中考数学九大几何模型标准版

中考数学九大几何模型标准版
中考数学九大几何模型标准版

初中数学九大几何模型

一、手拉手模型----旋转型全等

(1)等边三角形

【条件】:△OAB 和△OCD 均为等边三角形;

【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形

【条件】:△OAB 和△OCD 均为等腰直角三角形;

【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形

【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB

【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED

O

A

B

C D

E

图 1

O

A

B

C D E

图 2

O

A

B

C

D

E

图 1

O

A

C

D

E

图 2

O

A

B

C D

E

O

A

B

C

D E

图 1

图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况

【条件】:CD ∥AB , 将△OCD 旋转至右图的位置

【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况

【条件】:CD ∥AB ,∠AOB=90°

将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③

===OA

OB

OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22

22CD AB B C AD +=+;⑥BD AC 21

S △BCD ?=

三、模型三、对角互补模型 (1)全等型-90°

【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB

【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2

1

S S S =+= 证明提示:

①作垂直,如图2,证明△CDM ≌△CEN

②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21

S S =-

O

B C

O A

C

D

E

O

B C

D

E

O

A C D

A

O B

C

D

E

图 1

A O

B

C

D

E M N 图 2

A O

B

C

D

E

F

图 3

A O B

C

D

E

M

N 图 4

(2)全等型-120°

【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB

【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43

S S S =+=

证明提示:①可参考“全等型-90°”证法一;

②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。

(3)全等型-任意角ɑ

【条件】:①∠AOB=2ɑ,∠DCE=180-2ɑ;②CD=CE ;

【结论】:①OC 平分∠AOB ;②OD+OE=2OC ·cos ɑ; ③αcos αsin OC S S S 2△OCE △OCD △DCE ??=+=

※当∠DCE 的一边交AO 的延长线于D 时(如右下图):

原结论变成:① ; ② ; ③ 。 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。

A

O

B

C

E

F A

O

B

C

E

F

F A

O

B

E

D

C

A

O

B

E

C

D

对角互补模型总结:

①常见初始条件:四边形对角互补,注意两点:四点共圆有直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③注意OC 平分∠AOB 时,

∠CDE=∠CED=∠COA=∠COB 如何引导?

四、模型四:角含半角模型90° (1)角含半角模型90°---1

【条件】:①正方形ABCD ;②∠EAF=45°;

【结论】:①EF=DF+BE ;②△CEF 的周长为正方形ABCD 周长的一半; 也可以这样:

【条件】:①正方形ABCD ;②EF=DF+BE ;

【结论】:①∠EAF=45°;

(2)角含半角模型90°---2

【条件】:①正方形ABCD ;②∠EAF=45°;

【结论】:①EF=DF-BE ;

A

O B

C

D

E A B

D

E

F A

B C

D

E

F

G A

B

C

D

E F A

B

C

D

E F A

B

C

D

E F

【条件】:①Rt △ABC ;②∠DAE=45°;

【结论】:222DE CE BD =+(如图1)

若∠DAE 旋转到△ABC 外部时,结论222DE CE BD =+仍然成立(如图2)

(4)角含半角模型90°变形

【条件】:①正方形ABCD ;②∠EAF=45°;

【结论】:△AHE 为等腰直角三角形; 证明:连接AC (方法不唯一) ∵∠DAC=∠EAF=45°,

∴∠DAH=∠CAE ,又∵∠ACB=∠ADB=45°; ∴△DAH ∽△CAE ,∴

AE

AC

AH DA =

∴△AHE ∽△ADC ,∴△AHE 为等腰直角三角形

模型五:倍长中线类模型 (1)倍长中线类模型---1 【条件】:①矩形ABCD ;②BD=BE ; ③DF=EF ; 【结论】:AF ⊥CF

模型提取:①有平行线AD ∥BE ;②平行线间线段有中点DF=EF ; 可以构造“8”字全等△ADF ≌△HEF 。

A

B

D

A

B

C

D E

F

A B

C

D

E

A

B

C

D

E

F

A

B

C D G

H

F

E

A

B

C

D G

H

F

E

A

B

C

E

F

D

H A

B

E

F

D

H

【条件】:①平行四边形ABCD ;②BC=2AB ;③AM=DM ;④CE ⊥AB ; 【结论】:∠EMD=3∠MEA

辅助线:有平行AB ∥CD ,有中点AM=DM ,延长EM ,构造△AME ≌△DMF ,连接CM 构造 等腰△EMC ,等腰△MCF 。(通过构造8字全等线段数量及位置关系,角的大小转化)

