电机轴承故障处理及分析

电机轴承故障处理及分析
电机轴承故障处理及分析

电机轴承故障处理及分析

一、保持器声“唏利唏利……”

原因分析:由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生。

解决方法:

1、提高保持器精;

2、选用游隙小的轴承或对轴承施加预负荷;

3、降低力矩负荷,减少安装误差;

4、选用好的油脂。

二、连续蜂鸣声“嗡嗡……”

原因分析:马达无负荷运转是发出类似蜂鸣一样的声音,且马达发生轴向异常振动,开或关机时有“嗡”声音。

具体特点:多发润滑状态不好,冬天且两端用球轴承的马达多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动。

解决方法:

1、用润滑性能好的油脂;

2、加预负荷,减少安装误差;

4、提高马达轴承座刚性;

5、加强轴承的调心性。

注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。

三、漆锈

原因分析:由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音。

具体特点:被腐蚀后轴承表面生锈比第一面更严重。

解决方法:

1、把转子、机壳、晾干或烘干后装配;

3、选用适应漆的型号;

4、改善电机轴承放置的环境温度;

5、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起;

6、采用真空浸漆工艺。

四、杂质音

原因分析:由轴承或油脂的清洁度引起,发出一种不规则的异常音。

具体特点:声音偶有偶无,时大时小?有规则,在高速电机上多发。

解决方法:

1、选用好的油脂;

2、提高注脂前清洁度;

3、加强轴承的密封性能;

4、提高安装环境的清洁度。

五、高频、振动声“哒哒......”

具体特点:声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。

解决方法:

1、改善轴承滚道表面加工质量,降低波纹度幅值;

2、减少碰伤;

3、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法。

六、升温

具体特点:轴承运转后,温度超出要求的范Χ。

原因分析:

1、润滑脂过多,润滑剂的阻力增大;

2、游隙过小引起内部负荷过大;

3、安装误差;

4、密封装备的摩擦;

5、轴承的爬行。

解决方法:

1、选用正确的油脂,用量适当;

2、修正游隙预紧力和配合,检查自由端轴承运转情况;

3、改善轴承座精度及安装方法;

4、改进密封形式。

七、轴承手感不好

具体特点:用手握轴承旋转转子时感到轴承里面杂质、阻滞感。

原因分析:

1、游隙过大;

2、内径与轴的配合不当;

3、沟道损伤。

解决方法:

1、游隙尽可能要小;

2、公差带的选用;

3、提高精度,减少沟道的损伤;

4、油脂选用。

2021三相异步电动机常见故障分析与排除

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021三相异步电动机常见故障分 析与排除

2021三相异步电动机常见故障分析与排除导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 三相异步电动机应用广泛,但通过长期运行后,会发生各种故障,及时判断故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要的工作。 一、通电后电动机不能转动,但无异响,也无异味和冒烟。 1.故障原因①电源未通(至少两相未通);②熔丝熔断(至少两相熔断);③过流继电器调得过小;④控制设备接线错误。 2.故障排除①检查电源回路开关,熔丝、接线盒处是否有断点,修复;②检查熔丝型号、熔断原因,换新熔丝;③调节继电器整定值与电动机配合;④改正接线。 二、通电后电动机不转,然后熔丝烧断 1.故障原因①缺一相电源,或定干线圈一相反接;②定子绕组相间短路;③定子绕组接地;④定子绕组接线错误;⑤熔丝截面过小; ⑤电源线短路或接地。 2.故障排除①检查刀闸是否有一相未合好,可电源回路有一相断

电机滚动轴承保持架失效原因分析

电机滚动轴承保持架失效原因分析 【摘要】圆柱滚子槽形保持架轴承的失效形式主要是保持架早期磨损。针对造成该问题的几种因素:保持架加工工艺、滚子倒角尺寸、装配工艺和表面处理工艺进行了改进和控制,有效解决了保持架早期失效问题,提高了槽形保持架轴承的使用寿命。 【关键词】保持架;滚子轴承;磨损;寿命;工艺 保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。滚动轴承在工作时,由于滑动摩擦而造成轴承发热和磨损,特别是在高速运转的条件下,由于离心力的作用,加速了摩擦磨损与发热,严重时会造成保持架烧伤和断裂,致使轴承不能正常使用。保持架损坏在轴承失效形式中占有较大的比例。 下面以6201- 2RZ轴承的保持架为研究对象。某轴承企业生产的6201- 2RZ 轴承装在某型电机上使用不到2天就发生抱死,且此类现象频现。在对电机进行分解后发现:轴承外表面有变色的油脂,用手转动轴承完全卡死,轴承密封盖打开后可观察到轴承内部较黑,剩余油脂已全部碳化,轴承保持架有一处断裂;轴承清洗后可见大量片状碎屑,在钢球与内滚道间居多,防尘盖附着的油脂中也混有部分碎屑。 一、故障特征 鉴于轴承已经发生止转失效,部分零件已经损坏严重,轴承的旋转精度及尺寸精度完全丧失,已无法测量,故直接对轴承外圈切割将轴承进行分解,发现有以下几个特征: 1.一粒钢球从断裂的兜孔中脱离,挤压到相邻兜孔,两个兜孔都已变形;钢球表面已经失去光泽,朝外一侧严重磨损(图1)。 图1 钢球从断裂的兜孔中脱离 2.内外沟道的工作轨迹均偏离沟道中心位置,且内圈工作轨迹较宽,约占沟道宽度的3/5。内、外沟道均发现有多个轴向压痕,工作轨迹表面出现了粗糙度下降的情况;内沟道黏有大量金属铁屑,连续铺满约180°的内沟道表面,铁屑已被碾压成片状。 3.保持架内径与外径方向均有明显磨损,兜孔边缘可见挤压变形;七个兜孔中有五个兜孔保持基本完整,一片半保持架在两个相邻的损坏的兜孔间的铆钉孔处断裂,断裂处铆钉已不可见,断口卷曲变形(无脆性断裂特征);另一片半保持架在对应位置有挤压变形,铆钉孔内径方向磨豁。在未分解之前该处一粒钢球已从兜孔中脱出。在断裂处相隔一个铆钉的位置,发现一枚铆钉在中心位置断

