上海大学数值方法报告

上海大学数值方法报告
上海大学数值方法报告

2013-2014学年冬季学期

数值方法实验报告

组别第X组

学号1212XXX

姓名XXXX

指导老师XXXX

完成日期201X.XXX

实验一

一、题目

P31

1.根据习题12和习题13构造算法和MATLAB 程序,以便精确计算所有情况下的二次方程的根,包括ac b b 42-≈的情况。

2.参照例1.25,对下列3个序列求序列∞

=???

???1

21n n ,请计算出前10个数值近似值。

构造类似表1.4、表1.5以及图1.8至图1.10的输出。

(a) 994.00=r ;12

1

-=n n r r ,初始误差为0.00 2其中n=1,2,…

(b) 10=q ,497.01=q ,212

5

---=n n n q q q ,初始误差为0.003,其中n=2,3,…

二、代码

第一题:

第二题:

三、结果1、

2、

四、总结

本次作业的目的在于熟悉我们对Matlab基本的操作。第一题是对if…else…

的应用。第二题是画图和格式输出。

实验二

一、题目

P40

1. 使用程序

2.1求解下面每个函数的不动点(尽可能多)近似值,答案精确到小数点后12位。同时,构造每个函数和直线y=x 来显示所有不动点。 (a ) 223)(235+--=x x x x g

(b ) ))cos(sin()(x x g = (c ) )15.0()(2+-=x in x x g (d )

)cos()(x x x x g -=

P49

3. 修改程序2.2和程序2.3,使得输出分别类似于表2.1和表2.2的矩阵(即矩阵的第一行应当为[0 0a 0c 0b )(0c f ] )

二、代码

第一题:此题包含了文件fixpt.m 、plotfixpt.m 、sqrtm.m 、main1.m fixpt.m

plotfixpt.m

sqrtm.m

main1.m

function main

figure(1)

hold off

grid on

axis([-2 2.5 -2 2.5]);

axis square

hold on

g=inline('x.^5-3*x.^3-2*x.^2+2');

x=[-2:0.01:2.5];

plot(x,g(x),'r');

plot(x,x,'g');

f1=inline('sqrtm(3*x.^3+2*x.^2+x-2,5)');

plot(x,f1(x),'b');

f2=inline('sqrtm((x.^5-2*x.^2-x+2)/3,3)');

plot(x,f2(x),'c');

f3=inline('sqrt((x.^5-3*x.^3-x+2)./2)');

plot(x,f3(x),'m');

text(-0.9,-0.9,'y=x');

text(-0.4,2.1,'g(x)=x^5-3x^3-2*x^2+2');

text(-1.3,-1.6,'f1(x)=(3x^3+2x^2+x-2)^0^/^5');

text(-0.9,0.3,'f2(x)=((x^5-2x^2-x+2)/3)^1^/^3');

text(-1,1.6,'f3(x)=((x^5-3x^3-x+2)/2)^1^/^2');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure(2)

hold off

grid on

axis([-2 2.5 -2 2.5]);

axis square

hold on

[k,p,err,P]=plotfixpt(f1,0.9,0.00001,100,'k');

[k,p,err,P]=plotfixpt(f1,0.6,0.00001,100,'k');

plot(x,g(x),'r');

plot(x,x,'g');

plot(x,f1(x),'b');

text(-0.9,-0.9,'y=x');

text(-0.4,2.1,'g(x)=x^5-3x^3-2*x^2+2');

text(-1.3,-1.6,'f1(x)=(3x^3+2x^2+x-2)^0^/^5');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure(3)

hold off

grid on

axis([-2 2.5 -2 2.5]);

axis square

hold on

[k,p,err,P]=plotfixpt(f2,-1,0.00001,100,'k');

plot(x,g(x),'r');

plot(x,x,'g');

plot(x,f2(x),'c');

text(-0.9,-0.9,'y=x');

text(-0.4,2.1,'g(x)=x^5-3x^3-2*x^2+2');

text(-0.9,0.3,'f2(x)=((x^5-2x^2-x+2)/3)^1^/^3');

main2

function main

figure(1)

hold off

grid on

axis([0 2 0 2]);

axis square

hold on

g=inline('cos(sin(x))');

x=[0:0.01:2];

plot(x,g(x),'r');

plot(x,x,'g');

