天然水中锌的检测方法研究

天然水中锌的检测方法研究
天然水中锌的检测方法研究

毕业设计(论文)任务书

一、题目:天然水中锌的检测方法研究

二、基础数据

双硫腙分光光度法对天然水中锌的测定

序号 1 2 3 4 5 6

c μg∕ml 0.00 0.05 0.10 0.15 0.20 0.30

A 0 0.041 0.082 0.123 0.164 0.248

二溴邻硝基偶氮胂微乳液分光光度法对天然水中锌的测定

序号 1 2 3 4 5 6

cμg∕ml 0.00 0.20 0.40 0.60 0.80 1.00

A 0 0.201 0.399 0.602 0.803 1.066

三、内容要求

1.说明部分

先进行水样预处理,在对污染水样进行分析前,有必要给予适当的预处理。污染水样预处理的原则是:在不改变被测组分原有含量的前提下消除干扰物质对测定的影响。由于干扰物质的成分相当复杂,难以用简单的处理方法来排除,对不同待测组分必须采用不同的处理方法。

在实践中我们参照有关文献,针对不同污染水样中的组分,采取直接测定法(电位法、电位滴定法)和水样预处理(活性炭脱色、消化处理、蒸馏、高温灰化等)后再进行分析的方法。

本文我使用两种方法双硫腙分光光度法和二溴邻硝基偶氮胂微乳液分光光度法

(一)双硫腙分光光度法

水样处理

校准曲线

(二)二溴邻硝基偶氮胂微乳液分光光度法水样处理

校准曲线

2.计算部分

回收率=C样/C标*100%

利用t检验法,进行两种分析方法的比较

根据公式:

t=0.75

因为t=0.75

0.14

=2.13 3.绘图部分

2

)1

(

)1

(

2

1

2

2

1

2

1

1

-

+

-

+

-

=

n

n

S

n

S

n

S

2

1

1

1

2

1

|

|

n

n

n

n

S

X

X

t

+

-

=

()

1

1

2

-

-

=

=

n

x

x

S

n

i

i

四、发给日期:2011 年08 月08 日

五、要求完成日期:2011 年09 月09 日

目录

摘要 ............................................................... I ABSTRACT ............................................................ II 1绪论. (3)

1.1天然水 (3)

1.1.1天然水的概念 (3)

1.1.2构成与成分 (3)

1.1.3资源与分布 (4)

1.1.4中国天然水资源 (4)

1.2锌的性质及危害 (4)

1.2.1锌的基本理化性质 (4)

1.2.2锌的环境危害 (5)

1.3锌的作用 (5)

1.3.1锌对人体的作用 (5)

1.3.2锌对植物的作用 (6)

1.4水样预处理 (6)

1.4.1测定氯化物 (6)

1.4.2测定硫酸根 (7)

1.4.3测定硝酸盐 (7)

1.4.4测定亚硝酸盐 (7)

1.4.5测定铵盐 (8)

1.4.6测定钾、钠、钙、镁、铁、铜、铅、锌、锰、镉等 (8)

1.4.7活性炭脱色测定钙、镁、钠、钾、硫酸盐、氯化物 (8)

2 实验部分 (9)

2.1水样预处理 (9)

2.2实验内容 (9)

2.2.1方法一双硫腙分光光度法 (9)

2.2.2方法二二溴邻硝基偶氮胂微乳液分光光度法 (12)

结论 (16)

致谢 (16)

参考文献 (17)

附录 (18)

天然水中锌的检测方法研究

摘要

本文主要研究天然水中锌的检测方法,主要采用双硫腙分光光度法和二溴邻硝基偶氮胂微乳液分光光度法,我对两种方法进行对比,比较其中测定天然水中锌的最好检测方法。仪器分析中紫外—可见分光光度法是历史悠久、应用最为广泛的一种光学分析方法。它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析,所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。相对其他光谱分析方法来说相对其他光谱分析方法来说,其仪器设备和操作都比较简单,费用少,分析速度较快。灵敏度较高。有较好的选择性。用途广泛。

关键词:天然水锌双硫腙比色法二溴邻硝基偶氮胂微乳液分光光度法

溶解氧分析标准

锅炉给水溶解氧的测定 来源:大禹网发布日期:2012-01-17 氧腐蚀是锅炉系统中最常见又较为严重的腐蚀。由于给水一般都与大气接触,水中的溶解氧基本上呈饱和状态,因此给水流经的管路和设备均有发生氧腐蚀的可能。 为什么要化验锅炉给水溶解氧? 氧腐蚀是锅炉系统中最常见又较为严重的腐蚀。由于给水一般都与大气接触,水中的溶解氧基本上呈饱和状态,因此给水流经的管路和设备均有发生氧腐蚀的可能。 氧腐蚀经常发生的部位是给水管路和省煤器。由于省煤器内水温逐渐升高,给溶解氧的腐蚀提供了有利条件,如果给水中溶解氧含量较高时,腐蚀也可能延伸到省煤器的中部和尾部,甚至使锅炉的下降管也遭到腐蚀。 氧腐蚀的形态一般为溃疡型腐蚀和小孔型局部腐蚀,对金属构件强度的损坏十分严重。 为了消除溶解氧对锅炉水汽系统的腐蚀和危害,国家标准规定:对于蒸发量大于2t/h 的锅炉,其给水要采取除氧措施,并根据锅炉工作压力的不同,要求给水溶解氧控制在合格的范围内。 溶解氧(靛蓝二磺酸钠比色法)的测定原理是什么? 在pH:8.5左右时,氨性靛蓝二磺酸钠被锌汞齐还原成浅黄色化合物。当其与水中溶解氧相遇时,又被其氧化为蓝色,其色泽深浅与水中含氧量有关。其反应如下: 溶解氧(靛蓝二磺酸钠比色法)是如何进行测定的?

(1)标准色的配制 本法测定的范围为2~100μg/L,所以标准色阶中最大标准色所相当的溶解氧含量(C 最大)为100μg/L。为使测定时有过量的还原型靛蓝二磺酸钠同氧反应,所以采用还原型靛蓝二磺酸钠的加人量为C最大的1.3倍。据此,在配制色阶时,先配制酸性靛蓝二磺酸钠稀溶液(T=20μg/mL),然后按下式计算酸性靛蓝二磺酸钠溶液的加入体积‰(mL)和苦味酸溶液(T=20μg/mL)的加人体积瞻(mL)。 二磺酸钠(T=μg/L)和苦味酸(T=20μg/L)溶液所需要的用量。 将配制好的标准色溶液注入专用溶氧瓶中,注满后用蜡密封,此标准色使用期限为一周。

水质 硫酸盐 铬酸钡分光光度法

本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。 HJ 中华人民共和国环境保护行业标准 HJ/T342─2007 水质 硫酸盐的测定 铬酸钡分光光度法(试行) Water quality—Determination of sulfate—barium chromate spectrophotometry (发布稿) 2007-03-10 发布 2007-05-01 实施 国家环境保护总局发 布

HJ/ T 342—2007 目次 前言 (Ⅱ) 1适用范围 (1) 2原理 (1) 3试剂 (1) 4仪器 (1) 5干扰的消除 (1) 6步骤 (2) 7结果的计算 (2) 8精密度和准确度 (2)

