大锻件 第4部分 锻造用钢锭及铸锭技术

大锻件 第4部分 锻造用钢锭及铸锭技术
大锻件 第4部分 锻造用钢锭及铸锭技术

第四部分锻造用钢锭及铸锭技术

一、 大型钢锭的组织结构及类型

1.大型钢锭的组织结构

z 激冷层:锭身表面的细小等轴晶区。厚度仅6~8mm ;因过冷度较大,凝固速 度快,无偏析;有夹渣、气孔等缺陷。

z 柱状晶区:位于激冷层内侧;由径向呈细长的柱状晶粒组成;由于树枝状 晶沿温度梯度最大的方向生长,该方向恰为径向,因此形成了柱状晶区;其

凝固速度较快,偏析较轻,夹杂物较少;厚度约50~120mm 。

z 分枝树枝晶区:从柱状晶区向内生长;主轴方向偏离柱状晶,倾斜,并出现 二次以上分枝;温差较小,固液两相区大,合金元素及杂质浓度较大。 z A 偏析区:枝状晶间存在残液,比锭内未凝固的钢液密度小,向上流动,形成A 偏析;在偏析区合金元素和杂质富集,存在较多的硫化物,易产生偏析裂纹。

z 等轴晶区:位于中心部位;温差很小,同时结晶,成等轴晶区。钢液粘稠, 固相彼此搭桥,残液下流形成V 偏析,疏松增多。

z 沉积锥区:位于等轴晶区的底端;由顶面下落的结晶雨、熔断的枝状晶形成的自由晶组成,显示负偏析;等轴的自由晶上附着大量夹杂物,其组织疏松,且夹杂浓度很大;应切除。

z 冒口区:最后凝固的顶部;因钢液的选择性结晶,使后凝固的部分含有大量

的低熔点物质,最后富集于上部中心区,其磷、硫类夹杂物多;若冒口保温不良,顶部先凝固,因无法补缩形成缩孔;质量最差,应予切除。

2. 大型钢锭的类型

z 普通钢锭

高径比:=+d

D H 2 1.8~2.5;通常,10吨以下的钢锭:2.1~2.3,10吨以上的钢锭:1.5~2;

锥度:=%100-D H

d 3~4% ; 横断面为8棱角形。大钢锭为16,24,32棱角。

z 短粗型钢锭

高径比: 0.5~2;

锥度: 8~12%。

高宽比减小,锥度加大有利于钢锭实现自下而上顺序凝固,易于钢水补缩,中心较密实;

有利于夹杂上浮,气体外溢,减少偏析;

锭身较短,钢水压力小,侧表面不易产生裂纹;

锥度大,易脱模;

可增加拔长锻比。

z 短冒口钢锭

对于中、低碳钢,中、低合金结构钢的大型空心锻件,可使用普通锭模,但采用短冒口,以减少冒口钢水。

z 细长型钢锭

高径比:大于3.5;

锥度:5~8%;

用于不需镦粗的轴类件,可减少火次,钢锭利用率达70~75%。

z 空心钢锭

用于锻造大型筒类、环类等空心锻件,对于容器制造具有重要意义; 在钢锭模内置入薄壁钢管,浇铸后形成空腔;

可显著提高钢锭利用率,大幅减少火次;

心部冷却速度明显提高,结构致密,偏析减轻。

国内已成功浇成150吨锭。

z多锥度钢锭

下部锥度大,中部次之,上部锥度小。内部较致密。

z电渣重熔钢锭

圆截面,小锥度;

高径比:约2.5;

钢水洁净,组织致密,结构合理;

钢锭利用率高;

国内已具备浇铸400吨级钢锭的能力。

二、铸锭工艺

1.钢水注入钢包,经脱氧后浇注成钢锭的炼钢工序。

2.铸锭中钢液发生的物理化学变化

z大气环境下浇注,钢液发生二次氧化,产生氧化物夹杂,吸入水蒸气、氢气。z钢液与耐火材料接触,形成外来夹杂。

z在钢锭模内完成液态到固态的转变。

z固态钢收缩。

3.普通铸锭法

z大气环境浇注。

z大型钢锭普遍采用上注法,钢液飞溅易产生表面气孔,钢锭表面凸凹不平。z德国梯森·亨利希冶金公司发明下注法,浇注过435吨钢锭,质量高。

z为防止二次氧化,可采用惰性气体保护。

4.真空铸锭法

z钢液通过中间包浇入置于真空室钢锭模的方法。z普通真空铸锭

z真空吹氩铸锭

z采用除气设备,在浇注中除气。

z避免了二次氧化,减少了非金属夹杂物。

z可利用真空条件下的碳氧反应,进行真空碳脱氧操作,对于低硅的NiCrMo、NiCrMoV钢意义重大,减少夹杂,显著改善偏析,钢锭质量明显提高。三、大型钢锭的缺陷

1.偏析

大锻件要求极少的缺陷和性能的均匀化,但铸锭的物理化学过程,特别是选择性结晶的结果,却使缺陷不可避免。不同元素于不同温度下在固液两相中的溶解度不同,由不同温度梯度形成的结晶差别,凝固过程中的收缩及各种化学反应过程等都将会引起偏析,即成分在宏观、微观区域的不均匀分布。

z A偏析

形貌与成分分布:

位于分枝树枝晶区和等轴晶区之间。与半径的比例关系,锭顶部为0.51~0.54,中部为0.38~0.42,底部为0.26~0.28。

纵断面上表现为不连续的八字形条纹,横断面上表现为以同心圆分布的斑点,斑点直径从几毫米到几十毫米。呈线状。

偏析外侧轮廓清晰平滑,内侧轮廓模糊粗糙。锭底部细小,顶部粗大。

扫描电镜观察发现。A偏析线内存在1微米左右的洞穴,密度明显降低。

偏析线处P 、Mn 、Si 、Mo 浓度远大于平均值,而其周围浓度低于平均值,成分偏析特征明显。

形成机理:

理论一:A 偏析应在凝固前沿形成,位于固液两相区,该处固相率为30%~35%,是准固相区和准液相区的界面。

理论二:富集溶质的钢液比原始钢液密度小,在凝固前沿上浮,形成偏析线。偏析线的斜度由上浮速度和凝固前沿推进的径向速度共同决定。

理论三:当以下热力学条件满足时,含碳量为0.7%的钢即形成A 偏析 75.81.1≤?R ε

ε---冷却速度;

R---凝固前沿的凝固速度。

显然,冷却和前沿凝固速度越低,上式越容易满足,A 偏析越容易产生。 影响因素:

化学成分对A 偏析的影响:

对于CrNiMo(V)钢,C 、S 、P 在偏析区富集,认为S 是引起偏析的主要原因,要减轻A 偏析,须将S 降至0.002%以下。

Mo 可抑制偏析发生,Mo 钢几乎无偏析。

低Si 钢因凝固前沿的固相率低,

枝晶间钢液的密度与原始钢液相差很小,不足以上浮形成偏析。反之,高Si 则易产生偏析。

凝固速度对A 偏析的影响:钢锭外表面凝固速度快,无偏析现象;随固相

线向内推进,凝固速度逐渐降低,当降至0.8mm/min 时,出现A 偏析;进一步向内推进,因纵向凝固速度的影响,疏松尺寸渐大,面积也增加,A 偏析不明显。

对力学性能的影响:

偏析区的力学性能明显降低,正火碳钢偏析区与表面区塑性指标 δ、Ψ、αk 的比列于下图。

淬火回火低合金钢偏析区与表面区塑性指标 δ、Ψ、αk 的比列于下表。 由图表可见,偏析区的力学性能均比表面区低;

偏析区的横向力学性能比纵向更低;

抗拉强度越高,偏析区力学性能降低的幅度越大。

当MPa b 441=σ时,纵向δ、Ψ、αk 分别降低5%、6%、12%,横向δ、Ψ、αk 分别降低20%、25%、70%。

当MPa b 735=σ时,纵向δ、Ψ、αk 分别降低8%、11%、20%,横向δ、Ψ、αk 分别降低31%、43%、29%。

z V偏析

形貌:

