用ATX改的数显直流可调电源

用ATX改的数显直流可调电源
用ATX改的数显直流可调电源

用ATX改的数显直流可调电源0-25V.0-12A的可调输出此主题相关图片如下:图1.jpg

此主题相关图片如下:图2.jpg

电阻:

10K*4个***

47K*3个***(因为不好找我用的是贴片式的)

2.2K*1个***

620欧姆*1个(最还是可调的,通过调节R35可改变输出电压的上限)***

500欧姆/3瓦(这是“负载电阻”不好找的话.可不要或用原有的电阻)

0.01欧姆/5瓦**** 必须是0.01欧姆的如果不是可以用其他串并联成0.01欧姆如果实在没办法找到0.01 欧姆需要从新计算阻值如果R38变动的话其他电阻也需要变化如R32 R39 R40

可调电阻:

1K *** 最好采用精密多圈可调电阻

10K *** 最好采用精密多圈可调电阻

电容:

电解电容:

50V3300uF*1个

50V1uF

瓷片电容:

103*2 (图中的0.01uF)***

104*2 (图中的0.1uF)***

3段半数显电压表和电流表各一只.电流大于5A时需要接分流器.解法见图2

***星号代表重要

电阻电容可以是拆机的或者是新的没有标称是几瓦的可以用1/16的也可以最好用1/4瓦1/8瓦的R33和C41最好用原有的原件.它们决定了IC的频率

改装装原理

1、先找到TL494集成电路的第一脚。

2、找几个5K--50K的不同阻值的电阻(视不同的开关电源)备用.

3、从以上备用的电阻中找一个30K左右的电阻,焊到TL494的第一脚和…地?(7脚)之间。

4、将一个电压表调到直流电压档,接到电源输出的“黄”线和“黑”线间,等会儿将用它测输出电压(开关电源改造前这儿的电压应为12V)。

5、将电源插头插上。

再找一根细导线,将电源输出排线(接电脑主板的那个插头)上的“蓝”线和“黑”线短接(使开关电源工作)。

6、观察电压表电压,这时应比改造以前略大(略大于12V),若输出电压升高得不是很明显或还不到13.8V,再逐渐减小刚才加到TL494第一脚和地之间的那个电阻,直到电压表上的电压指示出13.8V为止。当然,如果第一次焊上电阻后,电压超过了13.8V,这时就要逐渐增大这个电阻,使之降到13.8V为止。(我的开关电源这个电阻取了15K时为13.9V,不同的开关电源这个电阻是取得不一样的,要多拿几个电阻从大到小去试。当然也可以用一个电位器来调,但这时要注意电位器不要调得太小了。)

原理:TL494第一脚是开关电源输出电压的取样端,当这个脚对地加上一个电阻后,取样电压就下降了,低于了平衡点。这样,开关源就会输出一个比之前更高的电压,使得TL494第一脚刚才降低的电压重新恢复到平衡点,最后稳定下来,输出比12V更高一点的电压。

注意:1、开关电源内部很多地方都是高压,打开通电操作时一定要特别小心!

2、加上去的这个电阻一定要从大到小去调(一般都在几K以上),这个电阻过小时,开关电源就要过压保护(一般电压超过14.5V左右电源就保护了),这时电源反而无电压输出了。

我用这种方法改了几个电脑电源了,作为V段机和U段机的电源性能是相当好的,对机器没有一点干扰。性价比也是很高的!输出电流在7A--10A,比花过上百元钱拿变压器做个电源划得来。我们这边到电脑城只花20元就可以弄回一个这样的二手电源。

PS:改制时最好把+5V的取样电路切断,否则带负载会有些不稳。

FQA:5v取样由哪几个元件构成,断开哪一个?