HJ/T 342—2007 前 言 为了规范《地表水环境质量标准》(GB3838-2002)的实施工作,制定本试行标准。 本标准规定了地表水、地下水中硫酸盐的铬酸钡分光光度测定方法。 本标准适用于地表水、地下水中硫酸盐的测定。 本标准为首次制订。 本标准由国家环境保护总局科技标准司提出。 本标准由国家环境保护总局水和废水监测分析方法编委会组织中国环境监测总站等单位起草。 本标准国家环境保护总局2007年3月10日批准。 本标准自2007年5月1日起实施。 本标准由国家环境保护总局解释。

HJ/T 342─2007 水质 硫酸盐的测定铬酸钡分光光度法 1 适用范围 本标准适用于一般地表水、地下水中含量较低硫酸盐的测定。本方法适用的浓度范围为8~200mg/L:本方法经取13个河、湖水样品进行检验,测定浓度范围为8~85mg/L:相对标准偏差0.15%~7%:加标回收率97.9%~106.8%。 2原理 在酸性溶液中,铬酸钡与硫酸盐生成硫酸钡沉淀,并释放出铬酸根离子。溶液中和后多余的铬酸钡及生成的硫酸钡仍是沉淀状态,经过滤除去沉淀。在碱性条件下,铬酸根离子呈现黄色,测定其吸光度可知硫酸盐的含量。 3 试剂 本标准所用试剂除另有注明外,均为符合国家标准的分析纯化学试剂;实验用水为新制备的去离子水。 3.1 铬酸钡悬浊液:称取19.44g铬酸钾(K2CrO4)与2 4.44g氯化钡(BaCl2·2H2O),分别溶于1L蒸馏水中,加热至沸腾。将两溶液倾入同一个3L烧杯内,此时生成黄色铬酸钡沉淀。待沉淀下降后,倾出上层清液,然后每次用约1L蒸馏水洗涤沉淀,共需洗涤5次左右。最后加蒸馏水至1L,使成悬浊液,每次使用前混匀。每5mL铬酸钡悬浊液可以沉淀约48mg硫酸根(SO42-)。 3.2 (1+l)氨水。 3.3盐酸溶液:2.5mol/L。 3.4 硫酸盐标准溶液:称取1.4786g无水硫酸纳(Na2SO4, 优级纯)或1.814lg无水硫酸钾(K2SO4, 优级纯),溶于少量水,置1000mL容量瓶中,稀释至标线。此溶液1.00mL含1.00mg硫酸根(SO42-)。 4仪器 4.1 比色管:50mL。 4.2 锥形瓶:150mL。 4.3 加热及过滤装置。 4.4 分光光度计。 5干扰的消除 水样中碳酸根也与钡离子形成沉淀。在加入铬酸钡之前,将样品酸化并加热以除去碳酸盐。

邻二氮菲分光光度法测定水中微量铁

邻二氮菲分光光度法测定微量铁 一、实验目的 1、学会吸收曲线及标准曲线的绘制,了解分光光度法的基本原理。 2、掌握用邻二氮菲分光光度法测定微量铁的方法原理。 3、学会721型分光光度计的正确使用,了解其工作原理。 4、学会数据处理的基本方法。 5、掌握比色皿的正确使用。 二、实验原理 根据朗伯-比耳定律:A=εbc,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。只要绘出以吸光度A 为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。同时,还可应用相关的回归分析软件,将数据输入计算机,得到相应的分析结果。 用分光光度法测定试样中的微量铁,可选用显色剂邻二氮菲(又称邻菲罗啉),邻二氮菲分光光度法是化工产品中测定微量铁的通用方法,在pH值为2-9的溶液中,邻二氮菲和二价铁离子结合生成红色配合物: 此配合物的lgK 稳=21.3,摩尔吸光系数ε 510 = 1.1×104L·mol-1·cm- 1,而Fe3+能与邻二氮菲生成3∶1配合物,呈淡蓝色,lgK 稳 =14.1。所以在加 入显色剂之前,应用盐酸羟胺(NH 2 OH·HCl)将Fe3+还原为Fe2+,其反应式如下:2Fe3++ 2NH2OH·HCl → 2Fe2++N2+ H2O +4H++ 2 Cl- 测定时酸度高,反应进行较慢;酸度太低,则离子易水解。本实验采用HAc-NaAc缓冲溶液控制溶液pH≈5.0,使显色反应进行完全。

为判断待测溶液中铁元素含量,需首先绘制标准曲线,根据标准曲线中不同浓度铁离子引起的吸光度的变化,对应实测样品引起的吸光度,计算样品中铁离子浓度。 本方法的选择性很高,相当于含铁量40倍的Sn2+、Al3+、Ca2+、Mg2+、Zn2+、 SiO 32-;20倍的Cr3+、Mn2+、VO 3 -、PO 4 3-;5倍的Co2+、Ni2+、Cu2+-等离子不干扰 测定。但Bi3+、Cd2+、Hg2+、Zn2+、Ag+等离子与邻二氮菲作用生成沉淀干扰测定。 三、实验仪器与试剂: 721型分光光度计、酸度计、50ml比色管、吸量管(1mL、2mL、5mL、10 mL)、比色皿、洗耳球。 1.1×10-3mol·L-1铁标准溶液、100ug·ml-1铁标准溶液、盐酸、盐酸羟胺、醋酸钠、0.15%邻二氮菲水溶液。 四、实验步骤 (一)准备工作 打开仪器电源开关,预热,调解仪器。 (二)测量工作(以通过空白溶液的透射光强度为I0,通过待测液的透射光 强度为I,由仪器给出透射比T,再由T值算出吸光度A值) 1、吸收曲线的绘制和测量波长的选择 用吸量管吸取2.00 mL1.0×10-3mol.L-1标准溶液,注入50 mL比色管中,加入1.00mL 10%盐酸羟胺溶液,摇匀,加入2.00 mL0.15%邻二氮菲溶液,5.0 mL NaAc溶液,以水稀释至刻度。在光度计上用1cm比色皿,采用试剂溶液为参比溶液,在440-560 nm间,每隔10nm测量一次吸光度,以波长为横坐标,吸光度为纵坐标,绘制吸收曲线,选择测量的适宜波长。一般选用最大吸收波长λ max 为测定波长。 2、显色剂条件的选择(显色剂用量) 在6支比色管中,各加入2.00mL 1.0×10-3mol·L-1铁标准溶液和1.00mL 10%盐酸羟胺溶液,摇匀。分别加入0.10,0.50,1.00,2.00 ,3.00及4.00mL 0.15% 邻二氮菲溶液,5.0mL NaAc溶液,以水稀释至刻度,摇匀。在光度计上用