[k,p,err,P]=plotfixpt(g,1.5,0.00001,100,'k');

第二题

function main

g=inline('x.*sin(x)-1');

[c,err,a,b,yc]=bisect(g,0,2,0.0000001);

fprintf(' x sin(x)-1=0\n');

fprintf('--------------------------------------------------------------------------------\n');

fprintf(' k | ak | ck | bk | f(ck) \n');

fprintf('---|------------------|------------------|-------------------|-------------------\n');

maxk=length(yc);

for k=1:maxk

fprintf('%2d | %13.8f | %13.8f | %13.8f | %13.8f

\n',k-1,a(k),c(k),b(k),yc(k));

end

fprintf('---|------------------|------------------|-------------------|-------------------\n');

%

g=inline('x.*sin(x)-1');

[c,err,a,b,yc]=regula(g,0,2,0.0000001,0.0000001,30);

fprintf(' x sin(x)-1=0\n');

fprintf('--------------------------------------------------------------------------------\n');

fprintf(' k | ak | ck | bk | f(ck) \n');

fprintf('---|------------------|------------------|-------------------|-------------------\n'); maxk=length(yc);

for k=1:maxk

fprintf('%2d | %13.8f | %13.8f | %13.8f | %13.8f

\n',k-1,a(k),c(k),b(k),yc(k));

end

fprintf('---|------------------|------------------|-------------------|-------------------\n');

三、结果

第一题:

第二题:

四、总结

本次实验是解方程。第一题是通过迭代法求不动点。第二题是通过二分法(试值法或试位法)求值。本次实验的难点在于多个函数的调用。

实验三

一、题目

P69 第4题

二、代码

function [p0,err,k,y]=newton(A,p0,delta,epsilon,max1)

for k=1:max1

% p1=p0-feval(f,p0)/feval(df,p0);

p1=(2*p0+A/p0/p0)/3; % 把有导数的迭代公式直接换成求导后的公式err = abs(p1-p0);

relerr = 2*err/(abs(p1)+delta);

p0=p1;

%% y= feval(f,p0);

y= p0.^3-A;

if (err

break

end

end

function main

p0=2;

delta=0.0001;

epsilon=0.0001;

max1=20;

A=7;

[p0,err,k,y]=newton(A,p0,delta,epsilon,max1);

fprintf('%f的三次根的值=%.5f\n',A,p0);

p0=6;

delta=0.0001;

epsilon=0.0001;

max1=20;

A=200;

[p0,err,k,y]=newton(A,p0,delta,epsilon,max1);

fprintf('%f的三次根的值=%.5f\n',A,p0);

p0=-2;

delta=0.0001;

epsilon=0.0001;

max1=20;

A=-7;

[p0,err,k,y]=newton(A,p0,delta,epsilon,max1); fprintf('%f的三次根的值=%.5f\n',A,p0);

三、结果

7.000000的三次根的值=1.91294

200.000000的三次根的值=5.84804

-7.000000的三次根的值=-1.91294

四、总结

这题应用的是牛顿—拉夫森迭代公式!

实验四

一、题目

1.93页1题。

2.97页1题。

3.108页1题。

二、代码

第一题:

function main

P=[ 0,0,0;

0,0,1;

0,1,0;

0,1,1;

1,0,0;

1,0,1;

1,1,0;

1,1,1];

P=P';

figure(1)

subplot(1,3,1)

DispCube(P);

subplot(1,3,2)

P=Ry(P,pi/6)

DispCube(P);

subplot(1,3,3)

P=Rz(P,pi/4)

DispCube(P);

End

function DispCube(P)

L1=P(:,[1,2,4,3,1,5,6,8,7,5]); L2=P(:,[2,6]);

L3=P(:,[4,8]);

