时间序列数据相似性与聚合top-k查询算法研究与应用

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

时间序列分析方法及应用7

青海民族大学 毕业论文 论文题目:时间序列分析方法及应用—以青海省GDP 增长为例研究 学生姓名:学号: 指导教师:职称: 院系:数学与统计学院 专业班级:统计学 二○一五年月日

时间序列分析方法及应用——以青海省GDP增长为例研究 摘要: 人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界的目的。而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。从统计学的内容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。大学四年在青海省上学,基于此,对青海省的GDP十分关注。本论文关于对1978年到2014年以来的中国的青海省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的青海省GDP进行较为有效的预测。希望对青海省的发展有所贡献。 关键词: 青海省GDP 时间序列白噪声预测

时间序列相似性度量

讨论一般时间序列相似的度量方式 1、概念: 时间序列的相似性度量是衡量两个时间序列的相似程度的方法。它是时间序列分类、聚类、异常发现等诸多数据挖掘问题的基础;也是时间序列挖掘的核心问题之一。 2、意义: 时间序列式进行序列查询、分类、预测的基本工作,寻求一种好的度量对提高挖掘任务的效率和准确性有着至关重要的意义。 3、影响因素: 两个序列是否相似,主要看它们的变化趋势是否一致。由于时间序列数据的复杂性特点,实际中不可能存在两条完全相同的时间序列,即使相似的时间序列往往也会呈现出各种各样的变化。所以,任何两个序列之间都存在着某种差异,影响这种差异的主要因素有: (1)噪声:现实的大多数时间序列数据都存在噪声,体现在图形上式指数据的曲线不光滑,即存在“毛刺”。 (2)振幅平移:即两条形态相似的时间序列分别绕高低不同的均值波动。(3)振幅伸缩:即两条时间序列的变化趋势相同,但其中一条时间序列在纵轴上似乎被拉伸或者压缩过一样,即两个序列的振幅不同。 (4)时间轴伸缩:是指两条时间序列的波形相似,但其中一条时间序列在时间轴上按比例伸缩。 (5)线性漂移:是指两条时间序列的波动节奏相似,但其中一条时间序列呈现线性递增或递减趋势。 (6)不连续性:是指两条时间序列整体的波动趋势相同,只是在别的时间点或段出现间断。

然而,在实际应用中情况要复杂得多,往往是以上多种因素交织在一起。时间序列的相似性并没有一个客观的定义,具有一定的个人偏好性,也就是说,不同的人或不同的应用场合对各种差异影响的重视程度是不一样的。给定两条时间序列 {}12,,....,n X x x x =和{}12=,,....m Y y y y ,相似性度量的问题就是在各种各样差异因素的影响下,寻求一个合适的相似性度量函数(),Sim X Y ,使得该函数能很好地反映时间序列数据的特点。 4、方法:目前时间序列相似性度量,最常用的有Minkowski 距离和动态时间弯曲。 一、Minkowski 距离 给定两条时间序列{}{}1 212....=....n n X x x x Y y y y =和 它们之间的Minkowski 距离如下: ()11,n p p i i i d X Y x y =??=- ???∑ Minkowski 距离是一种距离度量,因为它满足距离的三个条件: (1) 非负性:()(),0,,,0d X Y X Y d X Y ≥==当且仅当; (2) 对称性:()(),,;d X Y d Y X = (3) 三角不等式:()()(),,,d Y Z d X Y d X Z ≤+ 大多简单的相似性度量是Minkowski 距离及其它的变种,Minkowski 距离的优点是简单、直观且计算复杂度不高,与时间序列的长度成线性关系即序列长度的增加不会造成计算复杂程度的迅速提高。所以当训练集比较大时,Minkowski 距离比其他更有效。但是Minkowski 距离不支持时间序列的线性漂移和时间弯曲,且无法处理不等长的时间序列。

季节性时间序列分析方法

季节性时间序列分析方 法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7) 2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847)

对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除( 或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W 2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有