黄铜中锌含量的测定 实验报告

实验报告:EDTA的标定(二甲酚橙)及锡铜中锌的测定 Posted on November 26, 2010 by admin EDTA的标定(二甲酚橙)及锡铜中锌的测定 (Calibration of EDTA (xylenol orange) and the determination of tin zinc copper) 实验目的: 1.学习配制Zn2+标准溶液,EDTA标准溶液; 2.学会以六亚甲基四胺-盐酸为缓冲溶液,二甲酚橙为指示剂标定EDTA标准溶液; 3.了解黄铜片的组成,学会铜合金的溶解方法; 干扰离子的掩蔽方法;、 4.掌握铜合金中Zn的测定方法 实验原理: 1.EDTA配置及标定原理: ⑴用EDTA二钠盐配制EDTA标准溶液的原因: EDTA是四元酸,常用H4Y表示,是一种白色晶体粉末,在水中的溶解度很小,室温溶解度为0.02g/100g H2O。因此,实际工作中常用它的二钠盐 Na2H2Y·2H2O, Na2H2Y·2H2O的溶解度稍大,在22℃(295K)时,每100g水中可溶解11.1g. ⑵标定EDTA标准溶液的工作基准试剂,基准试剂的预处理; 实验中以纯金属Zn为工作基准试剂。预处理:称量前一般应先用稀盐酸洗去氧化层,然后用水洗净,烘干。 ⑶滴定用的指示剂是可以选用铬黑T和二甲酚橙,本次实验选用二甲酚橙与后面黄铜中Zn的滴定的指示剂保持一致,减小误差。二甲酚橙有6级酸式解离,其中H6In至H2In4-都是黄色,HIn5-至In6-是红色。

H2In4-=H++ HIn5-(p K a=6.3) 黄色红色 从平衡式可知,pH>6.3指示剂呈现红色;pH<6.3呈现黄色。二甲酚橙与M n+形成的配合物都是红紫色,因此,指示剂只适合在pH<6的酸性溶液中使用。测定Zn2+的适宜酸度为pH=5.5,终点时,溶液从红紫色变为纯黄色。化学计量点时,完成以下反应: MIn + H2Y2-→MY + H2In4- ⑷EDTA浓度计算公式:C(EDTA)= m(Zn)/10M Zn V EDTA 2.黄铜片中Zn测定原理: ⑴黄铜片的溶解:使用1:1的盐酸和30%的H2O2溶解黄铜片 Cu+ H2O2 +2HCl=CuC l2+2H2O ⑵干扰离子的掩蔽:黄铜的主要成分是铜,铅,锡,锌还可能有少量铁铝等杂质。在实验条件下Cu2+、Pb2+、Sn4+、Fe3+、Al3+等离子会干扰锌的测定。 可以用配位掩蔽、沉淀掩蔽、氧化还原掩蔽等方法,选择在适当的pH下,将待测离子之外的其他离子进行化学掩蔽。采用的掩蔽方法如下: Ⅰ。沉淀掩蔽法掩蔽Pb2+ 在微酸性溶液中,加入适量的氯化钡和硫酸钾溶液,使生成硫酸钡沉淀,当Ba2+的量超过Pb2+量10倍以上时,Pb2+即会全部渗入硫酸钡晶格中去,形成硫酸铅钡混晶沉淀,这种沉淀比单纯的硫酸铅沉淀稳定得多。因此,可以有效地掩蔽Pb2+。 Ⅱ。氧化还原、配位掩蔽法掩蔽Cu2+ 在一定酸度(pH=2~6)下,Cu2+被硫脲还原成Cu+: 8Cu2+ + CS(NH2)2 + 5H2O =8Cu+ + CO(NH2)2 + SO42- + 10H+ Cu+再与硫脲形成配合物而被掩蔽。

双硫腙分光光度法测定锌含量

双硫腙分光光度法测定锌含量 (吉林省临江市刘伯田) 概述 1.方法原理 在pH为4.0—5.5的醋酸盐缓冲介质中。锌离子与双硫腙形成红色螯合物,其反应为: 该螯合物可被四氯化碳(或三氯甲烷)定量萃取。以混色法完成测定。 用四氯化碳萃取,锌一双硫腙螯合物的最大吸收波长为535 nm,其摩尔吸光系数约为9.3×104。 2.干扰及消除 在本法规定的实验条件下,天然水中正常存在的金属离子不干扰测定。水中存在少量铋、镉、钴、铜、金、铅、汞、镍、钯、银和亚锡等金属离子时,对本法均有干扰,但可用硫代硫酸钠掩蔽剂和控制溶液的pH值来消除这些干扰。三价铁、余氯和其它氧化剂会使双硫腙变成棕黄色。由于锌普遍存在于环境中,而锌与双硫腙反应又非常灵敏,因此需采取特殊措施防止污染。 3.方法的适用范围 当使用光程为20mm比色皿,试份体积为100ml时,锌的最低

检出浓度为0.005mg/L。本法适用于测定天然水和轻度污染的地表水中的锌。 4. 仪器 (l)分光光度计,应用10 mm或更长光程的比色皿。 (2)分液漏斗:容量为125和150ml,最好配有聚四氟乙烯活塞。(3)玻璃器皿:所有玻璃器皿均先后用1+l硝酸浸泡和无锌水清洗。 5. 试剂 (1)无锌水:将普通蒸馏水通过阴阳离子交换柱以除去水中痕量锌,用于配制试剂。 (2)四氯化碳(CCl4)。 (3)高氯酸(ρ=1.75g/ml)。 (4)盐酸(ρ=1.18g/ml)。 (5)6mol/L盐酸:取500ml浓盐酸用水稀释至1000ml。 (6)2mol/L盐酸:取100ml浓盐酸用水稀释至600ml。 (7)0.02mol/L盐酸:取2mol/L盐酸10ml用水稀释到1000ml。(8)乙酸(含量36%)。 (9)氨水(ρ=0.90g/ml)。 (10)1+100氨溶液:取氨水10ml用水稀释至1000ml。 (11) 硝酸(ρ=1.4g/ml)。 (12) 2%(V/V)硝酸溶液:取硝酸20ml 用水稀释至1000 ml。(13)0.2% (V/V)硝酸溶液:取2ml 硝酸用水稀释至1000ml。(14)乙酸钠缓冲溶液:将68g三水合乙酸钠(CH3COONa·3H2O)

废气中硫酸雾的测定-铬酸钡分光光度法

废气中硫酸雾的测定-铬酸钡分光光度法

1.原理 用玻璃纤维滤筒进行等速采样,用水浸取,除去阳离子。在弱酸性溶液中,样品溶液中的硫酸根离子与铬酸钡悬浊液发生以下交换反应: SO42-+BaCrO4─→BaSO4↓+CrO42- (黄色) 在氨-乙醇溶液中,分离除去硫酸钡及过量的铬酸钡,反应释放出的黄色铬酸根离子与硫酸根浓度成正比,根据颜色深浅,用分光光度法测定。 2.干扰及消除 样品中有钙、锶、镁、锆、钍等金属阳离子共存时对测定有干扰,通过阳离子树脂柱交换处理后可除去干扰。 测定范围:5~120mg/m3。 3.仪器 ①酸式滴定管:25ml。 ②玻璃漏斗:直径60mm。 ③中性定量滤纸。 ④玻璃棉。 ⑤电炉或电热板。 ⑥烟尘采样器。