L4=P(:,[3,7]);

hold off

axis square

plot3(L1(1,:),L1(2,:),L1(3,:)); hold on

plot3(L2(1,:),L2(2,:),L2(3,:)); plot3(L3(1,:),L3(2,:),L3(3,:)); plot3(L4(1,:),L4(2,:),L4(3,:));

axis([-1,2,-1,2,-1,2]);

plot3([0,1.5],[0,0],[0,0],'k'); plot3([0,0],[0,1.5],[0,0],'k'); plot3([0,0],[0,0],[0,1.5],'k'); end

function result = Rx(P,a)

cosa=cos(a);

sina=sin(a);

R=[ 1, 0, 0;

0, cosa, -sina;

0, sina, cosa

];

result = R*P;

end

function result = Ry(P,a)

cosa=cos(a);

sina=sin(a);

R=[ cosa, 0, sina;

0, 1, 0;

-sina, 0, cosa

];

result = R*P;

end

function result = Rz(P,a)

cosa=cos(a);

sina=sin(a);

R=[ cosa, -sina, 0;

sina, cosa, 0;

0, 0, 1

];

result = R*P;

end

第二题:

第三题:

三、结果

第一题:

四、总结

本次实验做的是对线性方程组求解。

实验五

一、题目

120页第一题,第四题(C)

129页第二题

二、代码

第一题:function X=lufact(A,B)

[N N]=size(A);

X=zeros(N,1);

Y=zeros(N,1);

C=zeros(1,N);

R=1:N;

for p=1:N-1

[max1,j]=max(abs(A(p:N,p)));

C=A(p,:);

A(p,:)=A(j+p-1,:);

A(j+p-1,:)=C;

d=R(p);

R(p)=R(j+p-1);

R(j+p-1)=d;

if A(p,p)==0

'A was sinfular. No unique solution'

break

end

for k=p+1:N

mult=A(k,p)/A(p,p);

A(k,p)=mult;

A(k,p+1:N)=A(k,p+1:N)-mult*A(p,p+1:N);

end

end

% Solve for Y

Y(1)=B(R(1));

for k=2:N

Y(k)=B(R(k))-A(k,1:k-1)*Y(1:k-1);

end

% Solve for X

X(N)=Y(N)/A(N,N);

for k=N-1:-1:1

X(k)=(Y(k)-A(k,k+1:N)*X(k+1:N))/A(k,k); end

第二题:

三、结果

第一题:

四、总结

这次实验应用带选主元的分解法。

实验六

一、题目

171页第一题.

202页第一题

二、代码

第一题:

function [C,L]=lagran(X,Y)

w=length(X);

n=w-1;

L=zeros(w,w);

%Form the Lagrange coeddicient polynomials

for k=1:n+1

V=1;

for j=1:n+1

if k~=j

V=conv(V,[1,-X(j)])/(X(k)-X(j));

end

end

L(k,:)=V;

end

%Determine the coefficients of the Lagrange interpolating polynomial

C=Y*L;

function main

X=1:6;

Y=[66 66 65 64 63 63];

[C,L]=lagran(X,Y);

fprintf('Lagran多项式的系数矩阵=\n');

disp(L);

fprintf('多项式系数向量=\n');

disp(C);

addpath('..\P160(4.2.2.1)(多项式计算算法)');

D=fliplr(C); % 翻转向量

aver = (integration(D,6,0)-integration(D,1,0))/5; % 计算从1到6的定积分fprintf('估计在这5个小时内的平均温度=%.4f\n',aver);

x=linspace(1,6,60);