顺着1脚找出去,一般会有接三个电阻,其中一个接地,一个接+5、一个接+12,把接+5的电阻拆下,或切断相应的铜铂就行了。

另,电压升高后,风扇超速运转,不仅声音大,而且影响风扇寿命,我把风扇负极接到+3.3V处,这样风扇声音就小多了。

不断开+5V也照样稳定。

因为取样电路是取自开关电源输出端的,一个开关变压器有几个副绕组,开关变压器在频率相同的情况下各

个副线圈的输出都是稳定的(除非开关变压器不稳定),各个副绕组的电压若经过一定的方式(串、并联等)组合后也应该是得到某一个稳定的电压。

原电路是从+5V和+12V分别有一个电阻接到TL494第一脚,还有一个电阻从TL494第一脚入地。既然+5V和+12V这两路的输出都是稳定的,那么它们的电压经一定的方式组合后也应该是稳定的,而再将这个稳定的电压提供给TL494第一脚进行取样,那么开关电源的输出照样也是稳定的。

断开了+5V那路电源或断开接到+5V的电阻后,原12V那路输出电压会稍高于之前的电压。

当然,如果你实在还不放心也可以断开+5V。最简单的办法就是找到开关电源输出端的滤波线圈,用斜口钳把滤波线圈上的那根最粗的漆包线剪了就行了(最粗的漆包线是+3.3V的输出,但一般是和+5V串联的,所以剪了,+5V也会没有输出了)。

开关电源为什么能稳压呢?因为:

12v和5v输出各有一个电阻连接到494的一脚(取样脚),还有一个电阻从取样脚连接到地。电源工作时经过电阻分压,取样脚就会有一个电压值(也就是接地电阻两端的电压了),这就是“比较电压”。当电源带负载时输出电压就会下降(当然,只是有这个趋势,要不然还能叫稳压电源啊?以下同),取样脚的电压也就跟着下降了,比较器(也就是494)发现电压低于“比较电压”,于是发出指令让开关的占空比增大,脉冲宽了,经过滤波出来的电压也就高了,取样脚的电压跟着上升,直到达到“比较电压”,这时调整结束。你看到的就是电源电流增大了,而电压纹丝不动。

为什么改造时建议断开5v取样电阻呢?

因为:

我们只用12V而不用5V。如果不断开,那么当12V(也就是13.8V)输出因为带负载电压下降,比较器控制增大开关脉冲占空比,努力使12V电压正常,而这个操作同样提高了5V输出的电压。这时5V的取样电压又要比较器减小开关脉冲占空比已达到降低5V输出的目的。矛盾就在这里产生了,于是比较器只能兼顾两者而取一个折中的方案:适当增大开关脉冲占空比,但这样12V输出在电流增大的情况下就没有12V了。你看到的就是12V输出电压下降了,而5V电压上升了。这个用电压表是可以量出来的。

为什么又不建议剪断5V变压器的漆包线呢?因为:

有些开关电源的比较器和一部分部件是靠5V电源工作的,你连他们的工作供电都不给,那么电源只好选择罢工了。好在这种类型的电源并不多见。

数字式可调稳压电源

数字式可调稳压电源 【摘要】电源的数字化控制是人们追求的目标之一,人们对它的要求也越来越高,数控直流稳压电源能给人带来很大的方便,为我们工作、科研,生活、提供更好的,更方便的服务。通过此系统的设计,让开发者更深刻的掌握单片机基本原理,并熟悉一些外围电路的扩展,以及进一步的了解C语言的硬件编程能力。 【关键词】单片机;直流稳压;数模转换 一、数字式可调稳压电源原理介绍 1.方案分析与选择 方案一:数控部分用单片机带动数模转换芯片提供线性稳压电压的参考电压。 优点:对于单片机,系统工作在开环状态,对数模转换的精度要求较高,设计成本低。 缺点:功耗较大,LED数码管输出显示不是系统的精确输出电压,须对它进行软件补偿。 方案二:数控部分用A VR单片机的PWM组成开关电源,再利用A VR的AD转换对输出电压进行实时转换,利用软件进行电压调整以达到稳压。 优点:硬件简单,稳压的大部分工作由软件完成,对单片机的运行速度要求很高,利用手头的ATmaga16L单片机最高8MHz工作频率很难达到速度要求。对软件要求较高,功耗小。 缺点:输出纹波电压较大,对软件的要求很高。 方案二简单的电路结构起初对设计者很吸引,但是后来了解到A VR单片机的PWM的精度用于开关电源比较勉强,而且开关电源有个通病:纹波电压大,考虑到设计目标对电源的功耗要求不是很严,同时为了保证纹波足够小也鉴于自身对于51单片机和线性电源较为熟练,故选择方案一。 2.总体设计原理 本设计采用AT89S52单片机作为整机的控制单元,利用4×4键盘输入数字量,通过控制单元输出数字信号,再经过D/A转换器(DA0832)输出模拟量,最后经过运算放大器隔离放大,控制输出功率管的基极,随着输出功率管的基极电压的变化,间接地改变输出电压的大小。