电机轴承问题

电机轴承常见问题 (2012-06-15 20:52:37) 转载▼ 分类:业系轴承 标签: 杂谈 1.电机轴窜问题,导致轴承过热? 第一,电机的轴窜问题:一般的电机,用得最多的是深沟球轴承和圆柱滚子轴承。安装时,一端做轴向定位,另一端做轴向浮动。你说的窜动,首先我觉得你应该查一下,你的轴向定位做得怎么样?定位是否可靠?如果可靠,对于深沟球轴承来说,它的轴向窜动量就应该是它的轴向游隙。一般不会太大,但是取决于你选的径向游隙。对于圆柱棍子轴承,对于N和NU系列的,不能作为定位轴承,如果你用他 们做定位,那一定窜动过大。 第二:你说的轴窜动轴承着了,我想,如果定位轴承承受了过大的轴向负荷,会 导致轴承烧毁。所以,选择定位轴承的时候要看看轴向负荷有多大。你选的轴承是否承受得了。如果是NJ系列的圆柱棍子轴承,这种轴向负荷完全是由滑动部分承受的,所以不行。对于深沟球轴承,它的轴向能力最多有径向的四分之一,对于不同的轴承各有不同。 2.如果用深沟球轴承,有没必要把一端轴承与轴固定死,然后轴承又固定在端盖上以限制轴窜动?现在很多都是轴可以来回窜动的,靠一个波纹垫片来垫,但是还是能够窜动轴系一般会要求轴向定位。所以会需要有一段作为定位端,一端作为游动端。你说的靠波形弹簧来垫,那个波形弹簧不是用于定位的,是用于加轴向预负

荷的。所以,对于交叉定位得电机,一定会存在这个由于弹簧垫圈引起的轴向窜动。如果你要控制,那就该做传统的一个定位端,一个非定位端。然后再非定为段加弹簧垫圈,就好了! 4.小功率直流有刷电机中,一端采用滚珠轴承,另一端采用球形含油轴承,请问这样的结构如何选用滚珠轴承以及与轴、轴承室的配合的松紧。(轴径8mm,轴承厚8mm,两轴承档开档约90mm,电机噪声要求很高) 一般而言,j5\6用于内圈, H7用于外圈,但这不是绝对的,我只是大略的给你说。另外,控制电机噪声,从轴承而言,你已经需要选择特殊的游隙和润滑脂了(如果噪声要求很高的话)。游隙可以选小一点的,不要太小否则抱死。润滑脂选粘度低一些的。不知道你用的是不是进口轴承,如果是的话,我可以给你些他们的推荐。对于国产轴承,如果谈到噪声,他们恐怕没有什么特殊的解决方案,除非你提出来。 5. 轴承跑外圈的情况? 分两种情况说:第一,你用的是铝轴承室,第二,一般的铸铁,或者别的铁质轴承室。 对于第一条,由于铝的膨胀系数比铁的大一倍,所以,你在安装的时候使用的正确配合,在温度升高以后就变松了,跑圈也就产生了。办法两个,第一,在安装的时候加紧配合,这个办法我不推荐,虽然可以解决,但是,安装的时候比较烦人,那么紧工人要叫的。第二、使用一个橡胶圈,在轴承室内开个槽,槽深是橡胶圈厚度的0.8倍,宽1.4倍。这样就好了。记住,我给的数据不能变,要不会有问题,

电机轴承常见7种异常声音的分析与解决

电机轴承常见7种异常声音的分析与解决 交流电机轴承声音异常的分析与解决 1、连续蜂鸣声“嗡嗡……” 原因分析: 电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音 具体特点: 多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动 解决方法 A、用润滑性能好的油脂 B、提高马达轴承座钢性 C、选用径向游隙小的轴承 D、加预负荷,减少安装误差 E、加强轴承的调心性 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 2、保持器声“唏利唏利……” 原因分析: 由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生 解决方法: A、提高保持器精度 B、降低力矩负荷,减少安装误差 C、选用好的油脂 D、选用游隙小的轴承或对轴承施加预负荷 3、高频、振动声“哒哒…...” 具体特点: 声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: A、改善轴承滚道表面加工质量,降低波纹度幅值

B、减少碰伤 C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法 4、杂质音 原因分析: 由轴承或油脂的清洁度引起,发出一种不规则的异常音 具体特点: 声音偶有偶无,时大时小没有规则,在高速电机上多发 解决方法: A、选用好的油脂 B、加强轴承的密封性能 C、提高注脂前清洁度 D、提高安装环境的清洁度 5、漆锈 原因分析: 由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音 具体特点: 被腐蚀后轴承表面生锈比第一面更严重 解决方法: A、把转子、机壳、晾干或烘干后装配 B、降低电机温度 C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起 D、改善电机轴承放置的环境温度 E、采用真空浸漆工艺 具体特点: 轴承运转后,温度超出要求的范围 原因分析: A、润滑脂过多,润滑剂的阻力增大 B、游隙过小引起内部负荷过大 C、安装误差

高速电机抱轴原因分析和解决方法(2021版)

高速电机抱轴原因分析和解决 方法(2021版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0969

高速电机抱轴原因分析和解决方法(2021 版) 分析高速电机抱轴的原因,提出正确的解决方法,取得良好效果。 问题背景 化工集团醋酸分公司隶属于中石油大庆油田有限责任公司,成立于2006年12月,现有在册职工412人,固定资产15.02亿元。主要以甲醇、一氧化碳为原料,采用低压液相羰基合成工艺,生产20万吨/年优质醋酸。共有设备608台,动设备就有220台,其中两极高速电机占75%以上,主要分布于装置的各关键工序,自2007年开工投产以来,两极高速电机故障频出。其中尤其以位于造气车间脱硫脱碳工序的贫液泵P1504电机最为典型(2台国产YB450S3-2型防爆高压电机,功率400kW,电压6000V,转速2985r/min),先后两

次发生抱轴事故,严重制约和影响装置的安全稳定长周期运行。 问题分析 紧急停机后发现电动机盘不动车,电机轴已抱死。引起电机抱轴事故的原因很多,主要分为内部原因和外部原因。电机的内部原因有:轴承质量不好;润滑脂质量不好;润滑脂加入量不合适;检修工艺不当;电机运行时振动超标;转子上有轴电压。电机外部原因主要有:非户外型电机户外安装或用水冲洗电机;电机安装基础不牢固;电机周围环境温度过高。经解体检查发现,轴承润滑脂烧尽,轴承保持架损坏变形,滚子和滑道过热发蓝,轴承座防爆曲路与轴结合处烧结抱死。经分析问题出在以下两方面: 2.1.该电机轴承选用SKF钢制保持架,相对于黄铜保持架,其极限转速有所降低,在同等运行条件下更容易失效损坏。 据轴承有关资料表明,一般情况下,在同种保持架,同种润滑条件下,随着轴承型号的增大,其极限转速相应减小。对于极限转速与电机转速接近的轴承,最好不用。2P高压电机的转速一般为2970~2990r/min,因受两极高压电机轴伸直径的限制与润滑条件,