时间序列相似性度量的研究

《时间序列相似性度量的研究》读书笔记 一、文章主要内容 时间序列的相似性度量是时间序列数据挖掘研究中的一个重要问题,是进行序列查询、分类、预测的一项基础工作。寻求一种好的度量对提高挖掘任务的效率和准确性有着至关重要的意义。目前从事这方面的研究除了少许理论论述外,几乎都采用一种固定的方法,即提出具体要求并提供实验数据。然而,大多数实验方法不是使用范围有限就是侧重点不同。为了提供一个比较全面的实验验证,用INN分类算法进行了大量的时间序列交叉验证实验。重新评估了其中的弹性度量,并使用不同应用领域的28个时间序列数据集进行比较,结果表明,该方法具有更高的准确性。 二、文章重点内容 1、时间序列的相似性度量 时间序列的相似性度量是时间序列数据挖掘研究中的一个重要问题,能反映数据中基本的相似性,这一点为时间序列的相似性检索、分类、预测等尤其可取。因此合理的相似性度量能够提高数据挖掘的有效性和准确性。 目前时间序列相似性度量,最常用的有欧氏距离(ED)和动态时间弯曲(DTW)。其它许多度量及它们的扩展已被广泛引用到文献和用于便利查询处理和时间序列数据挖掘。本文根据降维和压缩的方法定义距离度量。保证约简后的距离小于或等于原数据的真实距离。即满足无漏报原则,就是要求数据表示满足条件:DF(q,s)≤D(q,s),其中:q是查询序列;s是数据集中的任意序列;是约简空间中的两序列距离;D是真实的两序列距离。 2、DTW DTW允许时间序列的延伸或压缩,查找结果要优于ED。而且可采用下界函数加速查找速度。带有动态窗口的时间弯曲s,不仅能提高计算效率而且能提高相似性测量精度。

另一组时间序列的相似性度量是在编辑距离概念的基础上形成的。它的思想是两个序列越相似,则将其中的一个序列通过插入、删除等操作变换成另一个序列所要做的功就越少。它们为时间序列的匹配定义了一系列操作及一个衡量这些操作所需的代价函数,事件序列间的相似距离就可以定义为将一个序列变换为另一个序列所需要操作的代价之和。然后,通过动态变换来计算编辑距离。最好的是LCSS,它利用最长公共子序列模型,适应设置的时间序列匹配字符的概念。阈值参数8已知,如果它们的距离少于£。说明两个时间序列的两个点是匹配的。EDR是基于编辑距离的另一个相似性度量.和LCSS相比,EDR也用了一个阈值参数8,参数的作用是量化一对点0或1之间的距离。EDR根据空白的长度增强数据率.分配两个匹配部分间的差距。ERP距离包括了DTW 和EDR的优点。通过连续变化的参考点计算两个时间序列差距的距离。实质上,如果两个点之间的距离太大,ERP简单使用这些点中的一个和参考点计算之间的距离值。最近,计算编辑距离的一种新方法在文献『9] 4、数据世系分类 按照数据世系包含的数据源类型不同,数据的世系可分为在不同数据源间的数据演化过程和相同数据源内部数据的演化过程,即模式级和实例级数据演化过程。 (1)模式级数据世系:异构数据源间的数据共享问题一直是数据集成的核心问题之一。不同模式的数据源间进行的数据演化过程是数据集成的关键部分,由于不知道数据的具体形式从而无法标注数据项的世系,只能利用模式级数据问的对应关系追踪数据在不同模式间的演化过程。 (2)实例级数据世系:用户通过查询所有可能的映射关系,找到模式级数据的世系,想要获取更细粒度的世系,还需要在某数据源内部考察数据的演化过程,即实例级数据的世系。和模式级数据的世系不同,实例级的数据项可以被显式地表达出来,通过对数据进行标注得到更细粒度的数据世系。 5、数据世系的应用 在科学数据管理、商业应用等领域,特别是在分布式环境下,数据世系的管理获得了一些成果,R. Bose将数据处理过程分为以下几种方式:基于脚本或程序运行的、基于查询的、基于工作流管理系统的和基于服务的方式。 下表是典型的世系研究项目:

时间序列相关算法

时间序列相关算法 面向瓦斯检测数据的时间序列相似搜索算法研究 赵华(西安科技大学硕士论文) 1.3 时间序列相似搜索发展趋势 总结现有的基于时间序列相似搜索的各种变换方法可以得出时间序列相似搜索问题的发展方向及趋势。从最初时间序列相似性点对点的比较,到DFT和DWT 等方法的数据变换,再到时间序列等长分段后处理的方法,再发展到几种方法结合使用。时间序列相似搜索的算法可以是线性变换,如DFT、DWT 等,也可以是非线性变换,甚至可以分段处理,以关键特征代替原始序列。 提出了基于分段多项式表示(PPR, Piecewise Polynomial Representation)的煤矿瓦斯监测数据相似搜索方法和基于二维小波变换的煤矿瓦斯多变量时间序列相似搜索方法 提出了基于分段多项式表示(PPR, Piecewise Polynomial Representation)的煤矿瓦斯监测数据相似搜索方法。 提出了基于二维小波变换的煤矿瓦斯监测数据的多变量时间序列相似搜索算法。将瓦斯多变量时间序列存为数据矩阵形式,采用二维小波变换方法对数据矩阵降维,并用灰度图像把多变量时间序列可视化,再用欧式距离和Eros 距离进行相似性比较,并分别求出它们的查询效率。 (本篇文章是用于瓦斯涌出量的分析,不是危险源头的辨识,但是关于时间序列数据的处理可能有用,相当于缩短搜索时间的方法。) 基于云模型的时间序列相似性度量方法 时间序列的相似性度量就是衡量两条时间序列之间的相似性,是时间序列的查询、分类、预测的基础,广泛应用于时间序列的聚类、分类和分割等研究领域。一种有效的相似性度量能够提高数据挖掘的效率和准确率。 欧氏距离 欧氏距离、动态时间弯曲(伪h翻iciTm。认厄rpign,简称DTW)距离和形态距离是时间序列相似性度量的经典度量方法,这几种方法在在某些方面都有各自的优势,但是它们在应用到实际的时间序列数据挖掘上有其固有的缺陷。本文在基于这些经典的相似性度量方法的基础上结合云模型的方法理论,提出了一种基于云模型的时间序列相似性度量方法。 欧氏距离是时间序列相似性研究中最广泛采用的相似性度量。它的优点是计算简单,容易理解,运行速度快,广泛应用于时间序列的聚类和分类等研究领域。然而欧氏距离测度存在一些局限性,例如对数据在时间轴上的形变缺乏辨识能力和对噪声的鲁棒性不好,对数据中的扭曲现象非常敏感,且要求两个时间序列长度一样,因此应用范围也受到限制。 DT份距离 D伴可以有效的消除欧氏距离的缺陷,支持时间序列的时间轴伸缩,根据最小代价的时间弯曲路径进行对齐匹配,且DT甲距离不要求两个序列的长度一样,序列的值可以是一对多,或多对一,比较灵活。 形态距离 形态距离在很大程度上受到PLR模型表示的影响,若PLR模型对原时间序列的表示存在较大的误差,会引起形态距离度量上的偏差。 云模型