4-12V可调直流稳压电源资料

4-12V可调直流稳压电源设计 学生:xxx 指导教师:xxx 摘要:稳压电源在实际工程中是一种用途广泛的电子设备。本系统以串联型稳压电路为核心,用ARM Cortex-M3 32位LM3S8962为主控制器,通过调节电位器来调节稳压源的输出电压,再通过运算放大电路隔离采样,由LCD显示输出电压值和输出电流值。本系统还兼顾到了实时监控,具有过压保护功能,排除过压故障后,电源能自动恢复为正常状态。实际测试结果表明,本设计具有优良的精度、稳定性和动态响应,并结合精确的软件控制,实现了电源测量的快速和准确。通过测试,系统能够正常工作,输出电压0~12V,产生的绝对误差均在0~0.1V范围内,能够达到较高精度。 关键词:AC-DC变换稳压电源高效 Cortex-M3

Design For 4-12V Adjustable Step DC Stabilized Voltage Power Abstract:Stabilized Voltage source in a practical project is a widely used electronic equipment. The Designing for the Series Stabilization Circuit to the core, with the ARM Cortex-M3 32 bit LM3S8962-based controller, by adjusting the Potentiometer wave constant Voltage source output current, and through Operational amplifier circuit isolation sampling,LCD display current value and the actual output Voltage value. Also takes into account the real-time monitoring, with over-voltage protection function, eliminate over-voltage fault, the power supply can automatically restore the normal state. Test results show that the design of the completion of a basic part of good and play some of the requirements. Adjustable Step DC Stabilized Voltage Power with excellent precision, stability and dynamic response, and combined with precise software control, realize the power of the rapid and accurate measurement. Through the test, we find the system can work properly, the output voltage in the range of 0~20V and the absolute error in the range of 0 ~ 0.1V, which means the system can achieve higher accuracy. Keywords:AC-DC conversion Stabilized Voltage Power efficient Cortex-M3

使用可调电源修笔记本

笔记本电脑起动过程和如何根据电流表指针判断故障 当按下电源开关,如供电系统正常(和5V和CPU供电正常输出),电源芯片就会产生出PG(电源好)信号分别送往南北桥和CPU。当南桥接收到PG信号后,就会产生出两路时钟控制信号PCISTOP和CPUSTOP送往时钟电路,时钟电路产生出的时钟信号,其中一路PCI时钟送往南桥,当南桥收到接到时钟信号后,就会产生出两路复位信号:PCIREST(信号复位)和DRVREST(设备复位)去复位主板上的各部分电路,其中一路PCIREST去复位北桥,当北板收到复位信号后,就会产生出CPUREST去复位CPU,当CPU收到复位信号后(这时CPU供电,时钟复位条件都具备了),标志着这台机器的硬起动过程已经完成,接下来将进行软起动。 CPU执行POST指令的过程: 1:检测一二级缓存和南北桥的完整性 2:检测640K基本内存是否完好 3:检测显卡,查找显卡的BIOS,并调用它们的初始化相关设备 4:查找其它设备的BIOS,并调用它们的初始化代码,初始化相关设备。 5:查找完其它设备的BIOS后,系统BIOS将显示自己的启动画面,并开始检测扩展内存并赋予相应地址。 6:检测一些标准设备,包括硬盘,光驱,串口,并口,软驱等。 7:标准设备检测完后,系统内部的支持即插即用代码将开始检测和配置系统中的即插即用设备,并为这些设备分配中断地址,DMA通道和I/O端口等资源。 8:所有硬件检测完后,并都分配了中断地址,也就是所有的硬件建立起了一个硬件系统,这时将生成一个“ESCD”文件(是系统BIOS用来与操作系统交换硬件配置信息的一种手段,这些数据存在CMOS中),CPU会把生成的ESCD和上次的ESCD进行比较,发现差别时,会更新ESCD中的数据。 9:ESCD更新后,CPU也就把POST和中断服务程序执行完毕,接着将进行系统的自举程序。 使用可调电源如何判断机器故障 1:插上可调电源,电流表指针可能出现以下变化: a:电流表指针无任何变化:主供电无输出,查待机和保护隔离电路,适配器接口 b:电流表指针摆到1A左右就不停地左右摆动:主供电电容漏电 c:电流表指针一直打到最大:主供电短路,查电容,二极管,和需要主供电的所有芯片,充电单元,CPU供电等 d:电流表指针有轻微摆动:说明保护和待机正常 2:待机正常后,按下开机键: a:电流表指针不动:一般是无和5V 输出 b:电流表指针摆到0.8A回落,又掉