模型六:相似三角形360°旋转模型

(1)相似三角形(等腰直角)360°旋转模型---倍长中线法 【条件】:①△ADE 、△ABC 均为等腰直角三角形;②EF=CF ; 【结论】:①DF=BF ;②DF ⊥BF

辅助线:延长DF 到点G ,使FG=DF ,连接CG 、BG 、BD ,证明△BDG 为等腰直角三角形; 突破点:△ABD ≌△CBG ; 难点:证明∠BAO=∠BCG

(2)相似三角形(等腰直角)360°旋转模型---补全法 【条件】:①△ADE 、△ABC 均为等腰直角三角形;②EF=CF ; 【结论】:①DF=BF ;②DF ⊥BF 辅助线:构造等腰直角△AEG 、△AHC ; 辅助线思路:将DF 与BF 转化到CG 与EF 。

A

D

M

E A

B

C

D M

E F

A

E

B

D

F

C A

E

B

D

F

C

H

G

A

B

D

F

C

A

B

D

F

C

G

(3)任意相似直角三角形360°旋转模型---补全法

【条件】:①△OAB ∽△ODC ;②∠OAB=∠ODC=90°;③BE=CE ; 【结论】:①AE=DE ;②∠AED=2∠ABO

辅助线:延长BA 到G ,使AG=AB ,延长CD 到点H 使DH=CD ,补全△OGB 、△OCH 构造旋转模型。转化AE 与DE 到CG 与BH ,难点在转化∠AED 。

(4)任意相似直角三角形360°旋转模型---倍长法

【条件】:①△OAB ∽△ODC ;②∠OAB=∠ODC=90°;③BE=CE ; 【结论】:①AE=DE ;②∠AED=2∠ABO

辅助线:延长DE 至M ,使ME=DE ,将结论的两个条件转化为证明△AMD ∽△ABO ,此为难点, 将△AMD ∽△ABC 继续转化为证明△ABM ∽△AOD ,使用两边成比例且夹角相等,此处难点在

证明∠ABM=∠AOD

模型七:最短路程模型

(1)最短路程模型一(将军饮马类)

总结:右四图为常见的轴对称类最短路程问题, 最后都转化到:“两点之间,线段最短:解决; 特点:①动点在直线上;②起点,终点固定

O

A B

D

C

E

O

A

B

D

C

E

G

H

O

A

B D

C

E

O

A B

D

C

E

M

l

(2)最短路程模型二(点到直线类1)

【条件】:①OC 平分∠AOB ;②M 为OB 上一定点;③P 为OC 上一动点;④Q 为OB 上一动点; 【问题】:求MP+PQ 最小时,P 、Q 的位置?

辅助线:将作Q 关于OC 对称点Q ’,转化PQ ’=PQ ,过点M 作MH ⊥OA ,

则MP+PQ=MP+PQ ’≥MH(垂线段最短)

(3)最短路程模型二(点到直线类2) 【条件】:A(0,4),B(-2,0),P(0,n ) 【问题】:n 为何值时,PA 5

5

PB +

最小? 求解方法:①x 轴上取C(2,0),使sin

OAC=

5

5

;②过B 作BD ⊥AC ,交y 轴于点E ,即为所求;③tan ∠EBO=tan ∠OAC=2

1

,即E (0,1)

l 2

A

A'

P

Q

B

B'

l

l 1l 2

PA+PQ+BQ

A

P

O

Q

M

B

Q'

H

P

A

(4)最短路程模型三(旋转类最值模型)

【条件】:①线段OA=4,OB=2;②OB 绕点O 在平面内360°旋转; 【问题】:AB 的最大值,最小值分别为多少?