位于上部等轴晶区,但冒口与锭身交接处中心顶部一般无偏析。

成V形条纹,周期性分布。

疏松与空隙与其同时存在,说明它们有共同的形成条件。

属最后凝固的正偏析区。S化物夹杂富集。

形成机理:

实验表明,凝固后期在钢锭上部中心区形成了加速凝固区,因其出现凝固收缩导致了V偏析的产生。

凝固开始时,因钢锭仅受底部冷却的影响,纵向凝固速度较慢。其后,由于

纵向与横向凝固速度叠加的结果,纵向凝固速度加快,凝固曲线出现拐点,形成凝固壳体。此后,因壳底部加厚,侧面凝固速度成为主要影响因素,从而形成一狭长的U形熔池,底部变尖成V形。池内为浓缩钢液。

凝固壳内钢液的固相率分布不均,下部大而上部小,当下部钢液顺序凝固时,体积收缩,吸引上部低固相率的浓缩钢液向下流动,填补了下部的凝固收缩间隙,并形成V偏析。

影响因素:

主要影响因素是钢锭模的高径比H/D、锥度、冒口的温度等。

高径比H/D越小,横向凝固速度的影响越小,越不容易形成狭长的U形熔池,可减轻或避免V偏析的产生,同时也可减少疏松缺陷。下图中某110T钢锭高径比H/D为1.06,135T钢锭的H/D为1.41;两者的锥度基本相同。图中表明,135T 钢锭的横向凝固速度明显大于110T钢锭。解剖结果表明,135T钢锭的V偏析要严重得多。

钢锭锥度越大越不容易产生V偏析。实际上当锥度为2%~10%时存在发生V 偏析的可能;当锥度大于25%时,V偏析则不会发生。锥度过小会阻碍凝固的锭身下滑,甚至可能沿锭肩部撕裂。

冒口温度高有利于形成正的温度梯度,使钢液沿温度梯度方向结晶,可抑制等轴晶的形成及自冒口内下沉,避免V偏析的发生。

对力学性能的影响:

V偏析区强度增高,塑性和韧性降低。

碳偏析造成FATT升高。

偏析程度越严重,影响就越大。

V偏析使锻件的均质化处理困难。

热处理难度更大。

z沉积锥的负偏析

钢锭底部轴心处溶质浓度低的自由晶区称为沉积区或沉积锥。

沉积锥含有大量的非金属夹杂物,又称夹杂沉积区。

沉积锥底部为柱状晶,上部为等轴晶,呈圆锥台状,上平面中心呈凹形。

形成机理:钢锭顶面下落的结晶雨、侧壁被熔断或折断的枝状自由晶落入底部,形成了含有较多固相颗粒的粘稠区,使夹杂物难以上浮。

由于钢液具有温度差,钢液将形成自然对流,将已上浮的夹杂物带回底部粘稠区,并被阻滞在其中,凝固后形成富集夹杂的等轴晶区。

由于非金属夹杂富集,加之熔断或折断的树枝晶本身部分合金含量也低,即

形成负偏析区。

沉积锥合金含量低,以氧化物为主的夹杂物多,应切除,切除率一般为15%,因沉积锥高度不稳定,切除后仍会发现超标夹杂。

采用VCD(真空碳氧反应)法二次炼钢,强化冒口保温措施,采用耐侵蚀的耐火材料可使切除率降低至8%~12%,从而使钢锭的利用率提高至60%。

z微观偏析

指枝晶偏析,即枝晶干与枝晶间的成分不均匀现象。是钢液凝固过程中不可避免的现象。

z偏析的危害,解剖75吨钢锭可见化学成分的不均匀性:

最大正偏析在锭身上部的V 偏析内,最大负偏析在底部沉积锥。

C 、S 、P 偏析程度均较大。C 偏析更易导致热处理工艺制定的困难。 大气浇注与真空浇注相比,前者偏析更严重。

C 在水口端为0.26%,而在在冒口端达0.51%。 热处理时,冒口端可能淬裂,而水口端因冷速不够而不达标。

C 的零偏析点位于锭身的30%处。偏析率为:

Co

C C C C min max ?=Δ 其它元素的偏析,其偏析率与C 偏析成正比,其中C 、N 、S 偏析最强烈,V 、Sn 、As 、P 、Cu 次之,Si 、Ni 、Cr 、Mo 偏析最轻微。

微观偏析中,P 、S 、C 、Mo 最强烈,Mn 、Si 、Ni 较弱。

危害:

加热温度只能取上限。

因各部位成分不同,完成珠光体转变所需时间不同,从十几小时到几十小时。为保证各部位都实现转变,需延长加热时间。

冒口C 高,有淬裂危险,水口C 低,需加大冷却速度,为保证实现均匀性要求,须在同一锻件上采用不同的回火温度。

偏析区因C 、S 、P 的的富集而脆化,在锻造和热处理时会因拉应力的作用开裂。H 和夹杂在偏析区富集会加剧脆化倾向。

偏析区的力学性能降低。

z 减轻偏析的措施

改进熔炼技术,尽量降低P 、S 含量。

采用VCD 技术及真空浇注技术。

改进锭模形状,控制凝固条件。

加冒口发热剂或用电渣加热冒口。

2. 非金属夹杂

z 种类

硫化物类夹杂:,FeS MnS ;

氧化物类夹杂:2SiO ,32O Al ,MnO ,FeO ,CaO ,MgO 等;

硅酸盐类夹杂。

形成机理

普通大锻件可不采用炉外精炼和真空浇注方法,以降低成本。

钢液注入钢包,并浇入钢锭模时,非金属夹杂物因混冲和搅动而不断上浮。但在大气环境下钢液被二次氧化,形成新的氧化物;因钢液搅动,对耐火材料产

生侵蚀,形成硅酸盐;在凝固过程中钢液中溶解的硫化物和一部分硅酸盐析出,形成了硫化物。

上述非金属物质,由于来不及上浮,同钢水一起注入钢锭模并凝固后,形成了非金属夹杂。

z 存在的形态及危害

32O Al 和一部分硅酸盐以固体颗粒的形式悬浮于钢液中,这些难熔的夹杂物浇注后在钢锭中的分布是不均匀的。

硫化物的分布决定于偏析过程,在正偏析区富集的硫化物,越接近钢锭中心及冒口其含量越高。

大型钢锭中,常发现粗大或密集的夹杂物,有时可达几毫米,超声探伤仪可较容易发现。粗大夹杂物主要是2SiO ,32O Al ,MnO ,FeO 等二次氧化物,还有耐火材料被侵蚀后的产物,如CaO ,MgO 等。

实验研究发现,粗大夹杂物有以下三种类型,是大锻件致废的主要原因: 粘连片状夹杂:以铝的氧化物为主,还有2SiO ,MnO 和硅酸盐、铝酸盐颗粒等组成。32O Al 是脱氧产物,上浮时与被氧化的硅酸盐薄膜结合,形成粘连片状。 堆聚颗粒夹杂:一种主要是32O Al ,其形态呈规则的棱角形结晶;另一种是以2SiO 为主的透明玻璃质硅酸盐;第三种是CaO 和O Na 2。超声探伤发现的当量尺寸为2~4mm 。