数显可调直流稳压电源

一、绪论 高科技设备的发展离不开电源技术的进步,高精度电源已广泛应用到于通信、工业、军事、航空航天、家电等领域。其中弱电的重要性是所有电源的基础,人们对它的研究、开发技术水平也越来越高。低压大电流的电源也是以后发展的方向。而直流稳压电源是常用的电子设备,它能保证在电网电压波动或负载发生变化时,输出稳定的电压。一个低纹波、高精度的稳压源在仪器仪表、工业控制及测量领域中有着重要的实际应用价值而电源是电子设备的心脏部分,其质量的好坏直接影响着电子设备的可靠性而且电子设备的故障60%来自电源,因此作为电子设备的基础元件,电源受到越来越多的重视.现代电子设备使用的电源大致有线性稳压电源和开关稳压电源两大类. 所谓线性稳压电源,是指在稳压电源电路中的调整管是工作在线性放大区. 将220V,50Hz 的工频电压经过线性变压器降压以后,经过整流,滤波和稳压, 输出一个直流电压.我们做两类电源比较。线性稳压源的优点是:电源稳定度及负载稳定度较高;输出纹波电压小;瞬态响应速度快;线路结构简单,便于维修;没有开关干扰。缺点是:功耗大,效率低,其效率一般只有35~60%;体积大,质量重,不能微小型化;必须有较大容量的滤波电容. 其中,交换效率低下是 线性稳压电源的重要缺点,造成了资源的严重浪费. 在这种背景下,开关稳压电源应运而生. 任何电子设备均需直流电源来供给电路工作.特别是采用电网供电的电子产品.为了适应电网电压波动和电路的工作状态变化,更需要具备适应这种变化的直流稳压电源. 随着电子技术的发展,人们对如何提高电源的转换效率,增强对电网的适应性,缩小体积,减轻重量进入了深入的研究.开关电源应运而生.七十年代,便应用于电视机的接收,现在已经广泛用于彩电,录像机,计算机,通讯设备,医疗器械,气象等行业. 本文就是利用LM317作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。与数字电压表头集成块ICL7107,实现对直流输出大小的在线测量。这种ICL7107表头需要工作电压是±5v,所以要用到LM7805和LM79L05来做工作电压。此次动手设计直流稳压电源能巩固、深化和扩展我们的理论知识与初步的专业技能,为以后的专业工作打下坚实的基础。除此之外,通过这次设计,使我们在理论计算、结构设计、工程绘图、查阅设计资料、标准与规范的运用和计算机应用方面的能力得到的训练和提高。通过此次设计,培养我们的综合运用所学知识分析和解决工程实际的能力,培养我们正确的设计思想,理论联系实际的工作作风,严肃认真、实事求是的科学态度和勇于探索的创新精神。

电脑电源改可调电源成功(亲测)SG6105芯片

For personal use only in study and research; not for commercial use 一.内容来自网上,结合官方资料,结合几位大神改造经验,综合自己经验改造而成。 每个ATX电源的电路均不同,不过也差别不大,一定按照实际的状况,一边拆,一遍测试,对着图纸,做好标记,才能成功。改造中心:SG6105需要欺骗引脚,其中有3.3V 5V 12V -12V(-5V),我个人的方案是不省略欺骗,对每个引脚提供它要求的电压,使用7812用电阻分压欺骗正电压。负电压走辅助变压器。其中需要注意的是正12V接7812输出端时,一定加上100欧电阻,不加的话,会有100左右MA的电流流入芯片,具体为啥不详。 二、SG6105 (HS8108)关键改造点说明: 1. PSON??接1K电阻后,直接接地。该点悬空时电源不工作。 2. 检测电压 3.3V(2脚)、5V(3脚)、12V(7脚): 5V(4.3V~6.1V)直接从辅助+5V取电或者由7812分压得到; 3.3V(2.8V~ 4.1V)从7812分压得到; 12V(10.1~14.5V)从辅助电源19V处(参考图)接三端稳压LM7812接100欧姆电阻到7脚。 3. Uvac(5脚) 交流检测端,要求0.7V以上。在其分压电路前端直接接+5V,或者不动原电路,直接由主回路提供。 4. NVP(6脚)负电压检测端,要求0.5V左右。接二极管+电容滤波后接至辅助变压器5V 输出。 5.11脚+12脚(有些电源是13脚和14脚),短接接2.5V电压,电压由7812分压得到。 三、改可调2.5V~30V 1调整17脚电压分压比例,从而调压。 四. 散热风扇接辅助变压器19V接40-100欧/2W电阻工作。 五:可调输出电容耐压一定要更换,要不会爆炸,输出端接1K/2W电阻到负极,模拟假负载。 六、其它说明: ? ? 1.如果要改为输出电流可调,要增加恒流控制,需加运放。可参考成熟的494开关电源改造方案。 2.增一倍的输出电压,最简单方法是将变压器次级的中点接地断开,并采取全桥整流。当然滤波电容也要更换。 3.相关计算参考原理图。