【结论】:以点O 为圆心,OB 为半径作圆,如图所示,将问题转化为

“三角形两边之和大于第三边,两边之差小于第三边”

。 最大值:OA+OB ;最小值:OA-OB

【条件】:①线段OA=4,OB=2;②以点O 为圆心,OB ,OC 为半径作圆; ③点P 是两圆所组成圆环内部(含边界)一点;

【结论】:若PA 的最大值为10,则OC= 6 ;若PA 的最小值为1,则OC= 3 ; 若PA 的最小值为2,则PC 的取值范围是 0

【条件】:①Rt △OBC ,∠OBC=30°;

②OC=2;③OA=1;④点P 为BC 上动点(可与端点重合); ⑤△OBC

绕点O 旋转

【结论】:PA 最大值为OA+OB=321+;PA

的最小值为13OA OB 2

1

-==

如下图,圆的最小半径为O 到BC

垂线段长。

O

A

B

最小值位置

最大值位置

B

C

模型八:二倍角模型

【条件】:在△ABC 中,∠B=2∠C ;

辅助线:以BC 的垂直平分线为对称轴,作点A 的对称点A ’,连接AA ’、BA ’、CA ’、 则BA=AA ’=CA ’(注意这个结论)

此种辅助线作法是二倍角三角形常见的辅助线作法之一,不是唯一作法。

模型九:相似三角形模型 (1)相似三角形模型--基本型 平行类:DE ∥BC ;

A 字型 8字型 A 字型 结论:BC

DE

AC AE AB AD =

=(注意对应边要对应)

(2)相似三角形模型---斜交型 【条件】:如右图,∠AED=∠ACB=90°; 【结论】:AE ×AB=AC ×AD

【条件】:如右图,∠ACE=∠ABC ; 【结论】:AC 2

=AE ×AB

第四个图还存在射影定理:AE ×EC=BC ×AC ;BC 2

=BE ×BA ;CE 2

=AE ×BE ;

A B C A

B C

A'

A

B

C

D

E

A

D

E

B

C

A

D

E

C

A

B

C

D

E

A

B

C

D

E

斜交型

斜交型

A

B

C

E

A

B

C

E

斜交型

双垂型

(3)相似三角形模型---一线三等角型

【条件】:(1)图:∠ABC=∠ACE=∠CDE=90°;

(2)图:∠ABC=∠ACE=∠CDE=60°;

(3)图:∠ABC=∠ACE=∠CDE=45°;【结论】:①△ABC∽△CDE;②AB×DE=BC×CD;一线三等角模型也经常用来建立方程或函数关系。

(4)相似三角形模型---圆幂定理型

【条件】:(2)图:PA为圆的切线;

【结论】:(1)图:PA×PB=PC×PD;

(2)图:PA2=PC×PB;

(3)图:PA×PB=PC×PD;

以上结论均可以通过相似三角形进行证明。A

B D

E

图(1)

A

B C

E

图(2)

A

B C D

E

图(3)

图(1)

A P

C B

图(2)

P B

图(3)

中考数学常见几何模型简介教学总结

初中几何常见模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形)

模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。(3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③.

?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导?

初中数学9大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED O D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2 O A B C D E O C D E 图 1 图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEA=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BE=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 2 1 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- O C O C D E O B C D E O C D A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

初中数学几何经典模型

初中数学几何模型 中点模型 【模型1】倍长 1、倍长中线;2、倍长类中线;3、中点遇平行延长相交 E D A B C F D A B C E 【模型2】遇多个中点,构造中位线 1、直接连接中点;2、连对角线取中点再相连 【例1】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE. (1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长; (2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的关系,写出你的猜想;并给予证明; (3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗写出你的猜想,并给予证明. 图3 图2 图1 G F D C G F D C G F D C A B E E B A E B A 【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF 于H.求证:∠BGE=∠CHE. H G E F A B D C