大块硅酸盐夹杂:包含20%~40%的CaO ,较多的O Na 2,较少的32O Al 、2SiO 和MnO 。表明其来自渣液。

尺寸较小的单个夹杂物危害不大,但当其多个聚集成链状或团状时,危害则大增。

在现行的大锻件技术标准中,对粗大型夹杂、密集型夹杂均予以严格控制。 z 消除或改善措施

将钢包在浇注前静置,使夹杂物充分上浮。

采取防止钢液二次氧化的措施。

改变粉渣的组成和加入方法。

选择适当的冒口发热剂,对冒口渣壳和保温帽予以保护,防止其塌落物落入锭身。

采用恰当的浇注工艺及防污染措施,粗大夹杂是可以消除的。

3.气体

z种类

z铸锭中气体的形成机理

氢、氮、氧等气体在钢液中的溶解度远高于固体钢的溶解度,因此,钢锭在凝固中必将析出气体,氧除可形成较大量的氧化物外,还可形成CO气体排出。

实验表明,大气环境浇注的钢锭,其氢含量比钢液状态低20%~50%,还有资料表明,氢、氮在浇注、结晶和冷却过程中降低了30%~35%,但仍有一大部分存留在钢锭中。

在钢锭凝固过程中,气体主要从固液两相区内已凝固的那部分钢中析出。

析出的氢、氮气体总压力至少为0.15MPa。

一部分气体将以单相气泡的形成析出,一部分则残留在晶体缺陷中,还有一部分继续向温度高的钢液中扩散。尤其是氢,始终沿温度梯度方向自温度低的区域向温度高的区域扩散移动,直至钢锭完全冷却。

氮与氢类似,基本符合沿温度梯度扩散移动的规律。

显然,最后凝固的钢锭中心及上部始终是相对的高温区。

z钢锭中的气体分布规律

大气浇注的钢锭,上部氢含量比下部高,心部比表面高。见图。正由于此,大型锻件中,与钢锭上部相应的部分较与下部相应的部分更易出现白点。

氢的分布还与夹杂物的分布有关,实验数据表明,凡夹杂物富集的区域,氢的含量均较高。见图。

氢和氮在扩散中极易在孔隙和疏松处聚集存留,并形成分子而停止扩散,成为双重缺陷。

氮在钢锭中的分布也是不均匀的,与氢类似。在钢锭心部和上部,氮含量比

外层和下部高。如果钢中含有Cr、Ti、Zr等易形成氮化物的成分,在氮化物夹杂的沉积区,氮含量应是最高的。

气体在钢锭中析出后,可直接形成气泡和针孔等缺陷。

z危害

氢的危害最严重,锻造后形成白点,产生氢脆。造成废品。

3.缩孔和疏松

z种类:

缩孔:尺寸较大,大多位于冒口区,在冒口与锭身交界处有时也出现少许。

疏松:位于上部中心的V偏析区,有诸多小孔聚集,使该区密度明显低于锭身平均密度。在A偏析区也存在疏松,但程度较轻。

气泡:位于V偏析区上部。

显微疏松及针孔:尺度微小,普遍存在于树枝晶间。

z形成机理:

宏观尺度的缩孔、疏松、孔洞集中分布于冒口区及锭身上部中心区。该区是最后的凝固区,当冒口顶面首先凝固,而该区尚在凝固中,其体积收缩得不到钢液的补充,既形成了不同尺度和形式的缩孔。孔洞尺度自上而下呈减小趋势。

显微孔隙的成因:当枝状晶成核长大时,由于选择性结晶效应,C、P、S等元素被排挤在枝晶间的钢液中,使枝晶间形成了低熔点液相,并被周围的枝晶包裹,当温度降至其熔点,开始结晶时,因与外界隔绝,无钢液补缩,形成了显微孔隙。其本质上仍是缩孔。显微孔隙区是C、P、S的偏析区,H也再次聚集。

z危害:

孔洞破坏了锻件的连续性,成为原生型裂纹,削弱了锻件的强度,加剧了应力集中效应,需通过锻造予以消除。疏松和缩孔区同时也是P、S偏析区,H等有害气体也再次聚集,是多种缺陷同时存在的区域,塑性、韧性低。

z预防措施:

缩孔集中的冒口区应在锻造中予以切除。

钢液应尽可能采用除气工艺,减少气孔、气泡。

采用大锥度锭型。

采用较大和具有良好绝热性的保温帽,使用冒口发热剂,以延缓冒口顶部的凝固时间,保证钢液的补充,使缩孔集中于冒口区。

保证较高的浇注温度及合理的浇注速度。

四、提高铸锭质量的措施

大型锻件

大型锻件、锻件、锻造件 大型锻件属于锻件的规格体积较大的一种,是金属被施加压力,这种力量典型的通过使用铁锤或压力来实现。经过锻造的工件质量好、密度高、使用寿命增长、生产安全大大提高了保证。锻件过程建造了精致的颗粒结构,并改进了金属的物理属性。优质锻件可以保证磁粉、UT超声波、机械性能、原材料化学成分合格。山西永鑫生锻造有限公司提供。 中文名外文名生产商 锻件forging 山西永鑫生锻造 简介 按规格分为:轴类、齿轮、车轮、筒类、模块、环形、异形件。山西永鑫生锻造可按图纸尺寸、化学成分、技术要求锻造、机加工、热处理、同步完成。出口锻件材质可咨询定制。 锻件需要每片都是一致的,没有任何多孔性、多余空间、内含物或其他的瑕疵。这种方法生产的元件,强度与重量比有一个高的比率。这些元件通常被用在飞机结构中。锻件的优点有可伸展的长度、可收缩的横截面;可收缩的长度、可伸展的横截面;可改变的长度、可改变的横截面。锻件的种类有:自由锻造/手锻、热模锻/精密锻造、顶锻、滚锻和模锻。

飞机锻件 按重量计算,飞机上有85%左右的的构件是锻件。飞机发动机的涡轮盘、后轴颈(空锻件 心轴)、叶片、机翼的翼梁, 机身的肋筋板、轮支架、起落架的内外筒体等都是涉及飞机安全的重要锻件。飞机锻件多用高强度耐磨、耐蚀的铝合金、钛合金、镍基合金等贵重材料制造。为了节约材料和节约能源,飞机用锻件大都采用模锻或多向模锻压力机来生产。汽车锻按重量计算,汽车上有71.9%的锻件。一般的汽车由车身、车箱、发动机、前桥、后桥、车架、变速箱、传动轴、转向系统等15个部件构成汽车锻件的特点是外形复杂、重量轻、工况条件差、安全度要求高。如汽车发动机所使用的曲轴、连杆、凸轮轴、前桥所需的前梁、转向节、后桥使用的半轴、半轴套管、桥箱内的传动齿轮等等,无一不是有关汽车安全运行的保安关键锻件。

锻造

一.名词解释 1.什么是锻造、自由锻造? 锻造是一种借助工具或模具在冲击或压力作用下加工金属机械零件或零件毛坯的方法。 自由锻造一般是指借助简单工具,如锤、型砧、摔子、冲子、垫铁等对铸锭或棒材进行镦粗、拔长、弯曲、冲孔、扩孔等方式生产零件毛坯。 2.什么是开式模锻、闭式模锻? 开式模锻是变形金属的流动不完全受模腔限制的一种锻造方式。 闭式模锻也称无毛边模锻。在变形过程中,金属始终被封闭在型腔内不能排出,迫使金属充满型槽而不形成毛边。 3.什么是镦粗、拔长? 镦粗是使坯料高度减小而横截面增大的成形工步。 拔长是使坯料横截面减小而长度增加的成形工步。 4.什么是偏析、过热、过烧、氧化? 偏析是指钢锭内部各处成分与杂质分布不均匀的现象,包括枝晶偏析和区域偏析等。 过热是金属由于加热温度过高、加热时间过长而引起晶粒过分长大的现象。 过烧是指当金属加热到接近其融化温度,并在此温度下停留时间过长时,将出现过烧现象。氧化是指金属原子失去电子与氧结合形成氧化物的化学反应。 二.判断 1.毛边槽仓部的容积应按上下模打靠后,尚未完全被多余金属充满的原则来设计。(对) 2.闭式模锻比开式模锻的金属利用率高。(对) 3.闭式模锻件没有毛边。(对) 4.闭式模锻时,当金属充满型槽各处,锻造结束。(错) 5.模锻工艺和模锻方法与锻件的外形密切相关。(对) 6.拔长时,送进量越大、越长,效率越高。(错) 7.被镦粗的锻坯端面应平整,并与轴线垂直,否则会镦歪。(对) 8.锻件坯料加热时,应尽量提高始锻温度。(错) 9.模锻件力学性能要比自由锻的好。(对) 10.锻造的目的就是为获得形状和尺寸符合要求的锻件。(错) 11.锤上模锻件上直径小于30mm的小孔,一般不宜冲出。(对) 12.坯料在垫环上或两垫环间进行的镦粗,称为局部镦粗。(错) 13.蒸汽一空气锤的规格是用落下部分质量来表示的。(对) 14.钢锭内空洞类缺陷的内表面已经被氧化,不能通过锻造将这些空洞类缺陷锻合。(对) 15.为使锻件获得较高的力学性能,锻造应达到一定的锻造比。(对) 16.在保证锻件顺利取出的前提下,模锻斜度尽可能取小值。(对) 17.模锻斜度的大小与分模线位置无关。(错) 18.为了便于选择标准刀具,模锻斜度和模锻圆角半径应从标准系列数值中选择。(对) 19.锻件的内圆角半径对应模具型槽的外圆角半径,如果选的过小可导致锻模在热处理和模 锻过程中因应力集中使其开裂。(错)