0~15V可调数显直流稳压电源

模拟电子技术课程设计报告课题名称数显可调直流稳压电源 专业班级 学生姓名

目录 1、绪论 (3) 2、设计任务及要求 (3) 2.1设计任务 (3) 2.2设计要求 (3) 2.3 设计目的 (4) 3、原理 (4) 3.1.直流稳压电源原理 (4) 3.2数显原理 (5) 4、电路原理图 (5) 4.1 数显模块 (5) 4.2 电源模块 (5) 5.直流稳压电源设计 (6) 5.1 桥式整流电路设计 (6) 5.2电容滤波电路设计 (7) 5.3 稳压电路设计 (7) 6、数字显示电路设计 (8) 6.1芯片介绍 (8) 6.2元件管脚图 (8) 6.3 管脚说明 (9) 6.4 连接说明 (9) 6.5 调试说明 (9) 7、PCB图 (9) 8、主要元件电路参数 (10) 8.1 输入电压Ui (11) 8.2 输出电压U2 (11) 8.3整流桥 (11) 8.4滤波电容 (11) 9、结论与心得 (12)

数字显示连续可调直流稳压电源的设计 1、绪论 当今社会人们极大的享受着电子设备带来的便利,但是任何电子设备都有一个共同的电路--电源电路。大到超级计算机、小到袖珍计算器,所有的电子设备都必须在电源电路的支持下才能正常工作。常用的稳压电源有交流和直流之分,当然这些电源电路的样式、复杂程度千差万别。不可否认电源已经广泛地应用于我们生活的方方面面,所以,学习并了解电源的制作原理和技术对于我们的生产和发展都具有积极的意义。 由于电子技术的特性,电子设备对电源电路的要求就是能够提供持续稳定、满足负载要求的电能,而且通常情况下都要求提供稳定的直流电能。提供这种稳定的直流电能的电源就是直流稳压电源。直流稳压电源在电源技术中占有十分重要的地位。 本文主要设计并制作数字显示的直流稳压电源。本电源作为一个微型启动器,具有可调整电压,调压范围是0V- +15V,而且具备输出电压可以显示的功能。本文介绍了直流稳压系统的总体的设计方案,它主要由变压器部分、整流滤波部分、稳压部分、电压数字显示部分和输出部分组成。电源的稳压部分用三端集成稳压管LM317完成,数字显示部分用ICL7107芯片完成。ICL7107是一种市场上应用非常广泛的集成芯片,内置程序,可以直接驱动LED数码管。本设计的显示部分是采用ICL7107芯片制作LED显示的数字电压表,并联到输出端,完成电压显示的功能。本电源具有设计简单灵活,成本低,效率高,调整精度高等优点,在市场上有很好的应用前景。 关键词:整流滤波稳压数字显示 2、设计任务及要求 2.1设计任务 设计并制作一个输出电压可调的直流稳压电源,并用数码管显示输出电压值。 2.2设计要求 1.输出电压可用电位器在0~15V范围内连续可调,最大输出电流