《计算方法》课内实验报告

《计算方法》实验报告 姓名: 班级: 学号: 实验日期: 2011年10月26日

一、实验题目: 数值积分 二、实验目的: 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解数值积分的基础理论。 3.进一步掌握应用不同的数值积分方法求解给定的积分并给出数据结果及误差分析。 三、实验内容: 1.分别用复合梯形求积公式及复合辛普森求积公式计算积分xdx x ln 10 ? , 要求计算精度达到410-,给出计算结果并比较两种方法的计算节点数. 2.用龙贝格求积方法计算积分dx x x ?+3 021,使误差不超过510-. 3.用3=n 的高斯-勒让德公式计算积分?3 1 sin x e x ,给出计算结果. 4.用辛普森公式(取2==M N ) 计算二重积分.5 .00 5 .00 dydx e x y ? ? - 四、实验结果: 1.(1)复合梯形法: 将区间[a,b]划分为n 等份,分点n k n a b h kh a x k ,2,1,0,,=-=+=在每个区间[1,+k k x x ](k=0,1,2,···n-1)上采用梯形公式,则得 )()]()([2)()(1 11 1 f R x f x f h dx x f dx x f I n n k k k b a n k x x k k ++===∑?∑? -=+-=+ 故)]()(2)([21 1 b f x f a f h T n k k n ++=∑-=称为复合梯形公式 计算步长和划分的区间 Eps=1E-4 h1=sqrt(Eps/abs(-(1-0)/12*1/(2+1))) h1 =0.0600 N1=ceil(1/h1) N1 =17 用复合梯形需要计算17个结点。 复合梯形: function T=trap(f,a,b,n) h=(b-a)/n;

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

上海大学数学研究分析历年考研真题

上海大学数学分析历年考研真题

————————————————————————————————作者:————————————————————————————————日期:

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +L ,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且 [] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>? =??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim ();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1)t t t t ≤?=? +>? (3) 已知( ) 21 1arctan 2tan 1sin 2 x x ' ??=??+??,求积分2011sin I dx x π=+?.

c 计算器实验报告

简单计算器 姓名: 周吉祥 实验目的:模仿日常生活中所用的计算器,自行设计一个简单的计算器程序,实现简单的计算功能。 实验内容: (1)体系设计: 程序是一个简单的计算器,能正确输入数据,能实现加、减、乘、除等算术运算,运算结果能正确显示,可以清楚数据等。 (2)设计思路: 1)先在Visual C++ 6.0中建立一个MFC工程文件,名为 calculator. 2)在对话框中添加适当的编辑框、按钮、静态文件、复选框和单 选框 3)设计按钮,并修改其相应的ID与Caption. 4)选择和设置各控件的单击鼠标事件。 5)为编辑框添加double类型的关联变量m_edit1. 6)在calculatorDlg.h中添加math.h头文件,然后添加public成 员。 7)打开calculatorDlg.cpp文件,在构造函数中,进行成员初始 化和完善各控件的响应函数代码。 (3)程序清单:

●添加的public成员: double tempvalue; //存储中间变量 double result; //存储显示结果的值 int sort; //判断后面是何种运算:1.加法2.减法3. 乘法 4.除法 int append; //判断后面是否添加数字 ●成员初始化: CCalculatorDlg::CCalculatorDlg(CWnd* pParent /*=NULL*/) : CDialog(CCalculatorDlg::IDD, pParent) { //{{AFX_DATA_INIT(CCalculatorDlg) m_edit1 = 0.0; //}}AFX_DATA_INIT // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); tempvalue=0; result=0; sort=0; append=0; }

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学 实验名称数值il?算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一. 各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程 *对于非线性方程,若已知根的一个近似值,将在处展开成一阶 xxfx ()0, fx ()xkk 泰勒公式 "f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2! 忽略高次项,有 ,fxfxfxxx 0 ()()(),,, kkk 右端是直线方程,用这个直线方程来近似非线性方程。将非线性方程的 **根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkk fx 0 fx 0 0,

解出 fX 0 *k XX,, k' fx 0 k 水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ik fx ()k 八XX, Ikk* fx()k 这就是牛顿迭代公式。 ,2,计算机程序框图:,见, ,3,输入变量、输出变量说明: X输入变量:迭代初值,迭代精度,迭代最大次数,\0 输出变量:当前迭代次数,当前迭代值xkl ,4,具体算例及求解结果: 2/16 华北电力大学实验报吿 开始 读入 l>k /fx()0?,0 fx 0 Oxx,,01* fx ()0 XX,,,?10 kk, ,1,kN, ?xx, 10 输出迭代输出X输出奇异标志1失败标志