电机轴承常见故障

电机轴承常见故障 1. 电机轴窜问题,导致轴承过热? 第一,电机的轴窜问题:一般的电机,用得最多的是深沟球轴承和圆柱滚子轴承。安装时,一端做轴向定位,另一端做轴向浮动。你说的窜动,首先我觉得你应该查一下,你的轴向定位做得怎么样?定位是否可靠。如果可靠,对于深沟球轴承来说,它的轴向窜动量就应该是它的轴向游隙。一般不会太大。但是取决于你选的径向游隙。对于圆柱棍子轴承,对于N和NU系列的,不能作为定位轴承,如果你用他们做定位,那一定窜动过大。 第二:你说的轴窜动轴承着了,我想,如果定位轴承承受了过大的轴向负荷,会导致轴承烧毁。所以,选择定位轴承的时候要看看轴向负荷有多大。你选的轴承是否承受得了。如果是NJ系列的圆柱棍子轴承,这种轴向负荷完全是由滑动部分承受的,所以不行。对于深沟球轴承,它的轴向能力最多有径向的四分之一,对于不同的轴承各有不同。 2. 如果用深沟球轴承,有没必要把一端轴承与轴固定死,然后轴承又固定在端盖上以限制轴窜动?现在很多都是轴可以来回窜动的,靠一个波纹垫片来垫,但是还是能够窜动 轴系一般会要求轴向定位。所以会需要有一段作为定位端,一端作为游动端。 你说得靠波形弹簧来垫,那个波形弹簧不是用于定位的,是用于加轴向预负荷的。所以,对于交叉定位得电机,一定会存在这个由于弹簧垫圈引起的轴向窜动。如果你要控制,那就该做传统的一个定位端,一个非定位端。然后再非定为段加弹簧垫圈,就好了! 4. 小功率直流有刷电机中,一端采用滚珠轴承,另一端采用球形含油轴承,请问这样的结构如何选用滚珠轴承以及与轴、轴承室的配合的松紧。(轴径8mm,轴承厚8mm,两轴承档开档约90mm,电机噪声要求很高) 一般而言,j5\6用于内圈, H7用于外圈,但这不是绝对的,我只是大略的给你说。另外,控制电机噪声,从轴承而言,你已经需要选择特殊的游隙和润滑脂了(如果噪声要求很高的话)。游隙可以选小一点的,不要太小否则抱死。润滑脂选粘度低一些的。不知道你用的是不是进口轴承,如果是的话,我可以给你些他们的推荐。对于国产轴承,如果谈到噪声,他们恐怕没有什么特殊的解决方案,除非你提出来。 5. 轴承跑外圈的情况? 分两种情况说:第一,你用的是铝轴承室,第二,一般的铸铁,或者别的铁质轴承室。 对于第一条,由于铝的膨胀系数比铁的大一倍,所以,你在安装的时候使用的正确配合,在温度升高以后就变松了,跑圈也就产生了。办法两个,第一,在安装的时候加紧配合,这个办法我不推荐,虽然可以解决,但是,安装的时候比较烦人,那么紧工人要叫的。第二、使用一个橡胶圈,在轴承室内开个槽,槽深是橡胶圈厚度的0.8倍,宽1.4倍。这样就好了。记住,我给的数据不能变,要不会有问题,有兴趣的话再细说。 第二条,铁质轴承室,建议你查查轴承室的配合,这个问题比上面的简单多了,多数是配合松了! 6. 据有些轴承(NSK、SKF)资料上介绍:轴承外圈与轴承室的配合程度是轴承外圈能够在轴承室内蠕动,这样就会使轴承外圈得到均匀的磨损从而延长轴承的使用寿命,请问是否合理? 你说的蠕动,是指轴向的蠕动,这种蠕动是为了吸收轴向膨胀。(绝不是周向蠕动,周向肯定是不好的,它破坏了轴承的滚动状态。)但是外圈受到均匀磨损的说法,我个人不是很认同。蠕动的目的不是为了磨损。磨损之后,轴承的相对位置和受载会变,不见得好。如果蠕动磨损是好的,就不用发明可以调整轴向伸长的轴承了。 7. 能谈谈震动电机用的轴承问题么?振动电机选用什么型号系列的好?安装时怎样更好的安装? 保养和维修要注意哪几个方面?

电机轴承故障处理及分析

电机轴承故障处理及分析 一、保持器声“唏利唏利……” 原因分析:由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生。 解决方法: 1、提高保持器精; 2、选用游隙小的轴承或对轴承施加预负荷; 3、降低力矩负荷,减少安装误差; 4、选用好的油脂。 二、连续蜂鸣声“嗡嗡……” 原因分析:马达无负荷运转是发出类似蜂鸣一样的声音,且马达发生轴向异常振动,开或关机时有“嗡”声音。 具体特点:多发润滑状态不好,冬天且两端用球轴承的马达多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动。 解决方法: 1、用润滑性能好的油脂; 2、加预负荷,减少安装误差; 4、提高马达轴承座刚性; 5、加强轴承的调心性。 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 三、漆锈 原因分析:由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音。 具体特点:被腐蚀后轴承表面生锈比第一面更严重。 解决方法: 1、把转子、机壳、晾干或烘干后装配; 3、选用适应漆的型号; 4、改善电机轴承放置的环境温度; 5、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起; 6、采用真空浸漆工艺。 四、杂质音 原因分析:由轴承或油脂的清洁度引起,发出一种不规则的异常音。 具体特点:声音偶有偶无,时大时小?有规则,在高速电机上多发。 解决方法: 1、选用好的油脂; 2、提高注脂前清洁度; 3、加强轴承的密封性能; 4、提高安装环境的清洁度。 五、高频、振动声“哒哒......” 具体特点:声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: 1、改善轴承滚道表面加工质量,降低波纹度幅值; 2、减少碰伤;