E A B C O D E A B C O D B O A C 角平分线模型 【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形 【例4】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为. H G F E A D B C 手拉手模型 【条件】OA OB OC OD AOB COD ==∠=∠ ,, 【结论】OAC OBD ?;AEB OAB COD ∠=∠=∠(即都是旋转角);OE AED ∠ 平分; - 【例5】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为. 【例6】如图,ABC中,90 BAC? ∠=,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE,AG⊥BE 于F,交BC于点G,求DFG ∠ G F D C B A E

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析(完美版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中几何常见九大模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②; ③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③

?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导? 模型四:角含半角模型90° (1)角含半角模型90°-1 ?条件:①正方形;②; ?结论:①;②的周长为正方形周长的一半; 也可以这样: ?条件:①正方形;② ?结论:

中考数学 几何模型汇编

中点模型 【模型1】倍长 1、倍长中线; 2、倍长类中线; 3、中点遇平行线延长相交 A B C D E A B C D E F E D C B A 【模型2】遇多个中点,构造中位线 1、直接连接中点; 2、连对角线取中点再相连 G A B C D E F A B C D E 【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长; (2)如图2,当点F 在AB 的延长线上时,线段GE 、GC 有怎样的数量和位置关系,写出你的猜想,并给予证明; (3)如图3,当点F 在CB 的延长线上时,(2)问中的关系还成立吗?写出你的猜想,并给予证明. 图3 图2图1 A C D E F G D E F G C D E G A B B F C B A 【解答】 (1)延长EG 交CD 于点H 易证明△CHG ≌△CEG ,则GE = 注意G 的两端点D 、E 所在的直线DC ∥FE

F A (2)延长CG 交AB 于点I , 易证明△BCE ≌△FIE ,则△CEI 是等边三角形,GE =3GC ,且GE ⊥GC A F (3) E J 【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,∠DAE =∠BAF . (1)求证:CE =CF ; (2)若∠ABC =120°,点G 是线段AF 的中点,连接DG 、EG ,求证:DG ⊥EG . G F E D C B A 【解答】 (1)证明△ABE ≌△ADF 即可; (2)延长DG 与AB 相交于点H ,连接HE ,证明△HBE ≌△EFD 即可 为什么是证明△BCE ≌△FIE 你理解吗? 你能写出解题思路和过程吗? 类似的为什么要延长CG 呢,可以延长EG 吗?

初中数学九大几何模型

初中数学九大几何模型 、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△ OAB^H A OCD均为等边三角 形; D AED 【结论】:①厶OA3A OBD②/ AEB=60 :③OE平分/ 【条件】:△ OAB^H A OCD均为等腰直角三角 形; 【结论】:①厶OA3A OBD②/ AEB=90 :③OE平分/ AED E D

【结论】:①右图中△ OC3A OAB>n A OAS A OBD ②延长AC交BD于点E,必有/ BECN BOA ③ AC OD tan/OCD④BD±AC ⑤连接AD BC,必有AD2 BC2 AB 2 三、模型三、对角互补模型 (1)全等型-90 ° 【条件】:①/ AOB=/ DCE=90 :②0C平分/ AOB 【结论】:①CD=CE②OD+OE= 2 OC③S^DCE S A OCD s CD :⑥ S^BCD 证明提示: ①作垂直,如图2,证明△ CDM^A CEN ②过点C作CF丄OC 如图3,证明△FEC ※当/ DCE的一边交AO的延长线于D时(如图4): 以上三个结论:①CD=CE ② OE-OD=''2 OC ③ S A OCE S A OCD

(2) 全等型-120 【条件】:①/ AOB=N DCE=120 :②。。平分/ AOB :3 【结论】:① CD=CE ②OD+OE=OC ③ S^CE S ^OCD S ^OCE — OC 2 4 证明提示:①可参考“全等型 -90。”证法一; ②如右下图:在 OB 上取一点F ,使OF=OC 证明△ OCF 为等边三角形。 【条件】:①/ AOB=2i,/DCE=18O-2a;②CD=CE 【结论】:①OC 平分/ AOB ②OD+OE=2OCcos a; ③ S A DCE S A OCD S A OCE OC sin a cos a ※当/ DCE 的一边交AO 的延长线于 D 时(如右下图): 原结论变成:① ______________________________________________________ ② ________________________________________________________ ; ③ ________________________________________________________ 。 (3)全等型-任意角a 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 A D