数据分析-时间序列的趋势分析

数据分析-时间序列的趋势分析 无论是网站分析工具、BI报表或者数据的报告,我们很难看到数据以孤立的点单独地出现,通常数据是以序列、分组等形式存在,理由其实很简单,我们没法从单一的数据中发现什么,用于分析的数据必须包含上下文(Context)。数据的上下文就像为每个指标设定了一个或者一些参考系,通过这些参照和比较的过程来分析数据的优劣,就像中学物理上的例子,如果我们不以地面作为参照物,我们无法区分火车是静止的还是行进的,朝北开还是朝南开。 在实际看数据中,我们可能已经在不经意间使用数据的上下文了,趋势分析、比例分析、细分与分布等都是我们在为数据设置合适的参照环境。所以这边通过一个专题——数据的上下文,来总结和整理我们在日常的数据分析中可以使用的数据参考系,前面几篇主要是基于内部基准线(Internal Benchmark)的制定的,后面会涉及外部基准线(External Benchmark)的制定。今天这篇是第一篇,主要介绍基于时间序列的趋势分析,重提下同比和环比,之前在网站新老用户分析这篇文章,已经使用同比和环比举过简单应用的例子。 同比和环比的定义 定义这个东西在这里还是再唠叨几句,因为不了解定义就无法应用,熟悉的朋友可以跳过。 同比:为了消除数据周期性波动的影响,将本周期内的数据与之前周期中相同时间点的数据进行比较。早期的应用是销售业等受季节等影响较严重,为了消除趋势分析中季节性的影响,引入了同比的概念,所以较多地就是当年的季度数据或者月数据与上一年度同期的比较,计算同比增长率。 环比:反应的是数据连续变化的趋势,将本期的数据与上一周期的数据进行对比。最常见的是这个月的数据与上个月数据的比较,计算环比增长率,因为数据都是与之前最近一个周期的数据比较,所以是用于观察数据持续变化的情况。 买二送一,再赠送一个概念——定基比(其实是百度百科里附带的):将所有的数据都与某个基准线的数据进行对比。通常这个基准线是公司或者产品发展的一个里程碑或者重要数据点,将之后的数据与这个基准线进行比较,从而反映公司在跨越这个重要的是基点后的发展状况。 同比和环比的应用环境

时间序列分析

1.1时间序列定义: 时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列. 构成要素:现象所属的时间,反映现象发展水平的指标数值.要素一:时间t;要素二:指标数值。 1.2时间序列的成分: 一个时间序列中往往由几种成分组成,通常假定是四种独立的成分——趋势T、循环C、季节S和不规则I。 T 趋势通常是长期因素影响的结果,如人口总量的变化、方法的变化等。 C任何时间间隔超过一年的,环绕趋势线的上、下波动,都可归结为时间序列的循环成分。S许多时间序列往往显示出在一年内有规则的运动,这通常由季节因素引起,因此称为季节成分。目前,可以称之为“季节性的周期”,年或者季节或者月份。 I时间序列的不规则成分是剩余的因素,它用来说明在分离了趋势、循环和季节成分后,时间序列值的偏差。不规则成分是由那些影响时间序列的短期的、不可预期的和不重复出现的因素引起的。它是随机的、无法预测的。 四个组成部分与观测值的关系可以用乘法模型或者加法模型或者综合。 1.3预测方法的选择与评估 方法P216 三种预测方法:移动平均法、加权移动平均法和指数平滑法。因为每一种方法的都是要“消除”由时间序列的不规则成分所引起的随机波动,所以它们被称为平滑方法。平滑方法对稳定的时间序列——即没有明显的趋势、循环和季节影响的时间序列——是合适的,这时平滑方法很适应时间序列的水平变化。但当有明显的趋势、循环和季节变差时,平滑方法将不能很好地起作用。 移动平均法使用时间序列中最近几个时期数据值的平均数作为下一个时期的预测值。移动平均数的计算公式如下: 指数平滑法模型: 式中Ft+1——t+1期时间序列的预测值; Yt——t期时间序列的实际值; Ft——t期时间序列的预测值; α——平滑常数(0≤α≤1)。 均方误差是常用的(MSE) 标准误差定义为各测量值误差的平方和的平均值的平方根。 设n个测量值的误差为ε1、ε2……εn,则这组测量值的标准误差σ等于:

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

时间序列的特征表示

时间序列特征表示 时间序列特征表示是将原时间序列转换为另一论域中的数据并且起到数据降维的作用;同时,使得在低维空间下的数据能尽可能地反映原时间序列信息。 时间序列特征表示方法归类: (1)数据非自适应方法是指将时间序列转换为另一数据空间,且转换过程和特征系数选择独立于数据本身; A. 分段聚合近似是通过对时间序列进行平均分割并利用分段序列的均值来表示原时间序列的方法。 B. 基于域变换的时间序列表示方法就是将时间序列根据信号处理的方式实现时间域与频率域之间的转换,再利用频率域下的有限个特征数据来近似表示原始序列。离散傅里叶变换和离散小波变换是这种时频变换方法中最具代表性的两种方法,它们具有一定的联系,同时存在较大的区别。 (2)数据自适应方法既依赖于单条时间序列中的局部数据值,又受时间序列数据集中全体数据对象的影响,如奇异值分解方法增加或删除数据集中的任意对象都会影响最终的特征表示结果。 A. 分段线性表示是一种使用线性模型来对时间序列进行分割的方法,根据不同的分割方法可以使用不同的分割策略来实现,如滑动窗口、自底向上和自顶向下。 B. 符号化表示方法是一种将时间序列转换为字符串序列的过程。在时间序列数据挖掘过程中,传统方法主要依赖于定量数据,远远不能满足数据挖掘领域中分析和解决问题的要求。在数据结构和算法设计中,字符串具有特定的数据存储结构以及较为成熟且高效的操作算法。 (3)基于模型的表示方法通过事先假定时间序列数据是由某个模型产生,如回归模型、隐马尔可夫模型和神经网络等,通过构造合适的模型,然后使用模型的参数或系数来实现时间序列的特征表示。其中,多项式回归分析模型是一种能直观有效地对时间序列进行特征表示的方法。 参考《时间序列数据挖掘中特征表示与相似性度量研究综述》

时间序列分析方法第章谱分析完整版

时间序列分析方法第章 谱分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第六章 谱分析 Spectral Analysis 到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为: 我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τ Y 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。 在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为: 上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞ -}{t Y 性质时所发挥的重要程度如何。如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。 § 母体谱 我们首先介绍母体谱,然后讨论它的性质。 6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱: 注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。 利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为: 注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: 利用三角函数的奇偶性,可以得到: 假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数

时间序列分析方法第章预测

第四章 预 测 在本章当中我们讨论预测的一般概念和方法,然后分析利用),(q p ARMA 模型进行预测的问题。 §4.1 预期原理 利用各种条件对某个变量下一个时点或者时间阶段内取值的判断是预测的重要情形。为此,需要了解如何确定预测值和度量预测的精度。 4.1.1 基于条件预期的预测 假设我们可以观察到一组随机变量t X 的样本值,然后利用这些数据预测随机变量1+t Y 的值。特别地,一个最为简单的情形就是利用t Y 的前m 个样本值预测1+t Y ,此时t X 可以描述为: 假设*|1t t Y +表示根据t X 对于1+t Y 做出的预测。那么如何度量预测效果呢?通常情况下,我们利用损失函数来度量预测效果的优劣。假设预测值与真实值之间的偏离作为损失,则简单的二次损失函数可以表示为(该度量也称为预测的均方误差): 定理4.1 使得预测均方误差达到最小的预测是给定t X 时,对1 +t Y 的条件数学期望,即: 证明:假设基于t X 对1+t Y 的任意预测值为: 则此预测的均方误差为: 对上式均方误差进行分解,可以得到: 其中交叉项的数学期望为(利用数学期望的叠代法则): 因此均方误差为: 为了使得均方误差达到最小,则有: 此时最优预测的均方误差为: 211*|1)]|([)(t t t t t X Y E Y E Y MSE +++-= End 我们以后经常使用条件数学期望作为随机变量的预测值。 4.1.2 基于线性投影的预测 由于上述条件数学期望比较难以确定,因此将预测函数的范围限制在线性函数当中,我们考虑下述线性预测: 如此预测的选取是所有预测变量的线性组合,预测的优劣则体现在系数向量的选择上。 定义4.1 如果我们可以求出一个系数向量值α,使得预测误差)(1t t X Y α'-+与t X 不相关: 则称预测t X α'为1+t Y 基于t X 的线性投影。 定理4.2 在所有线性预测当中,线性投影预测具有最小的均方误差。