引风机电机轴承烧毁的原因分析

引风机电机 轴承烧毁的原因分析

X炉XX引风机电机轴承烧毁的原因分析 X炉引风机电机为内馈调速异步电动机绕线式电机,其基本技术参数如下: 其前后端轴承于2009年12月至今先后发生四次烧毁轴承或抱轴的现象。其所用轴承型号:电机驱动端为:SKF NU1044 MA/C3 SKF NU16044 MA/C3;电机非驱动端为:SKF NU1044 MA/C3。经现场观察与分析,造成上述事故的原因有以下几点: 1.2009年12月4日在检修部巡检人员8点班正常的巡检情况下,未 发现异常情况,电机前后端轴承运行温度正常。到晚上19点20分左右,运行人员在巡视时发现电机后端轴承有温度突然升高迹象,最后停机,量取温度达200℃,电机后端轴抱死,轴承内润滑油脂飞溅外溢。在进行抢修打开时发现轴承内保持架断裂,轴承内套与大轴轴颈相粘连。在拆解内套发现轴颈有不同程度的损伤,在轴颈中部有划痕,在通知厂部现场观察后考虑到现场的实际运行情况,决定进行现场修复,用锉刀进行粗略打磨与细砂纸精细打磨。换取同类型号轴承SKF NU1044 MA/C3。 此后端轴承在2008年#2机组大修时打开发现油隙超标,但由于未进行更换,可能是这一次的事故发生的原因。 2. 2010年2月6日在检修部巡检人员8点班正常的巡检情况下,未发 现异常情况,电机前后端轴承运行温度正常。到晚上21点10分左右,运行人员在巡视时发现电机后端轴承有温度突然升高迹象,并且有铜粉

溢出,最后停机,量取温度达145℃之高,被迫停机进行检修,在打开电机后端轴承发现轴承保持架磨损,更换相同型号怕轴承:SKF NU1044 MA/C3。这一次事故的发生有前次轴承抱死,造成大轴损伤,虽然在现场用锉刀进行粗略打磨与细砂纸精细打磨修复。但轴颈是否有弯曲没有进行会诊;所换轴承为同一类型,其运行时间不足三个月的时间,轴承质量问题有待考虑。 3. 2010年7月13日,在各项巡检正常工作下,电机前后端轴承运行 温度正常。在次日凌晨4点40分左右前端轴承运行温度突然盘升造成大轴抱死,被迫停机。考虑到可能造成大轴弯曲,进行隔半小时进行强行盘车。在打开前轴发现轴承保持架磨损。这次考虑到前二次的事故发生,决定进行外委检修,由新乡电机厂进行了检修,对电机大轴进行修正。为保障电机的安全运行,对电机前后端轴承进行重新更换。换取同一类型号轴承:电机驱动端为:SKF NU1044 MA/C3 SKF NU16044 MA/C3; 电机非驱动端为:SKF NU1044 MA/C3。这一次事故的发生有前二次的事故,可能造成电机大轴弯曲,使电机与风机机械相连不为同心运行所致,但电机轴承的质量问题是不得不考虑的。在2010年7月26日恢复安装使用。 4. 2010年11月26日凌晨5点20分左右,运行人员巡视发现电机后 端轴承有铜粉磨出,但电机运行温度在40℃左右。考虑到电机运行的安全,进行停机。在打开后端轴承时发现,电机的轴承外径与轴承室内径之间有油脂与铜粉磨出,呈比较规律性的分布特性。在现场经相关职能部门与修复厂家的会诊,厂家不为其电机才运行不足两个月的时间承认

烧电机的原因总结起来都有哪些呢

烧电机的原因总结起来都有哪些呢 电源问题or负载问题... ①电源电压过高,使铁芯发热大大增加;②电源电压过低,电动机又带额定负载运行,电流过大使绕组发热;③修理拆除绕组时,采用热拆法不当,烧伤铁芯;④定转子铁芯相擦;⑤电动机过载或频繁起动;⑥笼型转子断条;⑦电动机缺相,两相运行;⑧重绕后定于绕组浸漆不充分;⑨环境温度高电动机表面污垢多,或通风道堵塞;⑩电动机风扇故障,通风不良;定子绕组故障(相间、匝间短路;定子绕组内部连接错误)。 2.故障排除:①降低电源电压(如调整供电变压器分接头),若是电机Y、Δ接法错误引起,则应改正接法;②提高电源电压或换粗供电导线;③检修铁芯,排除故障;④消除擦点(调整气隙或挫、车转子);⑤减载;按规定次数控制起动;⑥检查并消除转子绕组故障;⑦恢复三相运行;⑧采用二次浸漆及真空浸漆工艺;⑨清洗电动机,改善环境温度,采用降温措施;⑩检查并修复风扇,必要时更换 这个原因很多。 1.电源问题 a.三相电源不对称 b.接法错误包括三角形接成星形,星形接成三角形 c.电压过高或过低 2.负载问题 过载; 负载被卡住 3.电机问题 线圈匝间短路 线圈断开 电机内有异物 定转子相擦 4.其它问题 轴承问题 油脂不好 通风有问题 楼上的比较全面。一般在用户使用过程中烧毁的电机主要原因是:过载、单相、缺相、匝间。拆开电机后检查绕组线包,可以判断出烧毁的大致原因: 1、过载机过载烧毁时,线包一般会全部烧黑。 2、单相、缺相烧毁一相线圈或两相线圈 3、匝间在线包或是线槽上会有铜线烧熔化后烧出来的洞和铜珠 另外轴承内盖配合不好或是轴承故障抱死轴烧坏电机的情况也会有,这个可以直接看到。这个属于机械方面的故障 造成电动机过负荷的原因主要有: (1)电源电压低。当机械负载不变时,电源电压降低,就会造成电动机工作电流加大。由于

电动机轴承异响故障分析及应对措施

电动机知识 电动机轴承异响故障分析及应对措施 1.电动机轴承声音异常 一台给水泵高压(6kV)电动机YKK400-2,功率450kW,转速2975r/min.轴伸端用深沟柱NU3E222型轴承,非负荷端用深沟球6222型轴承。运行中轴伸端声音尖锐刺耳,不像是电磁噪声,也不像轴承缺油干磨的声音,噪声持续约2min,然后间歇2min.用测振仪(VA-80A)测出轴承的振动幅值为0.021mm,声响异常时,测得振动速度值为53.6m/s,有时甚至达到97m/s,远远超过标准值28 m/s,且电流波动较大。 由于轴伸端采用间隙配合,无法调整轴承的轴向定位尺寸。在检修过程中发现内油盖有不均匀的磨损痕迹,轴承有两个深沟柱损伤。测量轴承、端盖和内外挡油小盖的定位尺寸,并经过计算,轴承的允许间隙为0.7mm,当电动机的轴承温度达到100℃,轴承的膨胀值约0.9mm,不能满足电动机正常运行要求。多次更换深沟柱轴承后,电动机噪声不仅没有消失,而且异响周期变为4min. 2.故障分析与处理 根据轴承的特点分析:由于电动机原来采用NU型深沟柱轴承,允许电动机轴向窜动。轴承内圈两侧有挡边,外圈无挡边,因此允许轴相对轴承双向位移,可以承受轴热膨胀引起的伸长。同时轴承的间隙相对深沟球轴承来说偏大,但轴承的受力为线形,比深沟球轴承的点受力好。轴承运动轨迹不是一个圆形而是一个椭圆,这是由干深沟柱(或深沟球)和滚道之间存在间隙,运行时受力的不同,使得运动轨迹成椭圆形。轴承的受力主要是在下部,对于深沟柱轴承其受力点为一条直线,高速运转中,由于轴承的间隙,受力点改变,受力运动轨迹变