自己动手改制低压可调电源

自己动手改制低压可调电源 低压可调电源对普通维修者来说,虽然不常用,但有时是不可或缺的。例如,对怀疑的IC块进行外加电源测试,对工作电压很另类的电子产品进行主板测试等,就需要低压可调电源了。然而正常渠道购进的低压可调电源,价格往往较贵(约300元),这里介绍一种利用低压开关电源(+5V)进行改制的方法。 目前市场上海量销售的LED显示屏专用开关电源(价格便宜,仅60元左右),经过简单改制,即可实现连续调压功能。例如:大家常见的诚联开关电源(CLA-200-5型,5V/40A)结构简单,无副电源,无过多保护控制电路,通电自启动(电路原理见附图,根据实物绘制)。主芯片IC1为常见的KA7500B,其工作原理不再赘述,只简单介绍一下电源过载或短路保护电路。如图所示,Q5(C1815)与R26、R27、R28、D17组合,负责过载或短路取样放大,连至IC1的○4脚。当电源过载或短路时,+5V输出电压大幅降低,Q5 的b极为低电平,c 极呈现高电平,经D17传至IC1的○4脚,当上升的电压超过3V时,关闭IC1⑧、○11脚的脉宽调制电压输出,使T2推动变压器、T1主电源开关变压器停振,+5V输出电压消失,电源处于待机状态(一旦保护,需重启电源才能工作)。而由电阻R29、R30、R31、电位器RW(1K)组成了输出电压控制及微调电路,连至IC1的○1脚。此时进行电压微调,上下不超过0.5V。如按附图所示改动部分电路元件,便可实现输出电压在2.6V~9.5V之间连续可调。首先是将R29(220)、R30(1K)改为跳线,电位器RW(1K)改为5K,R31(1.2K)改为220Ω/0.5W(该处阻值不能为0,以防止电位器RW调0时,输出电压短路)。此外,为安全起见,还应将输出负载电阻R34(51Ω)改为560Ω,LED指示灯串联限流电阻RD(390Ω)改为1K(因工作需要,输出电压有可能长时间维持在9V)。最后,输出滤波电容C24~C25也需全部更换为耐压值25V的电解电容。 下面进行调试验证。接通电源,逐渐增大RW阻值,RW上的分压也随之变大,IC1○1脚的比较电压也随之变化,经IC1内部自动调控脉宽,输出电压会随之下降。当RW调至最大阻值5K时,输出电压会降至稳定的2.6V。同理,当RW调至最小阻值0时,输出电压会升至稳定的9.5V(以上均为带载状态)。在整个调试过程中,IC1○4脚的电压一直保持在0.46V,Q5的b极电压仅在0.68~0.75V之间变化,c极一直保持在0.01V,未出现保护动作。经过长时间试机,最终可以判定,用以上方法改制成的低压可调电源稳定可靠,可以在实际维修中使用。

数显可调直流稳压电源

襄樊学院理工学院2010-2011学年上学期 模拟电子技术课程设计实验报告作品名称:可调直流稳压电源

模拟电路课程设计实验报告 一、绪论 高科技设备的发展离不开电源技术的进步,高精度电源已广泛应用到于通信、工业、军事、航空航天、家电等领域。其中弱电的重要性是所有电源的基础,人们对它的研究、开发技术水平也越来越高。低压大电流的电源也是以后发展的方向。而直流稳压电源是常用的电子设备,它能保证在电网电压波动或负载发生变化时,输出稳定的电压。 本文就是利用LM317作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。与数字电压表头集成块ICL7107,实现对直流输出大小的在线测量。这种ICL7107表头需要工作电压是±5v,所以要用到LM7805和LM79L05来做工作电压。 此次动手设计直流稳压电源能巩固、深化和扩展我们的理论知识与初步的专业技能,为以后的专业工作打下坚实的基础。 二、可调直流稳压电源设计 1、设计目的 (1).学习基本理论在实践中综合运用的初步实践,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 (2).学会直流稳压电源的设计方法和性能指标测试方法。 2、设计任务及要求 (1).设计并制作一个连续可调直流稳压电源,主要技术指标要求: ①输出电压可调:Uo=+1v~+15v ②最大输出电流:Imax=1A ③纹波电压:≤100mV ④稳压系数:≤0.05 (2) .设计电路结构,选择电路元件。 (3) .调试,测试。 3、设计步骤 (1).电路图设计 ①画出直流稳压电源方框图。 ②根据系统功能,选择各模块所用电路形式。 ③连接各模块电路。 (2).电路安装、调试 ①为提高我们的动手能力,自行设计印刷电路板,并焊接。 ②在每个模块电路的输入端加一信号,测试输出端信号,以验证每个模块能否达到所规定的指标。 ③将各模块电路连接起来,整机调试,并测量。