制造工艺详解——铸造

制造工艺详解——铸造 铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。 一、铸造的定义和分类 铸造的定义:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,获得具有一定形状、尺寸和性能金属零件毛坯的成型方法。 常见的铸造方法有砂型铸造和精密铸造,详细的分类方法如下表所示。 砂型铸造:砂型铸造——在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 精密铸造:精密铸造是用精密的造型方法获得精确铸件工艺的总称。它的产品精密、复杂、接近于零件最后形状,可不加工或很少加工就直接使用,是一种近净形成形的先进工艺。

铸造方法分类 二、常用的铸造方法及其优缺点 1. 普通砂型铸造 制造砂型的基本原材料是铸造砂和型砂粘结剂。最常用的铸造砂是硅质砂,硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。 砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分为粘土湿砂型、粘土干砂型和化学硬化砂型3种。

砂型铸造用的是最流行和最简单类型的铸件已延用几个世纪.砂型铸造是用来制造大型部件,如灰铸铁,球墨铸铁,不锈钢和其它类型钢材等工序的砂型铸造。其中主要步骤包括绘画,模具,制芯,造型,熔化及浇注,清洁等。 工艺参数的选择 加工余量:所谓加工余量,就是铸件上需要切削加工的表面,应预先留出一定的加工余量,其大小取决于铸造合金的种类、造型方法、铸件大小及加工面在铸型中的位置等诸多因素。 起模斜度:为了使模样便于从铸型中取出,垂直于分型面的立壁上所加的斜度称为起模斜度。 铸造圆角:为了防止铸件在壁的连接和拐角处产生应力和裂纹,防止铸型的尖角损坏和产生砂眼,在设计铸件时,铸件壁的连接和拐角部分应设计成圆角。 型芯头:为了保证型芯在铸型中的定位、固定和排气,模样和型芯都要设计

锻造毛坯工艺设计说明书

锻造毛坯工艺设计说明书 课程名称:机械制造工艺设计 设计题目:轴自由锻毛坯制造工艺设计设计单位:机自1103 设计人学号: 设计人姓名:郑晓虎 指导教师:张锁梅贾志新 2014年6月

目录 1 锻件加工余量、余块、公差的确定 (1) 锻造方式及毛坯类型的选择 (1) 锻件加工余量、余块、公差的确定 (1) 2 毛坯质量和尺寸的计算 (3) 毛坯质量的计算 (3) 毛坯尺寸的计算 (4) 3 自由毛坯变形步骤、温度和冷却 (5) 毛坯变形步骤 (5) 锻造温度 (5) 冷却方式 (6) 4 设备的选择 (6) 5 参考文献 (7)

1锻件加工余量、余块、公差的确定 锻造方式及毛坯类型的选择 锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定的机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。根据坯料的移动方式,锻造方式分为自由锻,模锻,闭式模锻,闭式镦锻等,本课程采用自由锻的方式。 零件为阶梯轴类零件,材料选择45钢。阶梯轴零件工作时,些部位如轴颈(主要是与滑动轴承配合的轴颈)往往要承受摩擦、磨损,严重时可能发生咬死(又称抱轴)现象,使轴类零件运转精度下降,有时还需要承受多种载荷的作用。为增强阶梯轴的强度和冲击韧度,获得纤维组织,毛坯选用锻件。 锻件加工余量、余块、公差的确定 锻件图是编制锻造工艺、设计工具、指导生产和验收锻件的主要依据。它是在零件图的基础上考虑加工余量、锻造公差、锻造余块和操作用夹头等因素绘制而成的,如下图1。 图1 轴的锻件图 余量:为了保证零件机械加工尺寸和表面粗糙度,在零件外表面需要加工部分,留一层

锻造工艺规范

ZX/JS-0058 江苏新中信电器设备有限公司 锻造工艺规范 编制:审核:审批: 二零三年三月

江苏新中信电器设备有限公司 ZX/JS-005 锻造工艺规范——————————————————— 1 主题内容与适用范围 本规程规定了煤炉加热、空(蒸)气锤锻造的操作程序及要点。 本规程适用于公司外协锻造件煤炉加热、空(蒸)气锤上的锻造,锻造件。 2 准备工作 2.1 材料检查 2.1.1 操作者必须根据锻造工艺卡上规定的材质和下料规格核对材质和规格,并核查实际下料毛坯尺寸,发生疑问时应将信息反馈到发料部门和技术部门。 2.1.2 操作者必须目视检查原材料,不得有可能导致锻造宏观缺陷存在,有缺陷之原材料经打磨或切削加工等方法处理后,再经无损检验或目视检查,在不影响锻造质量的情况下方可加热锻造。 2.2 设备及模具的检查 2.2.1 生产前,应认真检查设备及所有附件,一切正常方可投入生产。 2.2.2 操作者应根据派工单和锻造工艺卡片领用,检查核对模具,并根据锻造工艺核查模具尺寸,不得有误。 3 材料加热 锻造加热设备为灶或炉和室式炉,燃料为煤,在加热过程中应特别注意尽量减少氧化,防止过热过烧。 3.1 为了减少氧化皮,在加热过程可采取以下措施: a、在保证加热质量前提下,直径小于200㎜的小规格低、中碳钢和低合金钢尽 量采用快速加热,缩短加热时间,尤其是金属在高温下的停留时间不宜过长,尽 量用少装勤装的操作方法。 b、在燃料完全燃烧的条件下,尽可能减少过剩空气量,以免炉内剩余氧气过多, 并注意减少燃料中水分。 c、炉堂应保持不大的正压力,防止冷空气吸入炉堂。 d、工件加热到温后尽快出炉锻打。 3.2 防止过热、过烧的措施: a、熔点较钢材低的铜屑等不能落入炉底,以防渗入金属内部,导致过烧。 b、控制加热温度和时间,钢材温度不得高于材料所允许的始锻温度,如果锻压 设备发生故障而长时间停锻时,必须降低炉温或采取其它措施。 c、高、中合金钢和直径大于200㎜的高碳钢加热时应适当控制加热速度,可采取 适当降低装炉温度并在此温度下保温一段时间的方法,以防形成内裂。 4 锻造 4.1 基本要点 4.1.1 操作者在锻打之前,必须熟悉锻件图及锻造工序,准备好自检量具和工具。 4.1.2 根据工艺规定,使用相应锻压设备。 4.1.3 材料达到锻造温度(可目测或用光学高温计测量)即可出炉锻造,在操作时避免局部过冷,工模具要预热到足够温度,操作要迅速,又要避免局部重复打击。 4.1.4 严格控制终锻温度,不允许在高出规定终锻温度太高的温度下停止锻打,否则会形