成抛物曲线形。 给水泵电动机运行时主要受轴向力作用,且拖动的负载平稳,深沟柱轴承允许的径向窜动必要性减弱,因此将前轴承更换为深沟球轴承,轴承的间隙仍为C3,约0.04mm,可以满足运行要求。同时考虑轴承的膨胀,在挡油环小盖处加一块厚度约0.8mm垫片,克服来自于给水泵和轴承温度升高引起的窜动。 轴承滚动体及滚道的微观表曲是粗糙不平的,运动中会发生一定的冲击,但这种冲击产生的脉冲是高频的,因而使用测振仪测量电动机运行的高频干扰的参数值比标准的大。深沟柱轴承与滚道的接触较多,产生的高频冲击就大,而深沟球轴承与滚道的接触是点,产生的高频冲击相对较小,因而本例的电动机可以使用深沟球轴承代替深沟柱轴承,解决设备出现的异响。 将深沟柱轴承更换为深沟球轴承后,轴承异响消失。运行一段时间噪声没有再出现,测电动机的振动幅值为0.013mm,加速度值为2.8m/s2,带负荷性能稳定,电流也没有较大波动。·基于UC3637的直流电动机PWM控制电路图_ ·多台电动机逐一星形三角形起动电路_电 ·变频器的暂停减速功能 ·变频器过压类故障的分析 ·变频器启动前的直流制动功能 ·变频器与电动机的距离 ·变频调速控制方式的选择 ·变频器常见故障原因及处理方法 ·变频器为什么要求可靠接地? ·变频器怎样利用多功能输出控制端? ·NDJ-79旋转粘度计仪器的工作原理

高速电机抱轴原因分析和解决方法

高速电机抱轴原因分析和解决方法 分析高速电机抱轴的原因,提出正确的解决方法,取得良好效果。问题背景化工集团醋酸分公司隶属于中石油大庆油田有限责任公司,成立于2006年12月,现有在册职工412人,固定资产15.02亿元。主要以甲醇、一氧化碳为原料,采用低压液相羰基合成工艺,生产20万吨/年优质醋酸。共有设备608台,动设备就有220台,其中两极高速电机占75%以上,主要分布于装置的各关键工序,自2007年开工投产以来,两极高速电机故障频出。其中尤其以位于造气车间脱硫脱碳工序的贫液泵P1504电机最为典型,先后两次发生抱轴事故,严重制约和影响装置的安全稳定长周期运行。问题分析紧急停机后发现电动机盘不动车,电机轴已抱死。引起电机抱轴事故的原因很多,主要分为内部原因和外部原因。电机的内部原因有:轴承质量不好;润滑脂质量不好;润滑脂加入量不合适;检修工艺不当;电机运行时振动超标;转子上有轴电压。电机外部原因主要有:非户外型电机户外安装或用水冲洗电机;电机安装基础不牢固;电机周围环境温度过高。经解体检查发现,轴承润滑脂烧尽,轴承保持架损坏变形,滚子和滑道过热发蓝,轴承座防爆曲路与轴结合处烧结抱死。经分析问题出在以下两方面: 2.1.该电机轴承选用SKF钢制保持架,相对于黄铜保持架,其极限转速有所降低,在同等运行条件下更容易失效损坏。据轴承有关资料表明,一般情况下,在同种保持架,同种润滑条件下,随着轴承型号的增大,其极限转速相应减小。对于极限转速与电机转速接近的轴承,最好不用。2P高压电机的转速一般为2970~2990r/min,因受两极高压电机轴伸直径的限制与润滑条件,轴承只能在NU216219与6216~6219、6316~6318中选取。对于6216~6219、6316~6319球轴承,各种保持架的轴承都有较高的极限转速;而NU216、NU217柱轴承,各种保持架也都有较高的极限转速,可以任意选择;而NU218~NU219情况却不同,例如NSK轴承以黄铜保持架作为标准保持架,NU218M、NU219M分别为4000r/min与3800r/min,而钢保持架(无后缀或后缀为w)轴承,NU218、NU219分别对应为3200r/min和3040r/min;SKF较少供应黄铜保持架轴承,其钢保持架轴承因设计时适当提高了承载力,故SKF轴承与NSK同型号轴承相比,其极限转速便有所降低。因此对SKF钢保持架的NU218、