初中数学几何必杀技八大模型(pdf)

如果您喜欢这份文档,欢迎下载! 精品文档,名师推荐! 初中几何必杀技一一八大模型 MH)手拉手模型一旋转型全等 1.等边三角形 条件:如图1,AOAB,△OCD均为等边三角形. 结论:①左OAC^AOBD;②ZAEB= 60°;③EO平分匕AED. 2.等腰直角三角形 条件:如图2.AOAB,△OCD均为等腰直角三角形. 结论:①左QAC丝△OBD ;②ZAEB= 90°;③EO平分/AED. 3.任意等腰三角形 条件:如图3,AQAB,AOCD均为等腰三角形,OA=OB,OC=OD,ZAOB=ZCOD. 结论:①左OAC^/\OBD;② ZAEB=ZAOB;③ EO 平分/AED. 模型二)手拉手模型一旋转型相似 1.一般情况 条件:如图4,CD//AB,将△OCD旋转至右图位置. 结论:右图中①左OCDw AOAB, AOACco AOBD;②延长AC交BD于点E,必有ZBEC=ZBOA. 2.特殊情况 条件:如图5,CD//AB,ZAOB=90°,将△OCD旋转至右图位置. 结论:右图中①左OCD GO AOAB, AOACco AOBD,②连接AC,BD交于点E,必有ZBEC=ZBOA;?|^ = ^ = ^ = tanZOCD;@BD±AC;⑤连接 AD,BC,必有AD2 +BC2=AB2+CD2;⑥S mABCD = yACX BD(对角线互相垂直的四边形). 对角互补模型 1.全等型一90° 条件:如图6①,①ZAOB = ZDCE= 90°;②OC平分ZAOB. 结论:?CD=CE;② OD+OE=7^OC;③=扌8气 证明提示: ①过点C作CM丄OA于点M,CN丄OB于点N,如图②,证明△ CDM^ △ CEN; ②过点C作CF丄。C,如图③,证明△ ODC^AFEC. 当ZECD的一边交A。的延长线于点D时,如图④, 结论:(DCD=CE(不变);②OE— OD=72OC;③ S ACCE—S A0CD =yOC2. 以上结论证明方法与前一种一致,可自行尝试. A 图4 图6

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?】 ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?` ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③; ④; ' ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②;③ ?证明提示: ①作垂直,如图,证明; - ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?<

?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等 边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?' ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导 ? 模型四:角含半角模型90°

中考数学几何五大模型

一、等积变换模型 ⑴等底等高的两个三角形面积相等; 其它常见的面积相等的情况 ⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。 如上图12::S S a b = ⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。 ⑷正方形的面积等于对角线长度平方的一半; ⑸三角形面积等于与它等底等高的平行四边形面积的一半; 二、鸟头定理(共角定理)模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。 如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上, 五大模型

E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =??△△ 图1 图2 三、蝴蝶定理模型 任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 梯形中比例关系(“梯形蝴蝶定理”) ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。 四、相似模型 相似三角形性质: 金字塔模型 沙漏模型

初中数学九大几何模型-初中几何九大模型-初中九大几何模型

初中数学九大几何模型 结论】:①△OAC≌△OBD;②∠AEB=60°;③OE 平分∠AED 条件】:△OAB 和△OCD 均为等腰直角三角形; 结论】:①△OAC≌△OBD;②∠AEB=90°;③OE 平分∠AED 3)顶角相等的两任意等腰三角形 条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 结论】:①△OAC≌△OBD; ②∠AEB=∠AOB; ③OE 平分∠AED C 条件】:△OAB 和△OCD 均为等边三角形; 一、手拉手模型 -- 旋转型全等 B 图 1 D C