⑦过氯乙烯滤膜、中速定量滤纸、慢速定量滤纸。 ⑧紫外或近紫外分光光度计。 4.试剂 ①玻璃纤维滤筒。 ②阳离子交换树脂(732型等均可)200g。 ③氢氧化铵溶液C(NH4OH)=6.0mol/L:量取160ml浓氨水,用水稀释至400ml。 ④氯化钙-氨溶液:称取1.1g氯化钙,用少量1mol/L盐酸溶液溶解后,加6.0mol/L氢氧化铵溶液至400ml。若浑浊应过滤。 ⑤酸性铬酸钡悬浊液:称取0.50g铬酸钡于200ml含有0.42ml浓盐酸和14.7ml冰乙酸的水中,得悬浊液。贮存于聚乙烯塑料瓶中,使用前充分摇匀。 ⑥硫酸钾标准溶液:称取1.778g硫酸钾(优级纯,105~110℃烘干2h),溶解于水,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液每毫升相当于含1000μg硫酸。临用时,用水稀释成每毫升含100.0μg 硫酸的标准溶液。 ⑦偶氮胂Ⅲ指示剂:称取0.40g偶氮胂Ⅲ,溶解于100ml水中,放置过夜后取上清液贮于棕色瓶中,在冷暗处保存,可使用一个月。 5.采样 按国家有关污染源监测技术规范规定的采样方法,用玻璃纤维滤筒,等速采样5~30min。 6.步骤

分光光度法测定水中铁离子含量.

专业项目课程课例 项目十二分光光度法测定水中铁离子含量 一、项目名称:分光光度法测定水中铁离子含量 二、项目背景分析 课程目标:本课程是培养分析化学操作技能和操作方法的一门专业实践课,以定量分析的基本理论为基础,以实验强化理论,以期提高化工工作者的分析操作能力。 功能定位:在定量分析中我们常常用到分光光度分析法,它具有操作简便、快速、准确等优点,在工农业生产和科学研究中具有很大的实用价值。是仪器分析的基础实验,也是一种重要的定量分析方法。分光光度法测定水中铁离子含量的测定项目综合训练了学生分光光度计使用、系列标准溶液配制、标准曲线绘制等多个技能。 学生能力:学生通过相关基础学科的学习已经具备了相应的化学知识和定量分析知识,也具备一定的独立操作和思维能力。 项目实施条件:该项目是仪器分析的基础实验,一般中职学校具备相关的实训实习条件,学生有条件完成相应的实习任务。 三、教学目标 1、了解721可见分光光度计的构造 2、了解分光光度法测定原理 3、掌握721可见分光光度计的操作方法 4、掌握分光光度法测定分析原始记录的设计 5、掌握分光光度法测定分析报告的设计 6、掌握分光光度法测定水中铁离子含量的测定方法 7、掌握分光光度法测定水中铁离子含量的分析原始记录和分析报告的填写 四、工作任务 1

2 五、参考方案 参考方案一 1、邻二氮杂菲-Fe 2+ 吸收曲线的绘制 用吸量管吸取铁标准溶液(20μg/mL )0.00、2.00、4.00mL ,分别放入三个50mL 容量瓶中,加入1mL 10%盐酸羟胺溶液,2mL 0.1%邻二氮杂菲溶液和5mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用3cm 比色皿,以试剂空白(即在0.0mL 铁标准溶液中加入相同试剂)为参比溶液,在440~560nm 波长范围内,每隔20~40nm 测一次吸光度,在最大吸收波长附近,每隔5~10nm 测一次吸光度。在坐标纸上,以波长λ为横坐标,吸光度A 为纵坐标,绘制A 和λ关系的吸收曲线。从吸收曲线上选择测定Fe 的适宜波长,一般选用最大吸收波长λmax 。 2、标准曲线的制作 用吸量管分别移取铁标准溶液(20μg/mL )0.00、2.00、4.00、6.00、8.00、10.00mL ,分别放入6个50mL 容量瓶中,分别依次加入1.00mL 10%盐酸羟胺溶液,稍摇动;加入2.00mL 0.1%邻二氮杂菲溶液及5.00mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用1cm 比色皿,以试剂空白(即在0.00mL 铁标准溶液中加入相同试剂)为参比溶液,选择λmax 为测定波长,测量各溶液的吸光度。在坐标纸上,以含铁量为横坐标,吸光度A 为纵坐标,绘制标准曲线。 3、水样中铁含量的测定 取三个50mL 容量瓶,分别加入5.00mL (或10.00mL 铁含量以在标准曲线范围内为合适)未知试样溶液,按实验步骤2的方法显色后,在λmax 波长处,用1cm 比色皿,以试剂空白为参比溶液,平行

《水质分析实验》讲义

《水质分析实验》讲义凌琪伍昌年王莉编写 安徽建筑大学环境与能源工程学院 2017年9月

目录 实验一水中颜色测定 实验二水浊度的测定 实验三水电导率的测定 实验四水中六价铬的测定 实验五水中悬浮物测定 实验六水中铜、锌的测定――原子吸收法 实验七水中氨氮的测定――纳氏试剂比色法 实验八COD测定――重铬酸钾消解法 实验九水中石油类的测定 实验十水中硝基苯的测定――液相色谱法 实验十一水中马拉硫磷含量的测定――气相色谱法

实验一水中颜色测定 一、实验意义:水的色度是对天然水或处理后的各种水进行颜色定量测定时的指标,天然水经常显示不同的颜色。腐殖质过多时呈棕黄色,粘土使水呈黄色,硫使水呈浅蓝色。藻类可以使水呈不同的颜色,如绿色、棕绿色、暗褐色、绿宝石色等。当水体受到工业废水的污染时也会呈现不同的颜色。这些颜色分为真色与表色。真色是由于水中溶解性物质引起的,也就是除去水中悬浮物后的颜色,而表色是没有除去水中悬浮物时产生的颜色。这些颜色的定量程度就是色度。色度是评价感官质量的一个重要指标,饮用水水质标准规定色度不应大于15度。 pH值对色度有较大的影响。 天然和轻度污染水可用铂钴比色法测定色度,对工业有色废水常用稀释倍数法辅以文字描述。 二、实验目的和要求 1、掌握铂钴比色法和稀释倍数法测定水和废水色度方法,以及不同方法所适用的范围。 2、预习第二章有关色度的内容,了解色度测定的其他方法及各自特点。 三、铂钴比色法 1、原理 用氯铂酸钾与氯化钴配成标准色列,与水样进行目视比色。每升水中含有1mg铂和0.5mg钴时所具有的颜色,称为1度,作为标准色度单位。 如水样浑浊,则放置澄清,亦可用离心法或孔径0.45um氯膜过滤以去除悬浮物,但不能用滤纸过滤,因滤纸可吸附部分融解于水的颜色。 2、仪器和试剂 ⑴50mL具塞比色管::其刻度线高度应一致。 ⑵铂钴标准溶液:称取 1.246g氯铂酸钾(K2PtCl6)(相当于500mg铂)及1.000g氯化钴(CoCl2· 6H2O)(相当于240mg钴),溶于100mL水中,加100mL盐酸,用水定容至1000mL。此溶液色度为500度,保存在密塞玻璃瓶中,存放在暗处。 3、测定步骤 ⑴标准色列的配置:向50ml比色管中加入0、0.50、1.00、2.00、3.00、3.50、4.00、4.50、 5.00、 6.00及 7.00mL铂钴标准溶液,用水稀释至标线,混匀。各管的色度依次为0、5、10、 20、30、35、40、45、50、60、70度。密塞保存。 ⑵将水样于标准色列进行目视比较。观察时,可将比色管置于白瓷板或白纸上,使广项从管

双硫腙分光光度法测水中的锌.