7-大型锻件及其制造工艺-聂绍珉

研究生课程教学大纲 课程所属类别:硕士 课程编号:2080503007 课程名称:大型锻件及其制造工艺概论 开课院系:机械学院塑性成形系任课教师:聂绍珉 先修课程:适用学科范围: 学时:24 学分:1.5 开课学期: 2 开课形式:讲授 课程目的和基本要求:(200字左右) 讲述大型锻件在国民经济、国防建设、特别是在装备制造中的作用和意义,国内外主要大锻件的生产水平。使学生了解大型锻件的力学基础和制造工艺过程、大型锻件在制造过程各环节中存在的主要问题、大型锻件的特殊锻造方法及其力学机理、典型大锻件的锻造工艺。 要求学生对大锻件的特殊质量要求、特殊制造工艺及其存在的主要问题有基本的了解。 课程主要内容及学时分配:(1000~1500字) 第一章绪论介绍大型锻件的特点及基本概念、国内外大型锻件及主要工艺装备的发展水平、主要研究方向及课程内容。(2学时) 第二章金属塑性加工的经典理论及现代方法应力分析;应变分析;基本方程:平衡方程、几何方程、物理方程;屈服条件及其几何表达;全量理论及增量理论; 变形力学简图;金属的塑性及其影响因素、提高塑性的工艺因素;变形抗力及其影响因素;研究金属塑性变形的现代方法。(3学时) 第三章现代炼钢技术电弧炉炼钢的发展概况及电弧炉的结构。碱性电炉炼钢工艺过程:炉料及其准备,熔化期,氧化期,还原期,出钢。大锻件用钢的炉外精炼:钢包吹氩法,钢液的真空处理,炉外精炼的基本手段(LD法、LL法、TD 法、RH法、DH法)。大锻件用钢钢包精炼的主要工艺:ASEA-SKF法及Finkl—Mohr法,LF和LFV法,VOD法,V AD法,AOD法。钢包喷射冶金法:TN法,SL法,CAB法。电渣重熔法—ESR。(4学时) 第四章大型锻件用钢锭及铸锭技术大型钢锭的类型:普通钢锭,短粗型钢锭,短冒口钢锭,细长型钢锭,空心钢锭,多锥度钢锭,电渣重熔钢锭。铸锭工艺:

大锻件 第4部分 锻造用钢锭及铸锭技术

第四部分锻造用钢锭及铸锭技术 一、 大型钢锭的组织结构及类型 1.大型钢锭的组织结构

z 激冷层:锭身表面的细小等轴晶区。厚度仅6~8mm ;因过冷度较大,凝固速 度快,无偏析;有夹渣、气孔等缺陷。 z 柱状晶区:位于激冷层内侧;由径向呈细长的柱状晶粒组成;由于树枝状 晶沿温度梯度最大的方向生长,该方向恰为径向,因此形成了柱状晶区;其 凝固速度较快,偏析较轻,夹杂物较少;厚度约50~120mm 。 z 分枝树枝晶区:从柱状晶区向内生长;主轴方向偏离柱状晶,倾斜,并出现 二次以上分枝;温差较小,固液两相区大,合金元素及杂质浓度较大。 z A 偏析区:枝状晶间存在残液,比锭内未凝固的钢液密度小,向上流动,形成A 偏析;在偏析区合金元素和杂质富集,存在较多的硫化物,易产生偏析裂纹。 z 等轴晶区:位于中心部位;温差很小,同时结晶,成等轴晶区。钢液粘稠, 固相彼此搭桥,残液下流形成V 偏析,疏松增多。 z 沉积锥区:位于等轴晶区的底端;由顶面下落的结晶雨、熔断的枝状晶形成的自由晶组成,显示负偏析;等轴的自由晶上附着大量夹杂物,其组织疏松,且夹杂浓度很大;应切除。 z 冒口区:最后凝固的顶部;因钢液的选择性结晶,使后凝固的部分含有大量 的低熔点物质,最后富集于上部中心区,其磷、硫类夹杂物多;若冒口保温不良,顶部先凝固,因无法补缩形成缩孔;质量最差,应予切除。 2. 大型钢锭的类型 z 普通钢锭 高径比:=+d D H 2 1.8~2.5;通常,10吨以下的钢锭:2.1~2.3,10吨以上的钢锭:1.5~2;

锥度:=%100-D H d 3~4% ; 横断面为8棱角形。大钢锭为16,24,32棱角。 z 短粗型钢锭 高径比: 0.5~2; 锥度: 8~12%。 高宽比减小,锥度加大有利于钢锭实现自下而上顺序凝固,易于钢水补缩,中心较密实; 有利于夹杂上浮,气体外溢,减少偏析; 锭身较短,钢水压力小,侧表面不易产生裂纹; 锥度大,易脱模; 可增加拔长锻比。 z 短冒口钢锭 对于中、低碳钢,中、低合金结构钢的大型空心锻件,可使用普通锭模,但采用短冒口,以减少冒口钢水。 z 细长型钢锭 高径比:大于3.5; 锥度:5~8%; 用于不需镦粗的轴类件,可减少火次,钢锭利用率达70~75%。 z 空心钢锭 用于锻造大型筒类、环类等空心锻件,对于容器制造具有重要意义; 在钢锭模内置入薄壁钢管,浇铸后形成空腔; 可显著提高钢锭利用率,大幅减少火次;

锻造工艺常见缺陷

锻造工艺不当产生的缺陷通常有以下几种: 1.大晶粒 大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。 2.晶粒不均匀 晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。耐热钢及高温合金对晶粒不均匀特别敏感。晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。 3.冷硬现象 变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。严重的冷硬现象可能引起锻裂。 4.裂纹 裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允

许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。 5.龟裂 龟裂是在锻件表面呈现较浅的龟状裂纹。在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。③燃料含硫量过高,有硫渗人钢料表面。 6.飞边裂纹 飞边裂纹是模锻及切边时在分模面处产生的裂纹。飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。 7.分模面裂纹 分模面裂纹是指沿锻件分模面产生的裂纹。原材料非金属夹杂多,模锻时向分模面流动与集中或缩管残余在模锻时挤人飞边后常形成分模面裂纹。 8.折叠 折叠是金属变形过程中已氧化过的表层金属汇合到一起而形成的。它可以是由两股(或多股)金属对流汇合而形成;也可以是由一股金属的急速大量流动将邻近部分的表层金属带着流动,两者汇合而形成的;也可以是由于变形金属发生弯曲、回流而形成;还可以是部

