了《配位化学》这门课,感觉这门课很实用,跟各个学科的联系也很紧密,老师讲课也很风趣幽默。学习完这门课也学到好多知识,我通过找资料,上网,看参考书等方式完成了以下一篇论文。 对配合物中配体间的弱相互作用的研究,已引起国内外化学界的重视,正在形成一个新的领域。比如:配体间作用的氢键的定向作用已开辟了有关生物活性、分子识别和晶体工程研究的新领域。金属桥联配合物分子间氢键作用,使模型化合物具有特殊的光、磁、电性质及新的生物效应等等。而且研究人员强调指出,正是这些配体间的弱相互作用架设了由配位化学通向超分子化学的桥梁。他们也正在研究向摸拟膜表面配合物的形成和超分子化学领域发展。因此,我们有必要对配体间的弱相互作用进行深层次的分析。 超分子化学以分子间由非共价的弱相互作用结合而成的多分子体系为研究对象,是科学研究领域的一个重要扩展,使化学由专门研究共价键和由此形成的多原子集聚体拓展到研究共价键与非共价弱相互作用(包括静电作用、氢键、疏水缔合、芳环堆砌等)共存时的复杂体系它不仅淡化了无机化学与有机化学的界限,而且实际上已经成为化学、物理学、材料科学、生命科学的一个交叉前沿领域。诺贝尔奖获得者法国著名化学家J.-M. Lehn?曾多次指出,在某种意义上说,超分子化学可以被看作是推广了的配位化学。 l 配体间作用的重要性与主要作用类型 在金属配位化合物的结构及功能研究中,长期以来比较集中在研究金属-配体间的结合方式、强度及其对配合物性能的影响等方面,而对配合物中配体问的相互作用则研究较少事实上,在配合物,特别是在混配配合物中,由于二种或更多的配体同时配位在一个金属离子上,同时它们在空间上彼此靠近,因而可能发生各种各样的相互作用。研究混配配合物中配体问的弱相互作用,不仅对理解金属离子如何参与生命过程有实际意义,也是由配位化合物形成超分子体系的决定因素配体间的弱相互作用归纳起来主要有以下几类。 1.1 配体间通过中心离子的电子转移效应 Sigel发现Cu(bipy)2+等N,N配位的∏酸二元配合物在形成三元配合物时,第二配体的配位原子类型对配合物稳定性影响十分显著。 1.2 空间的配体-配体相互作用 空间的配体问相互作用可分为配合物分子内配体间相互作用和配合物分子问的配体间相互作用。 1.2.1 配合物分子内的配体间相互作用 1.2.1.1 空问阻碍效应位阻效应指形成三元配合物时,那些含有较大侧基或多余配点的二元配合物总是优先选择体积或位阻小的第二配体。如三齿配体Ida形成配合时,由于空余的配点常存在这种效应[2]。在生物配体(氨基酸,肽)配合物中空问阻碍效应也十分常见,因而很难在生物体内找到含有两个较大侧基的混配配合物,即所谓生物配体间的立体选择性。 1.2.1.2 静电作用静电作用包括起稳定化作用的正负离子问的吸引作用、氢键作用和去稳定化作用的阴离子。阴离子作用其中尤以氢键作用最为重要,氢键作用常增加配合物稳定性,它亦可视为一种静电作用。I.2.1.3 芳环堆砌与疏水缔合作用 Sigel[3]等人研究混配配合物Cu(bipy)2+(A即)中的电荷转移作用时,首次发现配合物中存在有联吡啶环和嘌呤环间的重叠,称为芳环堆砌作用。正是选种堆砌作用给三元配合物带来相当大的额外稳定性(△logK从0.91增到6.96>,芳环堆砌作用也受到了广泛关注。与此相似,当具有较大脂肪侧链的有机

配位化学习题及答案(1)

配位化学习题及答案(1) 配位化学练习题一.是非题 1.配合物的配位体都是带负电荷的离子,可以抵消中心离子的正电荷。 2+2+ 2+2.[Cu(NH)] 的积累稳定常数β是反应[Cu(NH)]+NH,[Cu(NH)]的平33332333衡常数。 3. 配位数是中心离子(或原子)接受配位体的数目。 4.配离子的电荷数等于中心离子的电荷数。 5.配合物中由于存在配位键,所以配合物都是弱电解质。 θ6.根据稳定常数的大小,即可比较不同配合物的稳定性,即K愈大,该配合物f愈稳定。 7. 对同一中心离子,形成外轨型配离子时磁矩大,形成内轨型配合物时磁矩小。 3+8.Fe(?)形成配位数为6的外轨型配合物中,Fe离子接受孤对电子的空轨道32是spd。 9.中心离子的未成对电子数越多,配合物的磁矩越大。 10. 配离子的配位键越稳定,其稳定常数越大。 二.选择题 1. 下列叙述正确的是() A. 配合物由正负离子组成 B. 配合物由中心离子(或原子)与配位体以配位键结合而成 C. 配合物由内界与外界组成 D. 配合物中的配位体是含有未成键的离子 2.下面关于螯合物的叙述正确的是( )

A、有两个以上配位原子的配体均生成螯合物 B、螯合物和具有相同配位原子的非螯合物稳定性相差不大 C、螯合物的稳定性与环的大小有关,与环的多少无关 D、起螯合作用的配体为多齿配体,称为螯合剂 ,,,,,,,,,,,,3.已知lgAgNH=7.05, ,21.7, =7.57,lgAgCNlgAgSCN,,,,,,,,,,,232222,,,,2,,,,,, 3,,,,=13.46;当配位剂的浓度相同时,AgCl在哪种溶液中的溶解度lgAgSO,,,,,2232,, 1 最大( ) A. NH?HO B. KCN C. NaSO D. NaSCN 32223 4.为了保护环境,生产中的含氰废液的处理通常采用FeSO法产生毒性很小的配 4合物是( ) 3, A、Fe(SCN) B、Fe(OH) 36 3, C、Fe(CN) D、Fe [(Fe(CN)] 2 66 5. 下列说法中错误的是() A. 在某些金属难溶化合物中,加入配位剂,可使其溶解度增大 3+3+B.FeNaFFe 在溶液中加入后,的氧化性降低 3-C.[FeF] 在溶液中加入强酸,也不影响其稳定性6 3+D.[FeF] 在溶液中加入强碱,会使其稳定性下降6 6.对于一些难溶于水的金属化合物,加入配位剂后,使其溶解度增加,其原因是 () A. 产生盐效应

相关文档
最新文档