电动机常见故障分析及处理方法_万萍英

摘要:针对电机出现故障各种现象和相应对策做一分析和研究。 关键词:电动机故障维护检修 0引言 运作中的电动机要严格按照国家相关质量标准进行检查维护以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有震动、窜轴,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。 1电动机电气常见故障的分析和处理 1.1电动机接通电源起动,电动机不转但有嗡嗡声音可能原因: ①由于电源的接通问题,造成单相运转;②电动机的运载量超载;③被拖动机械卡住;④绕线式电动机转子回路开路成断线;⑤定子内部首端位置接错,或有断线、短路。处理方法:第一种情况需检查电源线,主要检查电动机的接线与熔断器,是否有线路损坏现象;第二种情况将电机卸载后空载或轻载起动;第三种情况估计是由于被拖动器械的故障,卸载被拖动机械,从被拖动机械上找故障;第四种情况检查电刷,滑环和起动电阻各个接触器的接合情况;第五种情况需重新判定三相的首尾端,并检查三相绕组是否有断线和短路。 1.2电动机启动后发热超过温升标准或冒烟可能原因:①电源电压达不到标准,电动机在额定负载下升温过快;②电动机运转环境的影响,如湿度高等原因;③电动机过载或单相运行;④电动机启动频繁、正反转过多。处理方法:第一种情况调整电动机电网电压,使电机尽量在额定电压下运行;第二种情况检查风扇运行情况,加强对环境的检查,保证环境的适宜;第三种情况检查电动机启动电流,发现问题及时处理;第四种情况减少电动机正反转的次数,及时更换适应正反转的电动机。 1.3绝缘电阻低可能原因:①电动机内部进水,受潮;②绕组上有杂物,粉尘影响;③电动机内部绕组老化。处理方法:第一种情况电动机内部烘干处理;第二种情况处理电动机内部杂物;第三种情况需检查并恢复引出线绝缘或更换接线盒绝缘线板;第四种情况及时检查绕组老化情况,及时更换绕组。 1.4电动机外壳带电可能原因:①电动机引出线的绝缘或接线盒绝缘线板损坏;②绕组端盖接触电动机机壳;③电动机接地问题。处理方法:第一种情况恢复电动机引出线的绝缘或更换接线盒绝缘板;第二种情况如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;第四种情况按规定重新接地。 1.5电动机运行时声音异常主要是因为:①电动机内部一相绕组突然断路,造成电机单相运行,电流不稳引起噪音;②电动机内部轴承磨损严重、间隙不合格,或轴承里面有杂物。处理措施:如果是第一种情况,则要进行全面检查;如果是第二种情况,必须将轴承内的杂物清理干净,或更换新轴承。 1.6电动机振动可能原因:①电动机安装的地面不平;②电动机内部转子不稳定;③皮带轮或联轴器不平衡;④内部转头的弯曲;⑤电动机风扇问题。处理方法:第一种需将电动机安装平稳底座,保证平衡性;第二种情况需校对转子平衡;第三种情况需进行皮带轮或联轴器校平衡;第四种情况需校直转轴,将皮带轮找正后镶套重车;第五种情况对风扇校静。 2电动机机械常见故障的分析和处理 2.1定子和转子铁芯故障检修。 相互绝缘的硅钢片叠成了定子和转子,并由此构成了电动机的磁路部分。导致定子和转子铁芯出现故障的因素有:①经长时间的使用轴承出现严重的磨损,进而使定子和转子相互摩擦,损坏铁芯表面,导致硅钢片之间发生短路,加大了电动机的铁损程度,使其温度快速上升,这时要通过细锉等工具将毛刺搓掉,消除硅钢片短接,然后将绝缘漆涂刷在表面,再加热烘干。②对旧绕组进行拆除的过程中,由于用力较大,造成倒槽出现歪斜现象并向外张开。可使用木榔头、小嘴钳等工具纠偏,使齿槽恢复原位,有的存在缝隙的硅钢片难以复位,可将硬质绝缘材料(如胶木板或青壳纸)夹在钢片之间。③由于空气潮湿或受其他因素的影响,铁芯表面如果锈蚀,则要使用砂纸打磨干净,再将绝缘漆涂刷在铁芯表面。④若是高热的绕组接地会将齿部和铁芯烧毁,则要通过刮刀、凿子之类的工具剔除熔积物,并将绝缘漆涂刷在其表面,然后烘干。⑤机座和铁芯之间连接不紧密,则必须重新固定。用于定位的螺钉若是无法二次利用,则重新定位,并将定位螺钉旋紧。 2.2电机轴承故障检修。 转轴在轴承的支撑下才能转动,是负载最重的部分,但极易磨损。 2.2.1故障检查运行中检查:若滚动轴承缺油,则可按照以往经验对注意其声音的变化,如果轴承断裂,运行时的声音肯定是异常的。轴承中若是有沙子等杂物,运行时会产生杂音。拆卸后检查:查看轴承的磨损程度,用手将轴承内圈捏紧,同时利用轴承摆平,然后用另一只手用力推外钢圈,如果一切正常,则轴承的外钢圈是平稳运转的,且运转时不会卡滞或振动;当轴承停止运行时也不会倒退,说明轴承彻底坏掉了,应该及时更换。用左手将外圈卡住,右手则捏住内钢圈,稍稍施加推力,如果轴承转动,则说明磨损程度较大。 2.2.2故障修理通过砂布处理轴承表面的锈斑,再在上面涂抹一层汽油;当轴承的磨损程度太深或轴承表面产生裂纹时,就要选用符合标准的新的轴承进行更换。 2.3转轴故障检修。 2.3.1对于弯曲程度较小的轴弯曲,可通过打磨的方式进行修整;若弯曲程度在0.2mm以上,则要利用压力机来修整,修整后将表面磨光,使其还原成原样即可;若肘弯曲程度超过了修整的范围,则要考虑及时更换。 2.3.2如果轴颈处未出现较大的磨损,则可将一层铬涂刷在轴颈处之后,再根据设计尺寸进行打磨;如果磨损过大,可先堆焊,再按照标准尺寸通过车床进行修整;如果轴颈处的磨损超出了可修整的程度,就必须予以更换。 2.3.3轴裂纹或断裂轴的横向裂纹深度不到轴直径的10%~15%,纵向裂纹不大于轴长的10%,则在堆焊之后再修整,直至满足设计要求。若裂纹或断裂超过了了修整的范围,则要及时更换。 2.4端盖、机壳的检修。 如果端盖与机壳之间的缝隙太大,则可采取先堆焊后修整的途径进行处理,如端盖与轴承之间配合不紧密,可先通过冲子进行修整,再在端盖上打入轴承,若采用的电动机是大功率的,则可利用电镀加以修整。 3故障的诊断及处理 3.1我厂生产8#泵站300S-90水泵,用Y2-355L1-4280KW电机拖动的故障。 3.1.1故障的现象 生产8#泵站300S-90水泵,原是用JO系列的电机拖动,JO系列的电机是老产品,能耗较高,最近几年随着老产品的淘汰,几乎买不到这种型号的电机,同时也为了节能降耗,改用节能型Y132M-4280KW电机拖动。在冬季还好,特别是天气稍热,电机就不断的出现故障,曾经一月电机故障三台,解体后统一现象都定子绕组整体过热,匝间短路。 3.1.2故障原因的分析 ①电源电压过高。从解体状况来看,是由于绕组过热造成的电机故障;由于生产8#泵站供电电源来源于垣曲县828#线路,并且828#线路供电电压略高于国家标准电压,二次线电压经常在410V以上;电压过高导致电动机的定子磁通接近饱和状态,出现电流急剧增大,电机效率下降而发热严重。导致定子绕组过热而超过允许范围国家标准规定。电动机只有在电源电压波动范围正负5%之内,才能 电动机常见故障分析及处理方法 万萍英(中条山北方铜业股份有限公司热电厂) 科学实践 297