大型锻件中常见的缺陷与对策

大型锻件中常见的缺陷与对策 大型锻件中的缺陷,从性质上分为化学成分、组织性能不合格,第二相析出,类孔隙性缺陷和裂纹五大类。从缺陷的产生方面可分为,在冶炼、出钢、注锭、脱模冷却或热送过程中产生的原材料缺陷及在加热、锻压、锻后冷却和热处理过程中产生的锻件缺陷两大类。 大型锻造中,由于锻件截面尺寸大,加热、冷却时,温度的变化和分布不均匀性大,锻压变形时,金属塑性流动差别大,加上钢锭大冶金缺陷多,因而容易形成一些不同于中小型锻造的缺陷。如严重偏析和疏松,密集性夹杂物,发达的柱状晶及粗大不均匀结晶,敏感开裂与白点倾向,晶粒遗传性与回火脆性,组织性能的严重不均匀性,形状尺寸超差等等。 大型锻件中常见的主要缺陷有; 1.偏析 钢中化学成分与杂质分布的不均匀现象,称为偏析。一般将高于平均成分者,称为正偏析,低于平均成分者,称为负偏析。尚有宏观偏析,如区域偏析与微观偏析,如枝晶偏析,晶间偏析之分。 大锻件中的偏析与钢锭偏析密切相关,而钢锭偏析程度又与钢种、锭型、冶炼质量及浇注条件等有关。合金元素、杂质含量、钢中气体均加剧偏析的发展。钢锭愈大,浇注温度愈高,浇注速度愈快,偏析程度愈严重。 (1)区域偏析 它属于宏观偏析,是由钢液在凝固过程中选择结晶,溶解度变化和比重差异引起的。如钢中气体在上浮过程中带动富集杂质的钢液上升的条状轨迹,形成须状∧形偏析。顶部先结晶的晶体和高熔点的杂质下沉,仿佛结晶雨下落形成的轴心∨形偏析。沉淀于锭底形成负偏析沉积锥。最后凝固上部区域,碳、硫、磷等偏析元素富集,成为缺陷较多的正偏析区。 图片6-1为我国解剖的55t34CrMolA钢锭纵剖面硫印低倍图片及区域偏析示意图。 图片6-1 钢锭区域偏析硫印示意图 ①“∧”型偏析带②“∨”型偏析带③负偏析区 防止区域偏析的对策是: 1)降低钢中硫、磷等偏析元素和气体的含量,如采用炉外精炼,真空碳脱氧(VCD)处理及锭底吹氩工艺。 2)采用多炉合浇、冒口补浇、振动浇注及发热绝热冒口,增强冒口补缩能力等措施。 3)严格控制注温与注速,采用短粗锭型,改善结晶条件。 在锻件横向低倍试片上,呈现与锭型轮廓相对应的框形特征,亦称框形偏析。图片6-2是30CrMnSiNiA钢制模锻件低倍试片上显示的锭型偏析。因锭中偏析带在变形时,沿分模面扩展而呈现为框形。偏析带由小孔隙及富集元素构成,对锻件组织性能的均匀性有不良的影响。 电渣重熔以其纯净度高、结晶结构合理,成为生产重要大锻件钢坯的方法,但是如果在重熔过程中电流、电压不稳定,则会形成波纹状偏析。当电流、电压增高时,钢液过热,结晶速度减缓,钢液中的溶质元素在结晶前沿偏聚形成富集带;当电流、电压减小时,熔质元素偏聚程度减小,这种周期性的变化,便形成了波纹状的偏析条带,如图片6-3所示。

锻造基本知识

锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。

锻造工艺的设计说明书

阶梯轴锻造工艺 设计说明书 题目:阶梯轴锻造工艺设计 专业:机械设计制造及其自动化班级:机设1301 学生:亮学号: 7 指导教师:浩舸 完成日期: 机械工程学院 2016年9月

目录 1.引言 (1) 2.设计方法与步骤 (2) 2.1绘制锻件图 (3) 2.2 确定变形工艺 (3) 2.2.1镦粗 (3) 2.2.2冲孔 (4) 2.2.3扩孔 (4) 2.2.4修整锻件 (4) 2.3 计算坯料质量和尺寸 (4) 2.4选定设备及规 (5) 2.5确定锻造温度及规 (5) 2.6确定冷却方法及规 (5) 3.工艺流程卡 (6) 4.结论 (8) 5.致 (8) 6.参考文献 (8)

1. 引言 锻造的目的是使坯料成形及控制其部组织性能达到所需的几何形状,尺寸以及品质的锻件。轴是现代工业大量使用的零件,本文讨论阶梯轴的自由锻生产。 2. 设计方法与步骤 2.1绘制锻件图 锻件图是根据零件图的基本图样,结合锻造工艺特点考虑余块、锻件余量和锻造公差等因素绘制而成。 阶梯轴材料为40Cr,生产批量小,采取自由锻锻造轴坯。 轴上的键槽等部分,采用自由锻方法很难成形这些部位,因此考虑到技术上的可行性和经济性,决定不锻出,并采用附加余块简化锻件外形,以利于锻造。锻造出轴坯后可以进一步进行切削加工,最后成形。 根据零件图的尺寸规格,对照表所列中零件的高度和直径围,可以查出齿环锻件加工余量和公差。由L=203,Φ=46,对照《金属成形工艺设计》中表3-3中所列的零件总长为0∽315mm、最大直径0∽50mm,可查得锻造精度为F级的锻件余量及公差为7±2mm。,然后按查得的公差数值,可绘阶梯轴的锻件图。阶梯轴锻件图见图1。 图1 阶梯轴锻件图 2.2确定变形工艺

大锻件锻造方法简介

大锻件锻造方法简介 1.钢锭的结构特点 1.1钢的冶炼和浇注 大型钢锭用钢的冶炼一般在碱性电炉中进行。通过电炉冶炼,获得所需要的化学成分, 控制好S、P等杂质含量。 对于重要的锻件,钢水还要经过精炼。精炼多在精炼炉中进行,精炼的主要任务是微调 化学成分和真空除气,还可以调整钢水的温度。 钢锭的浇注有上注法和下注法两种,大型钢锭以上注法为多。对于重要的锻件,在钢锭 浇注时往往有特殊的要求,如真空浇注、真空碳脱氧等等。 在精炼炉中真空,和在浇注时真空,都需要有专门的,巨大的真空系统。真空的目的是 尽可能排除钢中所含的氢、氧等有害气体。提高钢的纯净度,并为缩短锻件第一热处理周期 创造条件。 1.2大型钢锭的宏观组织: 钢锭内部的组织结构,主要取决于钢锭浇注时 钢水过冷与传热条件。 锭身表面层冷却速度快,为细小的等轴晶; 锭身中间带为柱状晶,距中心愈近晶粒愈粗 大; 锭心区为粗大等轴晶,晶间夹杂较多,组织 较疏松。 钢锭底部:冷却速度快晶粒细,但该区在钢 锭凝固过程中形成一锥形沉积堆,含有大量夹杂 物。 冒口:钢水因有保温帽保温,冷却速度最慢。 该区组织结构极松,存在有收缩孔、收缩疏松等 大量缺陷。 因此在大锻件的订货技术条件中往往规定水 冒口的最小切除量。在锻造工艺中也要确定水冒 口的实际切除量。 1.3大型钢锭内部的主要缺陷: 大型钢锭的主要缺陷是偏析、气体、夹杂和 疏松。它们是冶金过程中固有的缺陷,只能减少, 不能消除。 偏析:指的是结晶过程造成钢锭的不同部位的 化学成分不一样。 气体:在熔炼过程中钢水大量地吸收氢(还有氮)。当钢中的氢含量超过一定值时,锻造后冷却时就可能产生白点而使锻件报废。比如国外某公司在核岛锻件订购技术条件中规定钢包分析氢含量不得超过0.8ppm(1ppm=百万分之一)。含氢量高的钢锭在锻成锻件后,要在锻后热处理中花费大量的时间来扩散氢气以避免白点。 夹杂:夹杂的来源有来自熔炼过程和脱氧产物的,也有来自出钢槽、盛钢桶等外来夹杂。 缩孔和疏松:液态钢和固态钢,都随温度降低而发生体积收缩;从液态变为固态时,也 有体积收缩。钢液在锭模(或砂型)中凝固时,先凝固成与注入钢液差不多高的外壳,中 间随着凝固收缩就会向下凹下去。于是在头部形成大的空洞,即开放缩孔。如果上部比下

锻造工艺期末复习重点

一、选择题(每题1分,共20分) 二、填空题(每空1分,共25分) 三、判断并改错题(判断对错,并改正错误之处,每题1分,共10分) 四、简答题(每题5分,共25分) 五、综合题(每题10分,共20分) 1.锻造工艺定义,分类(分类方法)。 2.锻造材料的准备(选材,下料)材料可能存在的缺陷下料方法,特点,优点。 3.锻前加热的目的是什么?钢料锻前的加热方法有哪几种?在加热过程中钢料可能产生哪些缺陷? 加热方法:⑴火焰加热(燃油加热、燃煤加热、燃气加热) ⑵电加热(电阻加热<电阻炉加热、接触电加热、盐熔炉加热>、感应电加热)钢料在加热过程中可能产生的缺陷: 氧化、脱碳、过热、过烧及在坯料内部产生裂纹等。 4.何为锻造温度范围?锻造温度范围制定有哪些基本原则?始锻温度和终锻温度应如何确定? 锻造温度范围是钢料开始锻造的温度(即始锻温度)和结束锻造的温度(即终锻温度) 区间。 基本原则:⑴钢料在锻造温度范围内应具有良好的塑性和较低的变形抗力; ⑵能锻出优质锻件; ⑶为减少加热火次,提高锻造生产率,锻造温度范围应尽可能宽。 始锻温度的确定:⑴必须保证钢无过烧现象; ⑵对于碳钢:始锻温度应比铁-碳平衡图的固相线低150~250℃。 终锻温度的确定:⑴保证钢料在终锻前具有足够的塑性; ⑵使锻件获得良好的组织性能。 5.何为加热规范?钢料的加热规范包括哪些内容?加热规范是按哪些原则制定的? 加热规范是坯料从装炉到加热结束,整个过程中,炉温随时间的变化关系。 钢料的加热规范包括:①钢料的装炉温度; ②加热升温速度;