将电脑电源改造为可调稳压电源(详细教程,相当实用)

将电脑电源改造为可调稳压电源(详细教程, 相当实用) -CAL-FENGHAI.-(YICAI)-Company One1

将AT电源改造为可调稳压电源 先发个ATX的电路图,以便参考,我是用AT电源改的,电路差不多。 1:先拆除5V等输出端的整流二极管(保留12V的整流二极管),更换12V处的滤波电容,参考上图拆除图中以下元件D(这个是供494电源的,很好找的,负极接12V输出端的,正极连到494的12脚),R25,R26,R20,R21(494第1脚的元件)R19,R24(494第2脚的元件,并且切断与393的连接),简单的方法是直接切断494第1,2脚与线路板的连接。2:切断494第15,16脚与线路板的连接,一般AT电源上这2脚是不用的,我们要用他来控制输出电流3:拆掉LM393的1,2,3脚元件 下面就要改电压和电流取样了,一般大家都在494的2个比较器的一端设一个固定的基准电压,然后取样输出电压(取样电压通过电位器调节比例)和固定的基准电压进行比较,达到输出电压可以调节的目的,这样的话,使的电压的调整下限受到基准电压的限制,而我现在是调节基准电压,输出端的电压取样用固定比列,这样一来,基准电压可以从0V起调,取样电压和基准电压比较后的结果大家应该可以想到, 实际的结果是输出端电压可以到20V的电压表显示0V,呵呵。 利用了1个0-20V和1个0-20A的表作显示,表的接法如下图 取用一个电位器(我用的5K),1端接地,另一端接494的14脚,中心脚接到494的2脚,在原12V输出处接一个15K电阻到494的1脚,另在494的1脚接一个5K电阻到电流表的正端,在494的2脚和3脚接一个1000P左右的电容,这样电压控制部分就改好了,应该很容易吧,上面两个电阻的数值是输出上限20V,下限可以接近0V;

DIY ATX电源改调压0-30V电流0-7A线性电源

DIY ATX电源改调压0-30V调流0-7A 首先提出的是,数字电压电流表要单独电源,(一个表一个电源,必须的)否则会共地烧表。关于改造清单!选购的原件基本都是方便采购搜集的,或者都是拆机件就可以了!!!!《有人一直在问关于占空比的问题,我这里解释一下变压器改造问题 1、当5V和12V绕组是独立的,你可以连接两个绕组。这样电压达到35V绝对没有问题。 2、但是大部分电源不是单独绕组,5V是12V 一部分。为简单起见,直接剪断公共地线,用原来12V绕组的两端,做全波整流 3、这样可以将12电源由半桥改全桥整流、就是功耗比较大。这个方案可行……这样不改绕变压器。仅剪断12V接地。全波整流达到自己想要的电压,理论上稳定值40V 5A 没有问题。前提是全波整流桥堆要有散热措施。》 想要稳定必须重绕变压器,用0.2的4股漆包线并绕16匝即可。 具体参数: 电压可调:0~30V 电流: 0-7A 短路电流:6.79A LM339控制过流,防止调流电位器损坏。 过压保护:意外输出32V,关闭电源 温度控制:大于45℃自动启动风扇 精确数显:数字电压、电流表 以下是电路简图,这只是参考原理图,实际改造过程中,需要添加一些电容什么的。参见下面经典的电路 电源通用IC代换表: TL494/KA7500B/BD494/BDL494/S494PA/IR3M02/MB3670/MB3759 /MST894C/TL594/ULN8186/DBL494/ULS8194R/IR9494/UPC494 /UA494/TL494CN

调压电路原理图,可以参照改造 这个图只能调压0-15V 想要调压0-24V 换24K 和12K电阻即可,下面有计算公式。

(完整版)可调直流稳压电源的设计

一、课程设计(论文)的内容 本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V 交流电,变为稳定的直流电,并实现电压可在 1.5~12V 可调。 二、课程设计(论文)的要求与数据 1.设计并制作一个连续可调直流稳压电源,主要技术指标要求: ①输出电压可调: Uo=+1.5V~ +12V ②最大输出电流: Iomax=1.5A ③输出电压变化量:Δ Uo≤ 15mV ④稳压系数: SV≤ 0.003 2.设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。 3.自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量,交指导教师审核。 4. 批准后,进实验室进行组装、调试,并测试其主要性能参数。 三、课程设计(论文)应完成的工作 1. 完成设计并制作一个连续可调直流稳压电源,绘出实用原理电路图。 2.完成课程设计报告的撰写 四、课程设计(论文)进程安排