,3,输入变量、输出变量说明: 结束 例:导出计算的牛顿迭代公式,并il ?算。(课本P39例2-16) 115cc (0), 求解结果: 10. 750000 10.723837 10. 723805 10. 723805 2、列主元素消去法求解线性方程组,1,算法原理: 高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角 3/16 华北电力大学实验报告方程组求解。 列选主元是当高斯消元到第步时,从列的以下(包括)的各元素中选出绝 aakkkkkk 对值最大的,然后通过行交换将其交换到的位置上。交换系数矩阵中的 两行(包括常ekk 数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结 ,2,计算机程序框图:,见下页, 输入变量:系数矩阵元素,常向量元素baiji 输出变量:解向量元素bbb,,12n

上海大学历年考研真题

2003年传播学理论考研试题 一、解释(3*10=30分) 1.劝服论 2.舆论 3.传播媒介 4.内向传播 5.维模原理 6.知晓权 7.近体 8.沉默的螺旋 9.文化规范论 10.多视觉新闻学 二、简答(5*12=60) 1.传播学包括哪些基本内容? 2.简介传播学4位奠基人的主要理论贡献与论著 3.冷媒介与热媒介 4.简述梁启超的新闻传播思想 5.提高宣传效果应注意的问题 三、论述(60分) 1.联系实际,辨证分析传播的功能(40分) 2.多网络传播的特点及与传统媒体的关系(20分)

2003年传播学研究方法考研试题 一、名词解释(4*10) 1.定量研究 2.经验社会学 3.连续变量 4.抽样 5.名目尺度 6.多因素设计 7.个案研究 8.抽样误差 9.信度 10.相关分析 二、简答题(60分) 1.实地访问的重要类型 2.内容分析的方**原则 3.实验的控制主要应把握的两个方面 三、论述题(50分) 问卷的结构分析 2004年试题 R检验 描述性统计分析 定量

简单随机抽样 内容分析 经济传播 信息污染 文化分层 议程设置 铅版 定量与定性的区别和联系(论述)上大05年传播学理论试题 一、名词解释 1.莱温 2.传播者 3.媒介情景非真实化 4.内向传播 5.新闻 6.文化传播的“维模”原理 7.知晓权 8.集权主义理论 9.申报 二、简答题 1.结构功能理论 2.宣伟伯模式

3.议程设计理论 三、论述题 1.麦克鲁汉的媒介理论 2.陈独秀的新闻思想 2005年传播学研究方法 一、名词解释(8*5) 1.信度、效度 2.内容分析 3.分层抽样 4.个案研究 5.控制实验 6.R检验 7.假设 8.答案的穷尽性 二、简答题(4*15) 1.问卷设计中常见的错误有哪些? 2.定量研究方法的具体步骤并图示 3.科学的研究设计包括哪几项? 4.问题设计的原则 三、论传播学研究的交叉性(50)

计算方法实验报告格式

计算方法实验报告格式 小组名称: 组长姓名(班号): 小组成员姓名(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一个完整的实验,应包括数据准备、理论基础、实验内容及方法,最终对实验结果进行分析,以达到对理论知识的感性认识,进一步加深对相关算法的理解,数值实验以实验报告形式完成,实验报告格式如下: 一、实验名称 实验者可根据报告形式需要适当写出. 二、实验目的及要求 首先要求做实验者明确,为什么要做某个实验,实验目的是什么,做完该实验应达到什么结果,在实验过程中的注意事项,实验方法对结果的影响也可以以实验目的的形式列出. 三、算法描述(实验原理与基础理论) 数值实验本身就是为了加深对基础理论及方法的理解而设置的,所以要求将实验涉及到的理论基础,算法原理详尽列出. 四、实验内容 实验内容主要包括实验的实施方案、步骤、实验数据准备、实验的算法以及可能用到的仪器设备. 五、程序流程图 画出程序实现过程的流程图,以便更好的对程序执行的过程有清楚的认识,在程序调试过程中更容易发现问题. 六、实验结果 实验结果应包括实验的原始数据、中间结果及实验的最终结果,复杂的结果可以用表格