轴承损坏原因主要分析

轴承损坏原因主要分析 引风机试转时轴瓦出现的问题徐塘发电有限公司2×300MW扩建工程6号机组引风机是成都电力机械厂制造的型号为AN28e6静叶可调式轴流风机,风量为268.74m3/s,风压为4711Pa;电机是沈阳电机股份有限公司提供的型号为YKK710-8电机,电机转速为744r/min,功率为1 800kW,电压为6000V。电机两端为滑动轴承结构,瓦宽为220mm,甩油环外径为363mm,厚度为11.5mm,宽度为30mm,质量为3060g;轴颈外径为200mm,椭圆度偏差为0.2mm。油室两侧各有一个油位计,轴承座与下轴瓦之间有一个电加热器,下轴瓦下面有一个测温元件。电机轴承的冷却方式为自然冷却。第一次试转时,甲侧引风机电机推力端轴瓦温度升高,定值保护停机;乙侧引风机电机膨胀端轴瓦温度升至报警值,为了防止设备严重损坏,手动停机。检查发现甲侧引风机电机推力端轴瓦有烧瓦现象,乙侧引风机电机膨胀端轴瓦局部有磨痕。现场消缺,重新安装后,电机试运转4h无异常现象。锅炉空气动力场试验时,2台引风机电机的轴瓦温度稳定在61.9℃(甲)、59.5℃(乙)后略微下降,转动正常。 2005年4月1日,电除尘气流分布试验过程中除电机轴瓦温度稍高外,其他正常。但是在气流分布试验快结束后,16∶ 00,62号引风机电机侧轴瓦温度快速攀升至62.4℃时;16∶ 30,61号引风机风机侧轴瓦温度快速攀升至61.2℃,都有进一步上升的趋势。为了保护设备,手动停机。2台电机气流分布试验时引风机轴瓦温升值见表1。 4月2日~4月5 日对电机轴瓦解体检查,发现2台电机端外侧和风机端外侧轴瓦均有磨瓦现象,但内侧没有磨瓦现象。同时发现油挡附近轴颈处油润滑明显不足。对瓦面作刮瓦处理试转,当温度达到56~60℃后,瓦温快速攀升。前后试运转达11次,每次情况都差不多。解瓦检查发现,瓦面痕迹一致。加大冷却油量后,不再烧瓦,但温度仍然升至62℃,并且随着气温的波动而波动。整个过程中,2台风机轴系振动很好,最大振动均为1丝左右。 2 原因分析打开轴瓦对轴承进行了仔细检查,如压力角、间隙、椭圆度等,甲、乙侧引风机电机轴承检查数据见表2。所有数据都符合规范和厂家技术要求,可以排除安装不当的原因。由于2台引风机轴系轴向、水平、垂直方向振动都很小,所以排除了轴系不对中、磁力线中心、电机基础等问题。瓦面没有被电击的痕迹,所以也排除了轴承座绝缘不够和转子磁通量轴向分布不均等原因。2台风机为同一批产品,且烧瓦发生的过程和症状非常相似,所以初步认定故障原因是一致的。由这2台引风机电机轴瓦温升高直至烧瓦整个过程,通过对原始记录的数据资料进行分析,初步判断故障是由于甩油环转动带上来的油量太少,在下瓦压力角内无法形成和保持一定厚度的油膜,导致轴颈与轴瓦接触摩擦。瓦温、油温升高后,润滑油的黏度下降,加剧了油膜的破坏,直至轴瓦与轴颈摩擦,温度急剧升高。当温度达到某一临界数值时,油膜承压能力低于轴颈压力,由此将引起恶性循环,导致轴瓦温度快速攀升。加大润滑冷却油量后,润滑油位高于轴瓦下瓦面,这虽然缓解了油膜的破坏,在一定程度上避免了轴与轴瓦的直接接触,但是此时的平衡温度达到62℃,是一种高位平衡,轴承运行风险太大。 3 改进措施(1)更换润滑油。用46号机械油代替46号透平油,目的是为了提高润滑油的黏度,使得在甩油环转动时可以带上更多的油。但高温时, 机械油黏度的下降程

电动机滚动轴承故障的判断及拆装

电动机滚动轴承的判断及拆装 在电动机的故障中,轴承的故障是经常发生的。轴承损坏时,电动机的转子将与磁极铁心相擦(扫膛),进而发热破环绕组绝缘。所以必须注意轴承的保养,一有故障应及时排除。 电动机使用的轴承有滚动轴承和滑动轴承两种。 滑动轴承多用于大型和部分中型电动机中,而滚动轴承装配结构简单,它比滑动轴承轻便,运行中不需要经常维护,耗用润滑油脂也不多,广泛用于转速小于1500r/min,功率在500kw以下的中、小型电机。 轴承故障的检修和更换是电动机机械故障检修的重要环节,直接影响到电动机检修的整体质量。 一、电动机选用滚动轴承的依据 电动机转轴采用双支承结构,每个支承多由一个轴承组成。选用滚动轴承的主要依据,是电动机所承受的负荷及所受负荷的方向。电动机的非负荷端由于承受较轻的负荷,多采用球轴承,负荷端承受较重的负荷多采用滚子轴承。承受纯径向负荷的电动机,可选用向心球轴承或向心圆柱滚柱轴承或推力球轴承或圆锥滚子轴承。 二、电动机滚动轴承故障的判断 1、电动机滚动轴承的检查 电动机运行中的检查在电动机运行中,可以用螺丝刀抵在电动机的轴承外盖上,耳朵贴手柄上倾听声响,如有“格拉”、“格擦”异声,就说明有故障。也可用轴承检查仪进行检查。 滚动轴承发热的检查用温度计测量轴承温度,环境温度应控制在35℃以下,滚动轴承的允许温度控制60℃以下。 轴承拆卸后的检查轴承拆下后,先清除废油,用汽油或煤油洗净油污,用布擦干或用压缩空气吹干,再进行检查。完好的轴承,加工平面清洁,没有划痕、裂纹或锈迹;内外轴承环没有裂缝;用手滚动轻快、灵活、均匀,没有阻滞、卡住或过松现象;用塞尺检查轴承磨损情况。 2、电动机滚动轴承故障 轴承的故障主要表现为过热和声音异常两种。