二、模型二:手拉手模型--- 旋转型相似 (1)一般情况【条件】:CD∥AB,将 △OCD 旋转至右图的位置 ②延长 AC交 BD 于点E,必有∠BEC=∠BOA; ③BD= OD= OB=tan∠OCD;④BD⊥AC;AC OC OA 2 ⑤连接AD、BC,必有AD2+ BC2= AB2+CD2;⑥S 三、模型三、对角互补模型 1)全等型-90° 结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD; 结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD; O O △BCD 条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB B

2)全等型-120° 条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB 结论】:①CD=CE;②OD+OE=OC;③S△DCE = S△OCD + S△OCE = 3OC2 证明提示:①可参考“全等型-90°”证法一; ②如右下图:在OB上取一点F,使OF=OC,证明△OCF为等边三角形。 3)全等型-任意角ɑ 条件】:①∠AOB=2ɑ,∠DCE=180-2ɑ;②CD=CE; 结论】:①OC 平分∠AOB;②OD+OE=2OC·cosɑ; ③S△DCE = S△OCD + S△OCE =OC2sinαcosα ※当∠DCE 的一边交 AO的延长线于 D 时(如右下图):原结论变成:①

初中数学经典几何模型

初中数学几何模型 【模型1】倍长 1、 倍长中线; 2、倍长类中线; 3、中点遇平行延长相交 E D A B C F D A B C E ---------------------------------------------------------------------------------------------------------------------- 【模型2】遇多个中点,构造中位线 1、 直接连接中点; 2、连对角线取中点再相连 【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长; (2)如图2,当点F 在AB 的延长线上时,线段GC 、GE 有怎样的数量和位置关系,写出你的猜想;并给予证明; (3)如图3,当点F 在CB 的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明. 图3 图2图1G F D C G F D C G F D C A B E E B A E B A 中点模型

【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF于H.求证:∠BGE=∠CHE. H G E F A B D C 【模型1】构造轴对称 【模型2】角平分线遇平行构造等腰三角形 ---------------------------------------------------------------------------------------------------------------------- 角平分线模型

最新中考数学必会几何模型

目录 将军饮马模型 (3) 模型1:直线与两定点 (3) 模型2/角与定点 (10) 模型3两定点一定长 (15) 第十二章辅助圆 (20) 模型1 共端点,等线段模型 (20) 模型2 直角三角形共斜边模型 (23) 半角模型 (32) 模型实例 (33) 8字模型与飞镖模型 (50) 模型1:角的8字模型 (50) 模型2:角的飞镖模型 (54) 模型3 边的“8”字模型 (57) 模型4 边的飞镖模型 (58) 中点四大模型 (63) 模型1 倍长中线或类中线(与中点有关的线段)构造全等三角形 (63) 模型2 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”. (66) 模型3 已知三角形一边的中点,可考虑中位线定理 (71) 模型4 已知直角三角形斜边中点,可以考虑构造斜边中线 (78) 二次函数 (85) 圆中的辅助线 (91) 模型1 连半径构造等腰三角形 (91) 模型2 构造直角三角形 (94) 模型3 与圆的切线有关的辅助线 (100) 相似模型 (111) 模型1:A、8模型 (111) 模型2 共边共角型 (116) 模型3 一线三等角型 (121) 模型4 倒数型 (127) 模型5 与圆有关的简单相似 (132) 模型6 相似和旋转 (136) 1.2空间几何体的三视图和直观图 (145)

1.3 空间几何体的表面积与体积 (145) 手拉手模型 (147) 模型手拉手 (147) 三垂直全等模型 (158) 模型三垂直全等模型 (158) 蚂蚁行程 (170) 模型立体图形展开的最短路径 (170) 截长补短辅助线模型 (180) 模型:截长补短 (180) 角平分线四大模型 (192) 模型1 角平分线的点向两边作垂线 (192) 模型2 截取构造对称全等 (194) 模型3 角平分线+垂线构造等腰三角形 (198) 模型4 角平分线+平行线 (200)

初中数学九大几何模型

初中数学九大几何模型 Prepared on 24 November 2020

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED 二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A B C D E 图 2 O A B C D E O C D E 图 1图 2O C O C D E O B C D E O C D