形式列出,较为简单的结果可以与实验结果分析合并出现. 七、实验结果分析 实验结果分析包括对对算法的理解与分析、改进与建议. 数值实验报告范例 为了更好地做好数值实验并写出规范的数值实验报告,下面给出一简单范例供读者参考. 数值实验报告 小组名称: 小组成员(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一、实验名称 误差传播与算法稳定性. 二、实验目的 1.理解数值计算稳定性的概念. 2.了解数值计算方法的必要性. 3.体会数值计算的收敛性与收敛速度. 三、实验内容 计算dx x x I n n ? += 1 10 ,1,2,,10n = . 四、算法描述 由 dx x x I n n ? += 1 10 ,知 dx x x I n n ?+=--101110,则

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

上海大学-离散数学2-图部分试题

离散数学图论部分综合练习 一、单项选择题 1.设无向图G 的邻接矩阵为 ??????? ? ??? ?? ???010 1010010000 011100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2 E B .deg(V )=E C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . ο ο ο ο ο c a b e d ο f 图一 图二

A.{(a, e)}是割边B.{(a, e)}是边割集 C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集 图三 7.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ). 图四 A.(a)是强连通的B.(b)是强连通的 C.(c)是强连通的D.(d)是强连通的 应该填写:D 8.设完全图K n 有n个结点(n≥2),m条边,当()时,K n 中存在欧拉 回路. A.m为奇数B.n为偶数C.n为奇数D.m为偶数9.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ). A.e-v+2 B.v+e-2 C.e-v-2 D.e+v+2 10.无向图G存在欧拉通路,当且仅当( ). A.G中所有结点的度数全为偶数 B.G中至多有两个奇数度结点 C.G连通且所有结点的度数全为偶数 D.G连通且至多有两个奇数度结点 11.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树. A.1 m n-+B.m n-C.1 m n++D.1 n m -+ 12.无向简单图G是棵树,当且仅当( ). A.G连通且边数比结点数少1 B.G连通且结点数比边数少1

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

数值计算实验报告

2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:安元龙 学号:2012060501 成绩:

数值计算方法与算法实验报告 学期: 2014 至___2015 第 1 学期 2014年 10月26日课程名称:__数值计算方法与算法 __ 专业:信息与计算科学 12级5班实验编号: 1实验项目Neton插值多项式指导教师__孙峪怀姓名:安元龙学号: 2012060501 实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页) 1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)/(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp/*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)*/ Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. #include #define MAX_N 20 typedef struct tagPOINT { double x; double y; }POINT; int main() { int n; int i,j; POINT points[MAX_N+1];double diff[MAX_N+1]; double x,tmp,newton=0;

上海大学2009年数学分析考研试题

上海大学2009年度研究生入学考试题 数学分析 1. 1222lim 0,lim 0n n n n a a na a n →∞→∞++== 求 2.叙述一致连续定义。问()22cos cos g x x x =+是否是周期函数?证之 3. ()f x 在[)1,+∞可导,()()() 22111,f f x x f x ′==+且证()lim x f x →+∞存在且极限小于14π + 41 2 0sin ,x I dx x = ∫误差<0.0005 5.()()(0,)13,,0, f x C f x y ∈+∞ = >当()()()111,xy y x f t dt x f t dt y f t dt =+∫∫∫()f x 求 6. ()f x 在[],a b 可积. ()[][]0,,,b a f x dx a b αβ≠ ?∫是否存在,[](),f x αβ 使上为恒正或者恒负。证之 7. }{()1lim 01n n n n n n x x x ∞→+∞== ?∑在的条件下,试问收敛吗?证之 8. ()f x 在[)1,+∞单减连续可微,()lim 0,x f x →+∞ = ()()1lim 0x xf x dx xf x +∞→∞ =∫证明:当收敛,则 9.证明: ()1,2n n f x x n = =,,…在[)0,1非一致收敛,但()()[)S 1,20,1n n g x x x n = =,,…在上一致收敛,其中()S x 在[)0,1上连续且()S 1=0 10()[]01f x C ∈ ,,证明:()()()10lim 11n x n x f x dx f →+∞+=∫ 11a>>>任取一点做切平面,求该切平面截三坐标轴所得三线段长度之和 13.中心在原点的2222221Ax By Cz Dxy Eyz Fxz +++++=的长半轴l 是下行列式的最大