2 双硫腙分光光度法 2.1 应用范围 2.1.1 本法适用于测定生活饮用水及其水源中锌的含量。 2.1.2 本法最低检测量为0.5μg,若取10ml水样测定,则最低检测浓度为0.05mg /L。 2.2 原理 在pH4.0~5.5的水溶液中,锌离子与双硫腙生成红色螯合物,用四氯化碳萃取后比色定量。 在选定的pH条件下,用足够量的硫代硫酸钠可掩蔽水中存在的少量铅、铜、镉、钴、铋、镍、金、钯、银、亚锡等干扰金属离子。 2.3 仪器 所用玻璃化妆品均须用1+1硝酸洗涤,然后再用不含锌的纯水冲洗干净。不得用自来水冲洗。 2.3.1 60ml分液漏斗 2.3.2 10ml比色管。 2.3.3 分光光度计。 2.4 试剂 配制试剂和稀释用纯水均为去离子蒸馏水。 2.4.1 锌标准贮备溶液:同1 3.1. 4.1.4。 如无金属锌,可称取0.4398g硫酸锌(ZnSO4·7H2O)溶于纯水中,加入10ml浓盐酸,用纯水定定容至1000ml。此溶液1.00ml含0.100mg锌。 2.4.2 锌标准溶液:吸取10.00ml锌标准贮备溶液(1.4.1),用纯水定容至 1000ml。此锌标准溶液1.00ml含1.00μg锌。 2.4.3 0.1%双硫酸腙四氯化碳贮备溶液:称取0.10g双硫腙(C18H12N4S),在干燥的烧杯中用四氯化碳溶解后稀释至100ml,倒入棕色瓶中。此溶液置冰箱内保存,可稳定数周。 如双硫腙不纯,可用下述方法纯化:称取0.20g双硫腙,溶于100ml氯仿,经脱脂棉过滤于250ml分液漏斗中,每次用20ml 3+97稀氨水连续反萃取数次,直至氯仿相几乎无绿色为止。合并水相至另一分液漏斗,每次用四氯化碳10ml振荡洗涤水相两次,弃去四氯化碳相。水相用1+9硫酸溶液酸化至有双硫腙析出,再每次用100ml四氯化碳萃取两次,合并四氯化碳相,倒入棕色瓶中,置冰箱内保存。 2.4.4双硫腙四氯化碳溶液:临用前,吸取适量双硫腙四氯化碳贮备溶液 (2.4.3),用四氯化碳稀释约30倍,至吸光度为0.4(波长535 nm,1cm比色皿)。

水中溶解氧的测定(2017-标准)

实验二水质溶解氧的测定(碘量法) 1 实验目的 掌握生活饮用水及水源水中溶解氧的测定原理及方法;掌握测定溶解氧自来水水样的采集方法;正确使用溶解氧瓶及固定水中溶解氧的方式;巩固碘量法操作。 2 实验原理 硫酸锰与氢氧化钠作用生成氢氧化锰,氢氧化锰与水中溶解氧结合生成含氧氢氧化锰(或称亚锰酸),亚锰酸与过量的氢氧化锰反应生成偏锰酸锰,在酸性条件下偏锰酸锰与碘化钾反应析出碘,用硫代硫酸钠标准溶液滴定析出的碘。根据硫代硫酸钠标准溶液的消耗量求得水样中溶解氧的含量。 3 试剂 3.1 硫酸锰溶液:称取48g MnSO 4·4H 2 O(AR)溶于水中至100ml,过滤后使用。 3.2 碱性碘化钾溶液:称取50gNaOH(AR)溶于40ml蒸馏水中,另称取15gKI (AR)溶于20ml蒸馏水中。待NaOH溶液冷却后,合并两溶液,加水至100ml。静置24小时后取上清液备用。 3.3 浓硫酸(AR) 3.4 淀粉指示剂溶液(1%):称取1g可溶性淀粉,置于小烧杯中,加少量纯水调成糊状,在不断搅拌下将糊状液倒入100ml正在沸腾的纯水中,继续煮沸2~3分钟,冷后移入瓶中使用。 3.5 6mol/LHCl 3.6 0.025mol/L硫代硫酸钠标准储备溶液:应先配成0.1mol/L的浓度,标定出准确浓度后,再用纯水稀释至0.025mol/L。 3.7 0.1mol/L硫代硫酸钠标准溶液:称取13g硫代硫酸钠Na 2S 2 O 3 .5H 2 O(AR)置 于烧杯中,溶于500ml煮沸放冷的纯水中,此溶液的浓度为0.1mol/L。移入棕色瓶中7~10天进行标定。 标定方法:将K 2Cr 2 O 7 于烘箱烤至恒重,用减重法精确称取K 2 Cr 2 O 7 1.1g左右, 置于小烧杯中,加纯水使其完全溶解,并移入250ml容量瓶中,用少量纯水洗涤 小烧杯多次,洗涤液一并移入容量瓶中,定容。移取25.00mLlK 2Cr 2 O 7 于250 ml 碘量瓶中,加20 ml水,加2gKI晶体,再加6mol/LHCl溶液5ml,密塞,摇匀, 水封,在暗处静置10分钟。加纯水50ml,用待标定的Na 2S 2 O 3 标准溶液滴定至溶 液呈淡黄色时(近终点),加入2ml1℅淀粉指示剂,继续滴至溶液从蓝色变为亮 绿色为止。记录Na 2S 2 O 3 溶液消耗的量(平行测定三份)。计算出Na 2 S 2 O 3 标准溶液 浓度。

铬酸钡分光光度法

铬酸钡光度法 1.方法原理 在酸性溶液中,铬酸钡与硫酸盐生成铬酸钡沉淀,并释放出铬酸根离子。溶液中和多余的铬酸钡及生成的硫酸钡仍是沉淀状态,经过滤除去沉淀。在碱性条件下,铬酸根离子呈现黄色,测定其吸光度可知硫酸盐的含量。 2.干扰及消除 水样中碳酸根也与钡离子形成沉淀。在加入铬酸钡之前,将样品酸化并加热以除去碳酸盐。 3.方法的适用范围 本法适用于测定硫酸盐含量较低的清洁水样。 经取13个河、湖水样进行检验,测定浓度范围为8~15mg/L;相对标准偏差0.15%~7%; 加标回收率97.9%~106.8%。 4.仪器 ①比色管:50ml ②锥形瓶:250ml ③加热及过滤装置 ④分光光度计 5.试剂 ①铬酸钡悬浊液:称取19.44g铬酸钾与24.44g氯化钡,分别溶于1L蒸馏水中,加 热至沸腾。将两溶液倾入同一个3L烧杯内,此时生成黄色铬酸钡沉淀。待沉淀下降后,倾出上层清液,然后每次用约1L蒸馏水洗涤沉淀,共需洗涤5次左右。最后加蒸馏水至1L,使成悬浊液,每次使用前混匀。每5ml铬酸钡悬浊液可以沉淀约