电机常见故障分析及其处理

电机常见故障分析及其处理 摘要:发电机在运行中会不断受到振动、发热、电晕等各种机械力和电磁力的作用,加之由于设计、制造、运行管理以及系统故障等原因,常常引起发电机温度升高、转子绕组接地、定子绕组绝缘损坏、励磁机碳刷打火、发电机过负载等故障。与之相似的是电动机的故障也主要有机械故障和电气故障两方面。 关键词:定子线圈,激磁电流,短路故障,接地故障。 电机可分为电动机和发电机两类,电动机又可分为同步电动机和异步电动机,发电机也可分为同步发电机和异步发电机,本文将主要围绕异步电动机和同步发电机为例,简要分析电机常见的故障及其处理方法。 一、三相交流异步电动机常见故障分析及其处理 1.机械方面有扫膛、振动、轴承过热、损坏等故障。 ⑴异步电动机定、转子之间气隙很小,容易导致定、转子之间相碰。一般由于轴承严重超差及端盖内孔磨损或端盖止口与机座止口磨损变形,使机座、端盖、转子三者不同轴心引起扫膛。如发现对轴承应及时更换,对端盖进行更换或刷镀处理。 ⑵振动应先区分是电动机本身引起的,还是传动装置不良所造成的,或者是机械负载端传递过来的,而后针对具体情况进行排除。属于电动机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良,转轴弯曲,或端盖、机座、转子不同轴心,或者电动机安装地基不平,安装不到位,紧固件松动造成的。振动会产生噪声,还会产生额外负荷。 ⑶如果轴承工作不正常,可凭经验用听觉及温度来判断。用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠扎碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,因为电动机要每运行3000-5000小时左右需换一次润滑脂。电机超过规定运转时间后,轴承发出不正常的声音,用听棒接触轴承盒,听到了“咝咝”的声响,同时还有微小“哒哒”的冲击声,原因是轴承盒内缺油,同时轴承滚柱有的以有细微的麻痕。通过对轴承进行了更换,添加润滑油脂。在添润滑脂时不易太多,如果太多会使轴承旋转部分和润滑脂之间产生很大的磨擦而发热,一般轴承盒内所放润滑脂约为全溶积二分之一到三分之二即可。在轴承安装时如果不正确,配合公差太紧或太松,也都会引起轴承发热。在卧式电动机中装配良好的轴承只受径向应力,如果配合过盈过大,装配后会使轴承间隙过小,有时接近于零,用手转动不灵活,这样运行中就会发热。 2. 电气方面有电压不正常绕组接地绕组短路绕组断路缺相运行等。 ⑴电源电压偏高,激磁电流增大,电动机会过分发热,过分的高电压会危机电动机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大造成电动机过载而发热,长时间会影响电动机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电动机发热,同时转距减小会发出“翁嗡”声,时间长会损坏绕组。总之无论电压过高过低或三相电压不对称都会使电流增加,电动机发热而损坏电动机。所以按照国家标准电动机电源电压在额定值±5%内变化,电动机输出功率保持额定值。电动机电源电压不允许超过额定值的±10%,;三相电源电压之间的差值不应大于额定值的±5%。

电机滚动轴承的故障分析判断方法

电机滚动轴承的故障分析判断方法 轴承在机械中主要是起支撑及减少摩擦的作用,因此轴承的精度、噪声等都直接关系到机械的使用及寿命。转动轴承在设备中的应用非常广泛,转动轴承状态好坏直接影响旋转设备的运行状态,尤其在连续性大型生产企业,大量应用于大型旋转设备重要部位。因此实际生产中作好转动轴承状态监测与故障诊断是搞好设备维修与治理的重要环节。我们经过长期实践与摸索,积累了一些转动轴承实际故障诊断的实用技巧。本文将主要对转动轴承常见的故障诊断并做出分析。 一、转动轴承故障诊断的方式及要点 转动轴承的早期故障是滚子和滚道剥落、凹坑、破裂、腐蚀和杂物嵌进。产生的原因包括搬运粗心,安装不当、不对中、轴承倾斜、轴承选型不正确、润滑不足或密封失效、负载分歧适以及制造缺陷。根据经验,对转动轴承进行状态监测和故障诊断的实用方法是振动分析。振动分析对于转动轴承的诊断是将由加速度传感器获得的加速度信号,经过1kHz的高通滤波器往除低频信号后,对其进行包络处理,将调制信号移至低频,最后进行频谱分析,以便找出信号的特征频率。 根据转动轴承的结构特点、使用条件不同,它所引起的振动是频率在1kHz以上,数千赫乃至数十千赫的高频振动(固有振动),通常情况下是同时包含了上述两种振动成分。因此检测转动轴承振动速度和加速度信号时应同时覆盖或分别覆盖上述两个频带,必要时可以采用滤波器取出需要的频率成分。考虑到转动轴承多用于中小型机械,其结构通常比较轻薄,因此传感器的尺寸和重量都应尽可能地小,以免对被测对象造成影响,改变其振动频率和振幅大小。 转动轴承的振动属于高频振动,对于高频振动的丈量,传感器的固定采用手持式方法显然分歧适,一般也不推荐磁性座固定,建议采用钢制螺栓固定,这样不仅谐振频率高,可以满足要求,而且定点性也好,对于衰减较大的高频振动,可以避免每次丈量的偏差,使数据具有可比性。 实用中需留意选择测点的位置和采集方法。要想真实正确反映转动轴承振动状态,必须留意采集的信号要正确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝处有较好监测效果。另外必须留意对振动信号进行多次采集和分析、综合进行比较,才能得到正确结论。 1转动轴承故障的频谱和波形特征 (1)径向振动在轴承故障特征频率及其低倍频处有波峰,若有多个同类型故障(内滚道、外滚道等),则在故障特征频率的低倍频处有较大的峰值; (2)内滚道故障特征频率有边带,边带间隔为l倍频的倍数; (3)转动体特征频率处的边带,边带间隔为保持架故障特征频率; (4)在加速度频谱的中高区域若有峰群忽然生出,表明有疲惫故障; (5)径向诊断时域波形有垂直复冲击迹象(有轴向负载时,轴向振动波形与径向相同,或者其波峰系数大于5,表明故障产生了高频冲击现象)。 2转动轴承的故障诊断方法 转动轴承的振动信号分析故障诊断方法分为简易诊断和精密诊断两种。简易诊断的目的是初步判定被列为诊断对象的转动轴承是否出现了故障;精密诊断的目的是要判定在简易诊断中被以为是出现故障轴承的故障种别及原因。由于转动轴承自身的特点,一旦损坏普通维修很难修复,大多采用更换的维修方式进行处理;而精密诊断的主要作用是理论研究和在特

相关文档
最新文档