有关信号卷积的相似性概念

有关信号卷积的相似性概念 02094025 陈亚杰 摘要 本文主要研究的是离散信号的相似性。本文阐述了信号卷积和信号相关的概念,通过比较,可以用信号卷积来判断信号的相关性即本文所说的相似性。本文还利用向量内积投影来说明相似性,最后用matlab 语言对本文提出的相似性进行仿真分析。 1.引言 卷积方法在信号与系统理论中占有重要地位。这里所要讨论的卷积积分是将输入信号分解为众多的冲激响应之和(这里是积分)。在LTI (Linear Time Invariant )系统中的零状态响应是激励与系统的冲击响应的卷积积分。为比较信号与另一延时信号之间的相似程度,需引入相关函数的概念。相关函数是鉴别信号的有力工具,被广泛应用于雷达回波的识别,通信同步信号的识别等领域。本文分四章讨论,第二章将给出所需要的数学工具的说明,并介绍本文方法。第三章给出实验仿真。最后一章是对本文的一个总结。 2.理论 在向量中为了表示两向量的相似性,可以用向量的内积来说明 设存在两个向量,分别为a,b.其在平面为: 两向量的相关性就看夹角的大小,如果两个向量平行说明两个向量最相似。如果两个信号垂直说明两个向量相似性差。用公式表示为:>=<=θ 我们只通过角度判断其相似性,但当角度一定,长度发生变化时他们的相似程度明显不一样,所以我们通过下面的公式计算。 ) ||,|max (|cos ||||)||,|max (|,2222b a b a b a b a R θ=><=

这样我们就可以将两个非零向量的相似程度给表示出来。 因为不存在信号幅度为负值的信号,所以信号的相似性我们定义其在[0,1]间取值,所以 |) ||,|m ax (|cos ||||||)||,|m ax (|,|2222b a b a b a b a R θ=><= 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。一般而言,给定两函数f1(t),f2(t),则积分 为f1(t)和f2(t)的卷积,常表示为 f(t)=f1(t)*f2(t) 而dt t f t f dt t f t f R )()()()()(212112τττ+=-=?? ∞∞-∞∞- dt t f t f dt t f t f R )()()()()(12 1221τττ+=-=??∞∞-∞ ∞- 如果上式两个函数的积分存在,我们将其称为)(1t f 和)(2t f 的互相关函数。 由式可见,互相关函数是两信号之间的时间差τ的函数。其值越大表明这两信号经过时移τ之后的相似程度越大。其离散形式为: )()()()()(212112k f n k f n k f k f n R k k +=-=∑∑∞ ∞-∞∞ - )()()()()(121221k f n k f n k f k f n R k k +=-=∑∑∞∞ -∞∞- 由卷积的性质可知,上式可写为: )(*)()(2112t f t f R =τ, )(*)()(1221t f t f R =τ; )(*)()(2112k f k f n R =, )(*)()(1221k f k f n R =; ()()()()ττ-τ=?∞ ∞-d t f f t f *t f 2121

计量经济学--时间序列数据分析

时间序列数据的计量分析方法 1.时间序列平稳性问题及处理方案 1.1序列平稳性的定义 从平稳时间序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。 平稳时间序列要求所有序列间任何相邻两项之间的相关关系有相同的性质。 1.2不平稳序列的后果 可能两个变量本身不存在关系而仅仅因为有相似的时间趋势而得出它有关系,也就是出现伪回归;破坏回归分析的假设条件,使得回归结果和各种检验结果不可信。 1.3平稳性检验方法:ADF 检验 1.3.1ADF 检验的假设: 辅助回归方程:11t t i t i t i Y Y t Y ραργβμ--==+++?+∑(是否有截距和时间趋势项 在做检验时要做选择) 原假设:H 0:p=0,存在单位根 备择假设:H 1:P<0,不存在单位根 结果识别方法:ADF Test Statistic 值小于显著性水平的临界值,或者P 值小于显著性水平则拒绝原假设并得出结论:所检测序列不存在单位根,即序列是平稳序列。 1.3.2实例 对1978年2008年的中国GDP 数据进行ADF 检验,结果如表一。 表一 ADF 检验结果 Augmented Dickey-Fuller test statistic t-Statistic Prob.* 3.063621 1 Test critical values: 1% level -3.699871 5% level -2.976263 10% level -2.62742 从结果可以看出,ADF 的t 统计量值大于10%显著性水平上的临界值,P 值为1,接受原假设,说明所检测的GDP 数据是不平稳序列。 1.4不平稳序列的处理方法 1.4.1方法 如果所要分析的数据是不平稳序列,可以对序列进行差分使其变成平稳序列,但是这样做的后果是使新得出的数据丧失了许多原序列的特征,我们能从数据中得到的信息会变少,通常差分的次数不能超过两次。 经验表明,存量数据是二阶单整,做二次差分可以使其平稳,流量数据是一阶单整,做一次差分可以使其平稳,增量数据通常就是平稳序列。 1.4.2实例