48mg硫酸根。 ②(1+1)氨水 ③2.5mol/L盐酸溶液 ④硫酸盐标准溶液:称取1.4786g优级纯无水硫酸钠或1.8141g无水硫酸钾,溶于 少量水,置1000ml容量瓶中,稀释至标线。此溶液1.00ml含1.00mg硫酸根。 6.步骤 ①分取50ml水样,置于150ml锥形瓶中 ②另取150ml锥形瓶八个,分别加入0、0.25、1.00、2.00、4.00、6.00、8.00及 10.00ml硫酸根标准溶液,加蒸馏水至50ml。 ③向水样及标准溶液中各加1ml 2.5mol/L盐酸溶液,加热煮沸5min左右。取下后 再各加2.5ml铬酸钡悬浊液,再煮沸5min左右。 ④取下锥形瓶,稍冷后,向各瓶逐滴加入(1+1)氨水至呈柠檬黄色,再多加2滴。 ⑤待溶液冷却后,用慢速定性滤纸过滤,滤液收集于50ml比色管内(如滤液浑浊, 应重复过滤至透明)。用蒸馏水洗涤锥形瓶及滤纸三次,滤液收集于比色管中,用蒸馏水稀释至标线。 ⑥在420nm波长,用10mm比色皿测量吸光度,绘制校准曲线。 7.计算 硫酸根=(M/V)*1000 式中:M—由校准曲线查得的硫酸根量(mg) V—取水样体积(ml)

分光光度法测定水中氯含量

·分析测试· 分光光度法测定微量氯离子的研究与应用 STUDY AND APPLICATION OF SPECTROPHOTOMETRIC METHOD FOR DETERMINATION OF MICRO CHLORION 1 前言 含有有机物工艺水中氯离子的测定, 是化工生产中常用的分析指标,其含量的高低,对生产的稳定性、生产过程参数的调节至关重要。目前,含有有机物工艺水中的氯离子的测定方法有硝酸银滴定法、汞量滴定法、比色法、离子选择电极法等。这些方法各有利弊,在生产中直接应用有一定的难度。分光光度法以其灵敏度高,选择性好,操作简单等优点广泛用于各种微量以及痕量组分的分析。由于氯化银沉淀不稳定, 直接应用分光光度法测定结 果不理想。笔者通过研究氯化银沉淀在明胶- 乙醇水溶液中的稳定性。建立了一种新的测定微量氯离子的分光光度法,并应用到有机物工艺水中微量氯离子的测定,结果令人满意。线性范围为0~6 mg/ L , 方法的标准偏差为01108 , 变异系数为01026 。回收率为101 %~105 %。 2 实验部分 211 试剂 明胶- 乙醇水溶液: 称取011250 g 明胶, 溶于100 ml 水中, 取其20mL 明胶溶液+ 30 mL 乙醇, 放于100 mL 容量瓶中,用水稀释到满刻度。硝酸溶液:1 + 2 。氯标准溶液:012 mg/ mL 。称取116439 (称准至010002 g) 氯化钠溶解后,全部转移到1000 mL 容量瓶中,用水稀释至满刻度,摇匀,取此

溶液50 mL 稀释到250 mL 。硝酸银溶液:20 g/ L 。称取2 g 硝酸银于100 mL 容量瓶中, 用无氯化物水稀释到刻度。 212 仪器 3 运行效果 根据该厂污水处理场的实际情况, 在两间浮选池上各装一套溶气设备,经过试运行,在认为设备运行正常的情况下,进行了检验和验收,结果如下: (1) 污水泵、循环加气泵及电机运行平稳, 无振动和异常声音。 (2) 污水泵和循环加气泵压力均在013~0134MPa 之间。 (3) 气泡微细。 (4) 截止目前射流加压溶气设备运行情况良好,除油效果显著,提高了污水处理的质量。 4 结论 (1)JDAF - Ⅱ型射流加压溶气设备应用效果良好,运行稳定,操作简单,根除了释放器堵塞现象,减轻了操作人员的劳动强度。 (2) 该设备采用内循环式,所需的溶解空气经循环射流器和真空进气阀自吸气作用完成, 毋需空气压缩机供给,因此减轻了噪声污染。 (3) 除油效果显著。浮选出水含油由原来的6018 %提高到现在的7310 % , 浮选出水含油量可控制在20 mg/ L 以下。 (4) 自动化程度高。该设备自动调整溶气罐内气液平衡,无需人工控制。 一般实验室仪器及7550 紫外可见分光光度计。 213 测定步骤 于100 mL 比色管中,依次加入氯标准溶液、水、明胶- 乙醇水溶液、硝酸溶液,混匀后再加

实验六 ds区金属(铜、银、锌)

实验六ds区金属(铜、银、锌、镉) 实验摘要: 本实验用铜、锌、镉的硫酸盐和氢氧化钠反应来制备对应的氢氧化物,再分别和稀盐酸和过量氢氧化钠反应来探究铜、锌、镉的氢氧化物的酸碱性。用硝酸银和氢氧化钠反应来制备氧化银,再分别和稀硝酸和过量氨水反应来探究氧化银的酸碱性。用锌、镉的硫酸盐和硫化钠溶液反应再分别和稀盐酸和王水反应,以此探究其硫化物的溶解性。用硫酸铜、硝酸银、硫酸锌溶液分别和氨水反应,直至氨水过量,通过观察沉淀的变化熟悉铜、银、锌的配位能力。通过氧化亚铜、氯化亚铜、碘化亚铜的生成和性质实验来掌握铜离子和亚铜离子重要化合物的性质及相互转化的条件。实验初步得出结论:氢氧化铜和氢氧化锌显两性,氢氧化铬和氧化银显碱性;硫化物大都难溶于水;铜离子、银离子、锌离子课形成氨的配合物。 关键词: ds区金属氢氧化物氧化物硫化物酸碱性溶解性氨合物氧化还原性 实验用品: 试管离心试管烧杯离心机PH试纸玻璃棒 实验内容: 1. 铜、锌、镉氢氧化物的生成和性质 2.氧化银的生成和性质

3.锌、镉硫化物的生成和性质 分别往硫酸锌、硫酸铬溶液中加入硫化钠溶液,观察沉淀的颜色,将沉淀离心分离,洗涤,分成三份,再分别加入稀盐酸、浓盐酸、王水,水浴加热,观察沉淀的溶解情况。 4. 铜、银、锌的氨配合物 分别往硫酸铜、硝酸银、硫酸锌溶液中加入氨水,观察沉淀的生成,继续加氨水至过量,观 5.氧化亚铜的生成和性质 6.氯化亚铜的生成和性质