③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- (2)全等型-120° 【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43 S S S =+= 证明提示:①可参考“全等型-90°”证法一; ②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。 (3)全等型-任意角ɑ 【条件】:①∠AOB=2ɑ,∠DCE=180-2ɑ;②CD=CE ; 【结论】:①OC 平分∠AOB ;②OD+OE=2OC ·cos ɑ; ③α cos αsin OC S S S 2△OCE △OCD △DCE ??=+= ※当∠DCE 的一边交AO 的延长线于D 时(如右下图): 原结论变成:①; ②; ③。 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4 A

初中数学常用几何模型及构造方法大全之欧阳歌谷创编

初中数学常用几何模型及构造方法 大全, 欧阳歌谷(2021.02.01) 掌握它轻松搞定压轴题! 几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握哦~ 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 对称全等模型 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段

自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 自旋转模型 构造方法: 遇60度旋60度,造等边三角形; 遇90度旋90度,造等腰直角; 遇等腰旋顶点,造旋转全等; 遇中点旋180度,造中心对称.共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。 模型变形 说明: 模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。 中点旋转:

(完整版)初中数学九大几何模型

初中数学九大几何模型 O D E C A B AED D O E C B A B O C E C AED D 图 2 图 2 、手拉手模型 - 旋转型全等 D E ③OE 平分∠ AED 图 2 图 1 O A B D O A O ②∠ AEB=∠AOB ; 且∠ COD=∠AOB 1)等边三角形 3)顶角相等的两任意等腰三角形 2)等腰直角三角形 图 1 图 1 C 结论】:①△ OAC ≌△ OBD ; C 条件】:△ OAB 和△ OCD 均为等边三角形 条件】:△ OAB 和△ OCD 均为等腰直角三角形 条件】:△ OAB 和△ OCD 均为等腰三角形 结论】:①△ OAC ≌△ OBD ;②∠ AEB=60°;③ OE 平分∠ 结论】:①△ OAC ≌△ OBD ;②∠ AEB=90°;③ OE 平分∠

、模型二:手拉手模型 -- 旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△ OCD 旋转至右图的位置 O O D E A A 结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ; ②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA 2)特殊情况 条件】:CD ∥ AB ,∠ AOB=90° 将△ OCD 旋转至右图的位置 A 结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ; ②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA ; ③ A BD C O O C D O O A B tan ∠OCD ;④BD ⊥AC ; ⑤连接 AD 、BC ,必有 AD 2 BC 2 AB 2 三、模型三、对角互补模型 1)全等型 -90 ° 条件】:①∠ AOB=∠ DCE=90°;② OC 平 分∠ AOB 结论】:① CD=CE ;② OD+OE= 2 OC ;③ S △DCE CD ;⑥ S △BCD 证明提示: ①作垂直,如图 2,证明△ CDM ≌△ CEN ②过点 C 作 CF ⊥ OC , 如图 3,证明△ ODC ≌△ FEC ※当∠ DCE 的一边交 AO 的延长线于 D 时(如图 4): S △OCD S 以上三个结论: ① CD=CE ;② OE-OD= 2 OC ; ③ S △ OCE S △ OCD

中考数学几何模型2:共顶点模型

中考数学几何模型2:共顶点模型 名师点睛 拨开云雾 开门见山 共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点 (2)列出两组相等的边或者对应成比例的边 (3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。 两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论: 连接BD 、AE 交于点F ,连接CF ,则有以下结论: (1)BCD ACE ?△△ (2)AE BD = (3)AFB DFE ∠=∠ (4)FC BFE ∠平分 典题探究 启迪思维 探究重点 例题1. 以点A 为顶点作等腰Rt △ABC ,等腰Rt △ADE ,其中∠BAC =∠DAE =90°,如图1所示放置,使 得一直角边重合,连接BD 、CE . (1)试判断BD 、CE 的数量关系,并说明理由; (2)延长BD 交CE 于点F 试求∠BFC 的度数; (3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.