实验二 序列相似性查询工具的使用

实验二序列相似性搜索软件—BLAST的使用 一、实验目的:掌握序列相似性查询工具—BLAST使用方法和技巧,理解与序列相似性查询相关的几个基本概念。 二、实验原理:BLAST是基本的局部对位排列搜索工具,它通过搜索序列数据库来找出最优的无空位局部对比,从数据库中找出与查询序列的某些子序列相似的子序列。 三、实验器材:计算机,NCBI、EMBL生物信息学数据库的核苷酸序列、BLAST序列相似性搜索软件。 四、实验内容:应用上次或本次实验查找到的不同物种的不同基因组的核苷酸序列,在NCBI数据库中进行核苷酸序列的BLAST相似性搜索。 五、实验步骤: 1、打开NCBI网站的主页,然后点击网页左侧工具栏中的Sequence analysis项,进入到序列分析的主页面。 2、然后点击序列分析工具栏中的BLAST选项,进入相似性搜索的界面,然后选择核苷酸序列搜索软件BLASTn。 3、在进入核苷酸序列相似性搜索的界面后,在界面上Enter Query Sequence后面的方框中输入需要进行相似性搜索的序列,然后点击BLAST检索按钮,就可以进行搜索。 4、在进入搜索结果的界面后,就可以得到搜索结果的可视化图像和搜索得到的相关序列。 六、实验要求:每个组每个同学至少用4条核苷酸序列进行BLAST相似性搜索。将相似性搜索结果中的可视化图像和搜索的相关序列拷贝下来作为实验内容。 七、实验结果: 例1: (物种名、基因名)

实验结果: 1. (冬虫夏草,18S-ITS1-5.8S-ITS2-28S) Legend for links to other resources:UniGene GEO Gene Structure Map Viewer PubChem BioAssay Sequences producing significant alignments: Accession Description Max score Total score Query coverage E value Max ident Links HQ918290.1 Paecilomyces sinensis 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence 11221122 98% 0.0 100%

数据分析时间序列的趋势分析

数据分析时间序列的趋 势分析 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

数据分析-时间序列的趋势分析无论是网站分析工具、BI报表或者数据的报告,我们很难看到数据以孤立的点单独地出现,通常数据是以序列、分组等形式存在,理由其实很简单,我们没法从单一的数据中发现什么,用于分析的数据必须包含上下文(Context)。数据的上下文就像为每个指标设定了一个或者一些参考系,通过这些参照和比较的过程来分析数据的优劣,就像中学物理上的例子,如果我们不以地面作为参照物,我们无法区分火车是静止的还是行进的,朝北开还是朝南开。 在实际看数据中,我们可能已经在不经意间使用数据的上下文了,趋势分析、比例分析、细分与分布等都是我们在为数据设置合适的参照环境。所以这边通过一个专题——数据的上下文,来总结和整理我们在日常的数据分析中可以使用的数据参考系,前面几篇主要是基于内部基准线(Internal Benchmark)的制定的,后面会涉及外部基准线(External Benchmark)的制定。今天这篇是第一篇,主要介绍基于时间序列的趋势分析,重提下同比和环比,之前在网站新老用户分析这篇文章,已经使用同比和环比举过简单应用的例子。 同比和环比的定义 定义这个东西在这里还是再唠叨几句,因为不了解定义就无法应用,熟悉的朋友可以跳过。 同比:为了消除数据周期性波动的影响,将本周期内的数据与之前周期中相同时间点的数据进行比较。早期的应用是销售业等受季节等影响较严重,为了消除趋势分析中季节性的影响,引入了同比的概念,所以较多地就是当年的季度数据或者月数据与上一年度同期的比较,计算同比增长率。