③最终加热温度; ④各阶段加热和保温时间及总的加热时间等。 加热规范制定的原则:⑴加热时间短、生产效率高; ⑵不引起过热和过烧、氧化脱碳少、加热均匀,不产生裂纹; ⑶热能消耗少。总之应保证高效、优质、节能。 6.各种自由锻工序的含义?锻造过程可能产生的缺陷和预防措施?圆柱坯料镦粗时产生不均匀变形有哪些原因?采用哪些措施可预防其不均匀变形和裂纹的产生? 镦粗:使坯料高度减小,横截面增大的成形工序称为镦粗。 拔长:使坯料横截面积减小而长度增加的成形工序叫拔长。 冲孔:在坯料上锻制出透孔或不透孔的工序叫冲孔。 扩孔:减小空心坯料壁厚,使内、外径增加的锻造工序称为扩孔。 弯曲:将坯料弯成所规定外形的锻造工序称为弯曲。 镦粗时产生的缺陷:⑴侧表面产生裂纹; ⑵锭料镦粗后上、下端常保留铸态组织; ⑶高坯料失稳而弯曲。 圆柱坯料镦粗时产生不均匀变形原因:①工具与坯料端面间摩擦力影响 ②温度不均匀影响。 预防措施:⑴使用润滑剂和预热工具⑵采用凹形毛坯 ⑶采用软金属垫⑷采用铆镦、叠镦和套环内镦粗 ⑸采用反复镦粗拔长的锻造工艺。 7.常用的冲孔方法有哪几种?冲孔时有可能出现哪些缺陷? 冲孔方法有:实心冲子冲孔(双面冲孔) ,垫环上冲孔(漏孔),空心冲子冲孔可能出现的缺陷:“走样”、裂纹和孔冲偏等。 8..饼块类锻件和空心类锻件应选用哪些基本的锻造工序? 饼块类锻件:镦粗(局部镦粗)、冲孔; 空心类锻件:镦粗、冲孔、芯轴扩孔、芯轴拔长等。 9.自由锻工艺过程的主要内容有哪些?锻件公称尺寸、加工余量和公差的含义是什么? 主要内容:⑴根据零件图绘制锻件图; ⑵确定坯料重量和尺寸;

锻造及锻后热处理工艺规范

目录 1.钢质自由锻件加热工艺规范 2.钢锭(坯)加热规范若干概念 3.加热操作守则 4.锻造操作守则 5.锻件锻后冷却规范 6.锻件锻后炉冷工艺曲线 7.锻件锻后热装炉工艺曲线 8.冷锻件校直前加热、校直后(补焊后)回火工艺曲线 9.锻件各钢种正火(或退火)及高温回火温度表 10.锻件有效截面计算方法

钢质自由锻件加热工艺规范 一.范围: 本规范规定了钢质自由锻件的通用加热技术条件。 本规范适用于碳素钢、合金钢、高合金钢、高温合金钢(铁基、镍基)的冷、热、半热钢锭(坯)的锻造前加热 二.常用钢号分组和始、终锻加热温度范围: 组别钢号 始锻温度 ℃ 终锻温度 ℃ 钢锭钢坯终锻精整 ⅠQ195~Q255,10~30 1250 1220 750 700 35~45,15Mn~35Mn,15Cr~35Cr 1220 1200 750 700 Ⅱ50,55,40Mn~50Mn,35Mn2-50Mn2,40Cr~55Cr,20SiMn~35SiMn, 12CrMo~50CrMo,34CrMo1A,30CrMnSi,20CrMnTi,20MnMo, 12CrMoV~35CrMoV,20MnMoNb,14MnMoV~42MnMoV, 38CrMoAlA,38CrMnMo 1220 1200 800 750 Ⅲ34CrNiMo~34CrNi3Mo,PCrNi1Mo~PCrNi3Mo,30Cr1Mo1V, 25Cr2Ni4MoV,22Cr2Ni4MoV,5CrNiMo,5CrMnMo,37SiMn2MoV 30Cr2MoV,40CrNiMo,18CrNiW,50Si2~60Si2,65Mn,50CrNiW, 50CrMnMo,60CrMnMo,60CrMnV 1200 1180 850 800 T7~T10,9Cr,9Cr2,9Cr2Mo,9Cr2V,9CrSi,70Cr3Mo, 1Cr13~4Cr13,86Cr2MoV,Cr5Mo,17-4PH 0Cr18Ni9~2Cr18Ni9,0Cr18Ni9Ti,Cr17Ni2,F316LN 1200 1180 850 800 50Mn18Cr4,50Mn18Cr4N,50Mn18Cr4WN,18Cr18Mn18N GCr15,GCr15SiMn,3Cr2W8V,CrWMo,4CrW2Si~6CrW2Si 1200 1180 850 800 Cr12MoV1,4Cr5MoVSi(H11),W18Cr4V 1180 1160 950 900 ⅣGH80,GH901,GH904,GH4145,WR26, NiCr20TiAl,incone1600,incone1800 1130 1100 930 930 注1:始锻温度为锻前加热允许最高炉温,由于钢锭的铸态初生晶粒加热时过热倾向比同钢号钢坯小,故两者的锻前加热温度相差20℃~30℃; 注2:根据产品的特性、锻件技术条件、变形量等因素,始锻温度可以适当调整;注3:本规范未列入的钢种,可按化学成分相近的钢号确定; 注4:重要的、关键产品的、特殊材质的钢号,其加热工艺曲线由技术部编制;注5:几种不同的钢种,不同尺寸的钢锭(或坯料),在同一加热炉加热时,要以合金成分高的,尺寸大的钢锭(或坯料)为依据编制加热工艺曲线。

锻造基本知识教学提纲

锻造基本知识

锻造知识太汇总 锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不

大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 3)碾环。碾环是指通过专用设备碾环机生产不同直径的环形零件,也用来生产汽车轮毂、火车车轮等轮形零件。