7.碘化亚铜的生成和性质 结果及讨论: 氢氧化锌、氢氧化铜具有两性,以碱性为主,能溶于浓的强碱中生成配离子,氢氧化铬的碱性比强氧化锌强,仅能缓慢溶于热浓强碱。 氢氧化银沉淀极不稳定,易脱水生成碱性氧化银。 ds区金属硫化物都不溶于水,有的可溶于酸,都能溶于王水。 铜离子、银离子、锌离子都可生成氨配合物。 亚铜离子在水溶液中极不稳定,易歧化为铜离子和铜。 参考文献: [1] 北京师范大学等校编.《无机化学实验》[M](第三版),高等教育出版社,2004,164-166 [2]孙一平,朱锡海《十二烷基硫酸钠气浮氢氧化铬沉淀的机理》[J],《水技术处理》,199301期,38-42 [3]罗耀宗《铜氨络离子废水的处理》[J],《甘肃环境研究与检测》,1997年第10卷第二期,34-35 [4]舒余德《电解法制取氧化亚铜的研究》[J],《沈阳化工》,1994年03期,20-24

锌离子浓度的测定

双硫腙分光光度法 GB7472--87 概述 1.方法原理 在pH为4.0—5.5的醋酸盐缓冲介质中。锌离子与双硫腙形成红色螯合物,其反应为: 该螯合物可被四氯化碳(或三氯甲烷)定量萃取。以混色法完成测定。 用四氯化碳萃取,锌一双硫腙螯合物的最大吸收波长为535 nm,其摩尔吸光系数约为9.3×104。 2.干扰及消除 在本法规定的实验条件下,天然水中正常存在的金属离子不干扰测定。水中存在少量铋、镉、钴、铜、金、铅、汞、镍、钯、银和亚锡等金属离子时,对本法均有干扰,但可用硫代硫酸钠掩蔽剂和控制溶液的pH值来消除这些干扰。三价铁、余氯和其它氧化剂会使双硫腙变成棕黄色。由于锌普遍存在于环境中,而锌与双硫腙反应又非常灵敏,因此需采取特殊措施防止污染。 3.方法的适用范围 当使用光程为20mm比色皿,试份体积为100ml时,锌的最低检出浓度为0.005mg/L。本法适用于测定天然水和轻度污染的地表水中的锌。 仪器 (l)分光光度计,应用10 mm或更长光程的比色皿。 (2)分液漏斗:容量为125和150ml,最好配有聚四氟乙烯活塞。 (3)玻璃器皿:所有玻璃器皿均先后用1+l硝酸浸泡和无锌水清洗。 试剂 (1)无锌水:将普通蒸馏水通过阴阳离子交换柱以除去水中痕量锌,用于配制试剂。(2)四氯化碳(CCl4)。 (3)高氯酸(ρ=1.75g/ml)。 (4)盐酸(ρ=1.18g/ml)。 (5)6mol/L盐酸:取500ml浓盐酸用水稀释至1000ml。 (6)2mol/L盐酸:取100ml浓盐酸用水稀释至600ml。 (7)0.02mol/L盐酸:取2mol/L盐酸10ml用水稀释到1000ml。 (8)乙酸(含量36%)。 (9)氨水(ρ=0.90g/ml)。 (10)1+100氨溶液:取氨水10ml用水稀释至1000ml。 (11) 硝酸(ρ=1.4g/ml)。 (12) 2%(V/V)硝酸溶液:取硝酸20ml 用水稀释至1000 ml。 (13)0.2% (V/V)硝酸溶液:取2ml 硝酸用水稀释至1000ml。 (14)乙酸钠缓冲溶液:将68g三水合乙酸钠(CH3COONa·3H2O)溶于水中。并稀释至250ml,另取乙酸1份与7份水混合,将上述两种溶液按等体积混合,混合液再用

实验5水中铬的测定--分光光度法(精)

实验五水中铬的测定—分光光度法 废水中铬的测定常用分光光度法,其原理基于:在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度的关系符合比尔定律。如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价铬,再用本法测定。 一.实验目的和要求 1.掌握分光光度法测定六价铬和总铬的原理和方法;熟练应用分光光度计。 2.预习第二章第六节中测定铬的各种方法,比较其优点、缺点。 二.六价铬的测定 1.仪器 ①分光光度计、比色皿(1cm、3cm)。 ②50mL具塞比色管、移液管、容量瓶等。 2.试剂 (1)丙酮。 (2)(1+1)硫酸。 (3)(1+1)磷酸。 (4) 0.2%(m/V)氢氧化钠溶液。 (5)氢氧化锌共沉淀剂:称取硫酸锌(ZnSO4·7H2O)8g,溶于100mL水中;称取氢氧化钠2.4g,溶于新煮沸冷却的120mL水中。将以上两溶液混合。 (6)4%(m/V)高锰酸钾溶液。 (7)铬标准贮备液:称取于120℃干燥2h的重铬酸钾(优级纯)0.2829g,用水溶解,移入1000mL容量瓶中,用水稀释至标线,摇匀。每毫升贮备液含0.100mg 六价铬。 (8)铬标准使用液:吸取5.00mL铬标准贮备液于500mL容量瓶中,用水稀释至标线,摇匀。每毫升标准使用液含1.00μg六价铬。使用当天配制。 (9)20%(m/V)尿素溶液。 (10)2%(m/V)亚硝酸钠溶液。 (11) 二苯碳酰二肼溶液:称取二苯碳酰二肼(简称DPC,C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶内,置于冰箱中保存。颜色变深后不能再用。 3.测定步骤 (1)水样预处理: ①对不含悬浮物、低色度的清洁地面水,可直接进行测定。 ②如果水样有色但不深,可进行色度校正。即另取一份水样,加入除显色剂以外的各种试剂,以2mL丙酮代替显色剂,用此溶液为测定试样溶液吸光度的参比溶液。 ③对浑浊、色度较深的水样,应加入氢氧化锌共沉淀剂并进行过滤处理。 ④水样中存在低价铁、亚硫酸盐、硫化物等还原性物质时,可将Cr6+还原为Cr3+,此时,调节水样pH值至8,加入显色剂溶液,放置5min后再酸化显色,并以同法做标准曲线。 (2)标准曲线的绘制:取9支50mL比色管,依次加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.00mL铬标准使用液,用水稀释至标线,加入1+1硫酸0.5mL和1+1磷酸0.5mL,摇匀。加入2mL显色剂溶液,摇匀。5~10min

水质 铜、锌、铅、镉的测定--原子吸收分光光度法

1 适用范围 本标准规定了测定水中铜、锌、铅、镉得火焰原子吸收分光光度法。 本标准分为两部分。第一部分为直接法,适用于测定地下水、地面水与废水中得铜、锌、铅、镉;第二部分为螯合萃取法,适用于测定地下水与清洁地面水中低浓度得铜铅、镉。 2定义 2、1溶解得金属,未酸化得样品中能通过0、45um滤膜得金属成分。 2、2金属总量:未经过滤得样品经强烈消解后测得得金属浓度,或样品中溶解与悬浮得两部分金属浓度得总量。 3试剂与材料 除非另有说明,分析时均使用符合国家标准得分析纯试剂;实验用水,GB/T 6682,二级。 3、1硝酸:ρ(HNO3)=1、42 g/mL,优级纯。 3、3 硝酸:ρ(HNO3)=1、42 g/mL,分析纯。。 )=1、67 g/mL,优级纯。 3、3 高氯酸:ρ(HClO 4 3、4燃料:乙炔,用钢瓶气或由乙炔发生器供给,纯度不低于99、6%。 3、5 氧化剂:空气,一般由气体压缩机供给,进入燃烧器以前应经过适当过滤,以除去其中得水、油与其她杂质。 3、6硝酸溶液:1+1。 用硝酸(3、2)配制。 3、7 硝酸溶液:1+499。 用硝酸(3、1)配制。 3、8 金属储备液:1、000g/L。 称取1、000g光谱纯金属,准确到0、001g,用硝酸(3、1)溶解,必要时加热,直至溶解完全,然后用水稀释定容至1000mL。 3、9中间标准溶液。 用硝酸溶液3、7稀释金属贮备液3、8配制,此溶液中铜、锌、铅、镉得浓度分别为50、00、10、00、100、00、10、00mg/L。