第三章 序列比较

第三章序列比较 序列比较是生物信息学中最基本、最重要的操作,通过序列比对可以发现生物序列中的功能、结构和进化的信息。序列比较的根本任务是:通过比较生物分子序列,发现它们的相似性,找出序列之间共同的区域,同时辨别序列之间的差异。在分子生物学中,DNA或蛋白质的相似性是多方面的,可能是核酸或氨基酸序列的相似,可能是结构的相似,也可能是功能的相似。一个普遍的规律是序列决定结构,结构决定功能。研究序列相似性的目的之一是,通过相似的序列得到相似的结构或相似的功能。这种方法在大多数情况下是成功的,当然,也存在着这样的情况,即两条序列几乎没有相似之处,但分子却折叠成相同的空间形状,并具有相同的功能。这里先不考虑空间结构或功能的相似性,仅研究序列的相似性。研究序列相似性的另一个目的是通过序列的相似性,判别序列之间的同源性,推测序列之间的进化关系。这里,将序列看成由基本字符组成的字符串,无论核酸序列还是蛋白质序列,都是特殊的字符串。本章着重介绍通用的序列比较方法。 序列的相似性 3.1 3.1序列的相似性 序列的相似性可以是定量的数值,也可以是定性的描述。相似度是一个数值,反映两条序列的相似程度。关于两条序列之间的关系,有许多名词,如相同、相似、同源、同功、直向同源、共生同源等。在进行序列比较时经常使用“同源”(homology)和“相似”(similarity)这两个概念,这是两个经常容易被混淆的不同概念。两条序列同源是指它们具有共同的祖先。在这个意义上,无所谓同源的程度,两条序列要么同源,要么不同源。而相似则是有程度的差别,如两条序列的相似程度达到30%或60%。一般来说,相似性很高的两条序列往往具有同源关系。但也有例外,即两条序列的相似性很高,但它们可能并不是同源序列,这两条序列的相似性可能是由随机因素所产生的,这在进化上称为“趋同”(convergence),这样一对序列可称为同功序列。直向同源(orthologous)序列是来自于不同的种属同源序列,而共生同源(paralogous)序列则是来自于同一种属的序列,它是由进化过程中的序列复制而产生的。

太阳黑子数时间序列分析数据

Re:【求助】请问谁有太阳黑子数据 只有1700-1987年的 年份黑子数: 1700 5.0 1701 11.0 1702 16.0 1703 23.0 1704 36.0 1705 58.0 1706 29.0 1707 20.0 1708 10.0 1709 8.0 1710 3.0 1711 0.0 1712 0.0 1713 2.0 1714 11.0 1715 27.0 1716 47.0 1717 63.0 1718 60.0 1719 39.0 1720 28.0 1721 26.0 1722 22.0 1723 11.0 1724 21.0 1725 40.0 1726 78.0 1727 122.0 1728 103.0 1729 73.0 1730 47.0 1731 35.0

1733 5.0 1734 16.0 1735 34.0 1736 70.0 1737 81.0 1738 111.0 1739 101.0 1740 73.0 1741 40.0 1742 20.0 1743 16.0 1744 5.0 1745 11.0 1746 22.0 1747 40.0 1748 60.0 1749 80.9 1750 83.4 1751 47.7 1752 47.8 1753 30.7 1754 12.2 1755 9.6 1756 10.2 1757 32.4 1758 47.6 1759 54.0 1760 62.9 1761 85.9 1762 61.2 1763 45.1 1764 36.4 1765 20.9 1766 11.4 1767 37.8