数值分析实验报告

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p Λ 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a Λ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a Λ 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots +

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

上海大学_王培康_数值分析大作业

数值分析大作业(2013年5月) 金洋洋(12721512),机自系 1.下列各数都是经过四舍五入得到的近似值,试分别指出它 们的绝对误差限, 相对误差限和有效数字的位数。 X1 =5.420, x 2 =0.5420, x 3=0.00542, x 4 =6000, x 5=50.610? 解:根据定义:如果*x 的绝对误差限 不超过x 的某个数位的半个单位,则从*x 的首位非零数字到该位都是有效数字。 显然根据四舍五入原则得到的近视值,全部都是有效数字。 因而在这里有:n1=4, n2=4, n3=3, n4=4, n5=1 (n 表示x 有效数字的位数) 对x1:有a1=5, m1=1 (其中a1表示x 的首位非零数字,m1表示x1的整数位数) 所以有绝对误差限 143 11 (1)101022 x ε--≤ ?=? 相对误差限 31() 0.510(1)0.00923%5.4201 r x x x εε-?= == 对x2:有a2=5, m2=0 所以有绝对误差限 044 11 (2)101022 x ε--≤ ?=? 相对误差限 42() 0.510(2)0.00923%0.54202 r x x x εε-?= == 对x3:有a3=5, m3=-2 所以有绝对误差限 235 11 (3)101022 x ε---≤ ?=? 相对误差限 53() 0.510(3)0.0923%0.005423 r x x x εε-?= == 对x4:有a4=0, m4=4 所以有绝对误差限 4411(4)1022 x ε-≤?= 相对误差限 4() 0.5 (4)0.0083%6000 4 r x x x εε= = = 对x5:有a5=6, m5=5 所以有绝对误差限 514 11(5)101022 x ε-≤ ?=? 相对误差限 45() 0.510(5)8.3%600005 r x x x εε?= ==

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且 [] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>? =??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1)t t t t ≤? =? +> ? (3) 已知) 211sin x x ' ?=?+?,求积分2011sin I dx x π=+?.

数据分析实验报告

数据分析实验报告 【最新资料,WORD文档,可编辑修改】 第一次试验报告 习题1.3 1建立数据集,定义变量并输入数据并保存。 2数据的描述,包括求均值、方差、中位数等统计量。 分析—描述统计—频率,选择如下: 输出:

方差1031026.918399673.8384536136.444百分位数25304.25239.75596.25 50727.50530.501499.50 751893.501197.004136.75 3画直方图,茎叶图,QQ图。(全国居民) 分析—描述统计—探索,选择如下: 输出: 全国居民Stem-and-Leaf Plot Frequency Stem & Leaf 9.00 0 . 122223344 5.00 0 . 56788 2.00 1 . 03 1.00 1 . 7 1.00 2 . 3 3.00 2 . 689

1.00 3 . 1 Stem width: 1000 Each leaf: 1 case(s) 分析—描述统计—QQ图,选择如下: 输出: 习题1.1 4数据正态性的检验:K—S检验,W检验数据: 取显着性水平为0.05 分析—描述统计—探索,选择如下:(1)K—S检验 单样本Kolmogorov-Smirnov 检验 身高N60正态参数a,,b均值139.00

标准差7.064 最极端差别绝对值.089 正.045 负-.089 Kolmogorov-Smirnov Z.686 渐近显着性(双侧).735 a. 检验分布为正态分布。 b. 根据数据计算得到。 结果:p=0.735 大于0.05 接受原假设,即数据来自正太总体。(2)W检验

相关文档
最新文档