4 采样与样品 4、1用聚乙烯塑料瓶采集样品。采样瓶先用洗涤剂洗净,再在硝酸溶液3、6中浸泡,使用前用水冲洗干净。分析金属总量得样品,采集后立即加硝酸3、1酸化至PH=1~2,正常情况下,每1000mL样品加2ml硝酸3、1。 4、2试样得制备 分析溶解得金属时,样品采集后立即通过0、45um滤膜过滤,得到得滤液再按4、1中得要求酸化。 5适用范围 5、1测定浓度范围与仪器得特性有关。 5、2 地下水与地面水中得共存栗子与化合物在常见浓度下不干扰测定。但当钙得浓度高于1000 mg/L时,抑制镉得吸收,浓度为2000mg/L时,信号抑制达19%。铁得含量超过100mg/L时,抑制锌得吸收。当样品中含盐量很高,特征谱线波长又低于350nm时,可能出现非特征吸收。如高浓度得钙因产生背景吸收,使铅得测定结果偏高。 5原理 将样品或消解处理过得样品直接吸入火焰,在火焰中形成得原子对特征电磁辐射产生吸收,将测得得样品吸光度与标准溶液得吸光度进行比较,确定样品中被测元素得浓度。 6仪器 一般实验室仪器与:原子吸收分光光度计及相应得辅助设备,配有乙炔-空气燃烧器;光源选用空心阴极灯或无极放电灯。仪器操作参数可参照厂家得说明进行选择。 注:实验用得玻璃或塑料器皿用洗涤剂洗净后,在硝酸溶液3、6中浸泡,使用前用水冲洗干净。 7步骤 7、1 校准 7.1.1 参照下表1,在100mL容量瓶中,用硝酸溶液3、7稀释中间标准溶液3、9,配制至少4个工作标准溶液,其浓度范围应包括样品中被测元素得浓度。 表1

(完整word版)土壤质量 铜、锌的测定 火焰原子吸收分光光度法

火焰原子吸收分光光度法测定土壤中的铜和锌 一、实验目的: 1.掌握原子吸收分光光度法的基本原理 2.了解原子吸收分光光度计的主要结构及操作方法 3.学会土样的消解及重金属的测定方法。 二、仪器和仪器: 1.仪器:100 mL容量瓶、移液管、玻璃棒、聚四氟乙烯坩埚、电热板 novAA 400原子吸收分光光度计、铜-空心阴极灯、锌-空心阴极灯 2.试剂: (1)盐酸,优级纯; (2)硝酸,优级纯; (3)去离子水;(4)氢氟酸,ρ=1.49g/ml; (6)高氯酸,ρ=1.68 g/ml。 (7)硝酸镧水溶液:称取3g硝酸镧(La(NO3)·6H2O)溶于42ml水中。(没用吧,应去掉) (8)2%(v/v)硝酸溶液:移取20 ml浓硝酸(优级纯)于980 ml去离子水中。 (9)国际标准样品-锌-单元素标准溶液,1000 ug/mL。 (10)国家标准样品-铜-单元素标准溶液,1000 ug/mL。 (11)铜、锌混合标准使用液:分别移取10ml铜和4ml锌单元素标准溶液于 25 mL容量瓶中,用2%的稀硝酸稀至刻度,配制铜、锌混合标准工作液,使 铜、锌浓度分别为100 ug/ml、40 ug/ml,待用。 四、实验原理: 采用盐酸-硝酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素全部进入试液中。然后,将土壤消解液喷入空气-乙炔火焰中。在火焰的高温下,铜、锌化合物离解为基态原子,该基态原子蒸汽对相应的空心阴极灯发生的特征谱线产生选择性吸收。在选择的最佳测定条件下,测定铜、锌的吸光度。 五、操作方法: 1.土壤样品的处理:

将采集的土壤样品(一般不少于500g)倒在塑料薄膜上,晒至半干状态,将土块压碎,除去残根、杂物,铺成薄层,经常翻动,在阴凉处使其慢慢风干。然后用有机玻璃棒或木棒将风干土样碾碎,过2 mm尼龙筛,去掉2 mm以上的砂砾和植物残体。将上述风干细土反复按四分法弃取,最后约留下100 g土样,进一步用研钵磨细,通过100目尼龙筛,装于瓶中(注意在制备过程中不要被沾污)。取20~30 g土样,在105℃下烘4~5 h,恒重。 2.土样的消解: 准确称取0.2—0.5g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入10ml浓盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩3ml左右时,取下稍冷,然后加入5ml浓硝酸,5ml氢氟酸,3ml高氯酸,加盖后于电热板上中温加热。1h后,开盖,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚,当加热至冒浓厚白烟时,加盖,使黑色有机碳化合物分解。待坩埚壁上的黑色有机物消失后,开盖赶高氯酸白烟并蒸至内容物呈粘稠状。视消解情况可再加入3ml浓硝酸,3ml氢氟酸,1ml高氯酸,重复上述消解过程。当白烟再次基本冒尽且坩埚内容物呈粘稠状时,取下稍冷,用水冲洗坩埚盖和内壁,并加入1ml 2%硝酸溶液温热溶解残渣。然后将溶液转移至50ml容量瓶中,冷却后用2%硝酸定容至标线,摇匀,待测。 由于土壤种类较多,所以有机质差异较大,在消解时,要注意观察,各种酸的用量可视消解情况酌情增减。土壤消解液应呈白色或淡黄色(含铁量高的土壤),没有明显的沉积物存在。 注意:电热板温度不宜太高,否则会使聚四氟乙烯坩埚变形。 3.测定步骤: (1)仪器操作条件的设置(计算机操作) 在工作站上设置分析条件参数:如波长(Cu为324.8 nm,Zn为213.9 nm)、狭缝(Zn 1.2 nm、Cu 0.2 nm)、空心阴极灯工作电流(Zn 10 mA、Cu 3 mA)、燃烧头高度(6 mm)、气体压力(乙炔为0.1-0.15 Mpa,空气为0.5 MPa),标样个数(4个)、读数次数(各3次)等等。 (2)绘制工作曲线(铜锌标液浓度及样品含量按这次测定结果记录和处理)在5根50 ml比色管中,从第二个起分别加入铜、锌混合标准工作液0.5 ml,1 ml,2 ml,3 ml,以 2% 的稀硝酸定容至刻度线,摇匀,此时加入的铜标液浓

相关文档
最新文档