变式练习>>> 1. 已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°. (1)求证:BD=AE. (2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积. 例题2. 如图,等边△ABC,等边△ADE,等边△DBF分别有公共顶点A,D,且△ADE,△DBF都在 △ADB内,求证:CD与EF互相平分. 变式练习>>> 2. 已如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.

(word完整版)2018年初中数学突破中考压轴题几何模型之中点模型教案

中点模型 授课日期时间 主题中点模型 教学内容 学习过中位线之后,你能否总结一下,目前我们学习了哪些定理或性质与中点有关? 直角三角形中点你想到了什么,等腰三角形中点你想到了什么,一般三角形中点你又想到了什么?1. 直角三角形斜边中线定理: 如图,在Rt ABC ?中,90 ACB ∠=?,D为AB中点,则有: 1 2 CD AD BD AB ===。 C B A D 2. 三线合一: 在ABC ?中:(1)AC BC =;(2)CD平分ACB ∠;(3)AD BD =,(4)CD AB ⊥. “知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出余下两条。 D A B C 3. 中位线定理:如图,在ABC ?中,若AD BD =,AE CE =,则// DE BC且 1 2 DE BC =。 E D A B C 4. 中线倍长(倍长中线): 如图(左图),在ABC ?中,D为BC中点,延长AD到E使DE AD =,联结BE,则有:ADC ?≌EDB ?。

作用:转移线段和角。 A B C E D D M C B A 例1:如图所示,已知D为BC中点,点A在DE上,且CE AB=,求证:CED BAD∠ = ∠. A D B C E 提示:用倍长中线法,借助等腰三角形和全等三角形证明 试一试:如图,已知在ABC ?中,AD是BC边上的中线,E是AD上一点,且AC BE=,延长BE 交AC于F,求证:EF AF=。 F E D B C A 证明:延长DE至点G,使得ED=DG,联结CG 类比倍长中线易得:△BDE≌△CDG 所以∠BED=∠DGC,BE=CG 因为BE=AC,所以AC=GC 所以∠EAC=∠DGC, 因为∠BED=AEF G F E D B C A

初中数学:常见的几何模型汇总(高清图片版)

初中常见几何模型汇总 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 对称全等模型 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段

自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 自旋转模型 构造方法: 遇60度旋60度,造等边三角形 遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等 遇中点旋180度,造中心对称

共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。 模型变换

说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。 中点旋转:

说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。 几何最终模型 对称最值(两点间线段最短)

中考数学必会几何模型:8字模型与飞镖模型

8字模型与飞镖模型 模型1:角的8字模型 如图所示,AC 、BD 相交于点O ,连接AD 、BC . 结论:∠A +∠D =∠B +∠C . O D C B A 模型分析 证法一: ∵∠AOB 是△AOD 的外角,∴∠A +∠D =∠AOB .∵∠AOB 是△BOC 的外角, ∴∠B +∠C =∠AOB .∴∠A +∠D =∠B +∠C . 证法二: ∵∠A +∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C +∠BOC =180°, ∴∠B +∠C =180°-∠BOC .又∵∠AOD =∠BOC ,∴∠A +∠D =∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到. 模型实例 观察下列图形,计算角度: (1)如图①,∠A +∠B +∠C +∠D +∠E =________; 图图① F D C B A E E B C D A 图③ 2 1O A B 图④ G F 12 A B E 解法一:利用角的8字模型.如图③,连接CD .∵∠BOC 是△BOE 的外角, ∴∠B +∠E =∠BOC .∵∠BOC 是△COD 的外角,∴∠1+∠2=∠BOC . ∴∠B +∠E =∠1+∠2.(角的8字模型),∴∠A +∠B +∠ACE +∠ADB +∠E =∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠ADC =180°. 解法二:如图④,利用三角形外角和定理.∵∠1是△FCE 的外角,∴∠1=∠C +∠E . ∵∠2是△GBD 的外角,∴∠2=∠B +∠D . ∴∠A +∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°. (2)如图②,∠A +∠B +∠C +∠D +∠E +∠F =________.

初中数学几何公式大全和九大几何模型

初中数学几何公式和九大几何模型 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理四边形的内角和等于360°

相关文档
最新文档