大型锻件锻造工艺过程

大锻件一般应用在大型机械的关键部位,由于工作环境恶劣,受力复杂多变,因此,在生产过程中对大型锻件的质量要求很高。大锻件由钢锭直接锻造成形,生产大型锻件时,即使采用最先进的冶金技术,钢锭内部也不可避免存在微裂纹、疏松、缩孔、偏析等缺陷,严重影响锻件的质量,为了消除这些缺陷,提高锻件质量,就必须改进锻造工艺,选用合理的锻造工艺参数。 大锻件锻造不仅要满足所需零件形状和尺寸,而且重要的是破碎铸态组织、细化晶粒、均匀组织、锻合缩孔、气孔和缩松等缺陷,提高锻件内部质量。钢锭尺寸愈大,钢锭中的缺陷也愈严重,锻造改善缺陷愈困难,进而增加了锻造难度。在锻造过程中,镦粗和拔长是最基本的工序,也是不可缺少的工序,对于具有特殊外形的锻件来说,胎模锻造也较为常用。 一、镦粗工艺 在大型锻件的自由锻生产中,镦粗是一个非常主要的变形工序。镦粗工艺参数的合理选择,对大锻件的质量起着决定性的作用。反复的镦拔不但可以提高坯料的锻造比,同时也可以破碎合金钢中的碳化物,达到均匀分布的目的;还可以提高锻件的横向力学性能,减小力学性能的异向性。 大型饼类锻件和宽板锻件都是以镦粗为主要变形,且镦粗的变形量很大,但是目前该类锻件的超声波探伤废品率很高,主要因为内部出现了横向内裂层缺陷,然而现行的工艺理论对此不能解释。为此,从90年代开始,中国学者经过长时间的认真研究,从主变形区以及被动变形区理论出发,对镦粗理论进行深入研究。提出了平板镦粗时刚塑性力学模型的拉应力理论以及静水应力力学模型的切应力理论,与此同时还进行了大量的定性物理模拟实验,并利用广义滑移线法和力学分块法来求解分析工件内部的应力状态,大量数据证明了该理论的合理性和正确性,揭示了利用普通平板镦粗圆柱体时其内部应力的分布规律,进而提出了锥形板镦粗新工艺,建立了方柱体镦粗的刚塑性力学模型。 二、拔长工艺 拔长是大型轴类锻件锻造过程中必须的一道工序,也是影响锻件质量的主要工序,通过拔长工序使坯料截面积减小,长度增加,同时也起到打碎粗晶、锻合内部疏松与孔洞、细化铸态组织等作用,从而获得均质致密的高质量锻件。在研究平砧拔长工艺的同时,人们逐步开始认识到大锻件内部的应力、应变状态对锻合内部缺陷的重要性,从普通的上下平砧拔长,发展到上平砧下V 型砧拔长以及上下V 型砧拔长,再到后来通过改变拔长砧形和工艺条件,又提出了WHF锻造法、KD锻造法、FM锻造法、JTS锻造法、FML锻造法、TER 锻造法、SUF锻造法以及新FM锻造法,这些方法都己经应用于大锻件生产,并且取得较好的效果。 1. WHF锻造法是一种宽平砧强力压下的锻造方法,其锻造原理是利用上、下宽平砧,并且采用大的压下率,锻造时的心部大变形有利于消除钢锭内部缺陷,广泛应用于大型水压机锻造中。 2. KD锻造法是在WHF 锻造方法基础上研发出来的,其原理是利用钢锭在长时间的高温条件下有足够的塑性,能在有限的设备上,用宽砧大压下率进行锻造,采用上、下V 型宽砧锻造有利于锻件表面金属塑性的提高,增加心部的三向压应力状态,进而有效地锻合钢锭内部缺陷。 3. FM锻造法是利用上平砧,下平台锻造时的非对称变形,以及下平台对锻件变形的摩擦阻力作用,使锻件从上到下逐渐变形,以便使拉应力转移到坯料与平台的接触面上,中心部位的静水压应力得到了增加,进而改善了变形体内的应力状态。 4. JTS 锻造法是锻前将钢锭加热到高温,然后使表面快速冷却,钢锭表面进而就形成一层硬壳,心部仍然处于高温状态,这层硬壳对坯料的变形起到固定作用,使变形主要集中在锻

锻件尺寸计算

二)计算坯料质量与尺寸 【坯料质量】坯料质量可按下式计算 G 坯料=G 锻件+G 烧损+G 料头 式中G 坯料——坯料质量 G 锻件——锻件质量 G 烧损——加热时由于坯料表面氧化而烧损的质量。第一次加热取被加热金属的2~3%,以后每次加热取1.5~2.0% G 料头——在锻造过程中冲掉或切掉的那部分金属的质量。如冲孔时坯料中部的料芯,修切端部的料头等。 当锻造大型锻件时,如采用钢锭作坯料,还要考虑应切掉的钢锭头部和尾部的质量。2.坯料尺寸根据坯料质量即可确定坯料尺寸。在计算坯料尺寸前,先要考虑锻造比。【锻造比】是指坯料在锻造前后的断面积的比值。 对于拔长工序来说,其锻造比R d 可按下式计算: R d =A 0 /A 1 或L 1 /L 0 式中A 0 、A 1 ——拔长前、后坯料的断面积; L 0 、L 1 ——拔长前、后坯料的长度。 对于镦粗工序来说,其锻造比(R u )可按下式计算: R u =A 1 /A 0 或H 0 /H 1 式中A 0 、A 1 ——镦粗前、后坯料的断面积; H 0 、H 1 ——镦粗前、后坯料的高度。 确定坯料的尺寸时,应满足对锻件的锻造比要求,并应考虑变形工序对坯料尺寸的限制。采用镦粗法锻造时,为避免镦弯,坯料的高径比(H 0 /D 0 <2.5)。但为下料方便,坯料高径比还应大于1.25。 根据坯料质量,由下式求出坯料体积V 坯。 V 坯=m 坯/ ρ ρ——金属密度。对于钢铁ρ =7.85kg/dm 3 。 然后,求出坯料横截面积A 0 。 采用拔长法锻造时,由公式: A 0 =R d A 1

因锻后横截面积A 1 可知,故可求出A 0 ( 坯料为钢锭时,锻造比R d 取2.3~3. 0;坯料为轧材时,R d 取l.3~1.5),最后可求出坯料直径或边长。 (三)制定锻造工序 根据不同类型的锻件选用不同的锻造工序。工序确定后,尚须确定所用的工夹具、加热设备、加热和冷却规范及根据锻件质量确定锻造设备。 (四)自由锻件的锻造工艺规程举例。 自由锻件的锻造工艺规程举例见下表。

锻造法兰的生产工艺流程

锻造法兰的生产工艺流程: 锻造工艺过程一般由以下工序组成,即选取优质钢坯下料、加热、成形、锻后冷却。锻造的工艺方法有自由锻、模锻和胎膜锻。生产时,按锻件质量的大小,生产批量的多少选择不同的锻造方法。 自由锻生产率低,加工余量大,但工具简单,通用性大,故被广泛用于锻造形状较简单的单件、小批生产的锻件。自由锻设备有空气锤、蒸汽-空气锤和水压机等,分别适合小、中和大型锻件的生产。模锻生产率高,操作简单,容易实现机械化和自动化。模锻件尺寸精度高,机械加工余量小,锻件的纤维组织分布更为合理,可进一步提高零件的使用寿命。(本文转自:三环法兰网https://www.360docs.net/doc/3e214774.html,) 一、自由锻的基本工序:自由锻造时,锻件的形状是通过一些基本变形工序将坯料逐步锻成的。自由锻造的基本工序有镦粗、拔长、冲孔、弯曲和切断等。 1.镦粗镦粗是对原坯料沿轴向锻打,使其高度减低、横截面增大的操作过程。这种工序常用于锻造齿轮坯和其他圆盘形类锻件。镦粗分为全部镦粗和局部锻粗两种。 2.拔长拔长是使坯料的长度增加,截面减小的锻造工序,通常用来生产轴类件毛坯,如车床主轴、连杆等。 3.冲孔用冲子在坯料上冲出通孔或不通孔的锻造工序。 4.弯曲使坯料弯曲成一定角度或形状的锻造工序。 5.扭转使坯料的一部分相对另一部分旋转一定角度的锻造工序。 6.切割分割坯料或切除料头的锻造工序。 二、模锻模锻全称为模型锻造,将加热后的坯料放置在固定于模锻设备上的锻模内锻造成形的。 1.模锻的基本工序模锻工艺过程:下料、加热、预锻、终锻、冲连皮、切边、调质、喷丸。常用工艺有镦粗、拔长,折弯、冲孔、成型。 2.常用模锻设备常用模锻设备有模锻锤、热模锻压力机、平锻机和摩擦压力机等。 通俗地讲,锻造法兰质量更好,一般是通过模锻生产,晶体组织细密,强度高,当然价格也贵一些。法兰锻件网https://www.360docs.net/doc/3e214774.html,

相关文档
最新文档