五、应收集的资料及主要参考文献 [1]王淑娟,蔡惟铮,模拟电子技术基础,高等教育出版社, 2006 [2]王兆安,黄俊 ,电力电子技术,机械工业出版社 ,2010 2002 [3]夏路易石宗义 ,电路原理图与电路板设计教程,北京希望电子出 版社, [4]康华光,电子技术基础 ,高等教育出版社, 2007 [5]胡宴如,模拟电子技术 ,高等教育出版社 发出任务书日期:2010 年12 月20 日指导教师签名: 计划完成日期:2011 年1 月2 日教学单位责任人签章:

一、设计任务与要求???...????????????????4? 二、方案设计与论证 (4) 三、单元电路设计与参数计算 (6) 3.1 选择集成三端稳压器 (7) 3.2选择电源变压器 (8) 3.3 选用整流二极管和滤波电容 (9) 3.4 滤波电容 .............................. (9) 四、总原理图及元器件清单 (10) 1.总原理图、 PCB图 (10) 2. 元件清单 (10) 五、参考文献 (11) 摘要 对本次课程设计,在设计思路上要有不框定和约束的思维,要以可以自己的创造性,有所发挥,并力求设计方案凝练可行、思路独特、效果良好。

电脑电源改可调电源成功亲测SG芯片完整版

电脑电源改可调电源成 功亲测S G芯片 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一.内容来自网上,结合官方资料,结合几位大神改造经验,综合自己经验改造而成。 每个ATX电源的电路均不同,不过也差别不大,一定按照实际的状况,一边拆,一遍测试,对着图纸,做好标记,才能成功。改造中心:SG6105需要欺骗引脚,其中有 5V 12V -12V(-5V),我个人的方案是不省略欺骗,对每个引脚提供它要求的电压,使用7812用电阻分压欺骗正电压。负电压走辅助变压器。其中需要注意的是正12V接7812输出端时,一定加上100欧电阻,不加的话,会有100左右MA的电流流入芯片,具体为啥不详。 二、SG6105 (HS8108)关键改造点说明: 1. PSON?接1K电阻后,直接接地。该点悬空时电源不工作。 2. 检测电压(2脚)、5V(3脚)、12V(7脚): 5V(~)直接从辅助+5V取电或者由7812分压得到; (~)从7812分压得到; 12V(~)从辅助电源19V处(参考图)接三端稳压LM7812接100欧姆电阻到7脚。 3. Uvac(5脚) 交流检测端,要求以上。在其分压电路前端直接接+5V,或者不动原电路,直接由主回路提供。 4. NVP(6脚)负电压检测端,要求左右。接二极管+电容滤波后接至辅助变压器5V输出。 脚+12脚(有些电源是13脚和14脚),短接接电压,电压由7812分压得到。 三、改可调~30V 1调整17脚电压分压比例,从而调压。 四. 散热风扇接辅助变压器19V接40-100欧/2W电阻工作。 五:可调输出电容耐压一定要更换,要不会爆炸,输出端接1K/2W电阻到负极,模拟假负载。 六、其它说明: 1.如果要改为输出电流可调,要增加恒流控制,需加运放。可参考成熟的494开关电源改造方案。2.增一倍的输出电压,最简单方法是将变压器次级的中点接地断开,并采取全桥整流。当然滤波电容也要更换。3.相关计算参考原理图。

基于单片机的数字可调稳压电源

摘要 毕业设计论文 基于单片机的数字可调稳压电源的设计 系别: 专业(班级): 作者(学号): 指导教师: 完成日期: 蚌埠学院教务处制

基于单片机的数字可调稳压电源的设计 摘要:基于单片机的数字可调直流稳压电源由于原理简单、便于操作、稳定性好、精度高、成本低、易于实现等诸多优点而受到越来越广泛的重视。其性能比传统 的可调直流稳压电源好,非常适合一般教学和科研使用。 本文通过对一个基于单片机的数控直流稳压电源的设计,将单片机数字控制技 术、有机地融入直流稳压电源的设计中,设计出一款数字化通用直流稳压电源,详细介绍了AT89C52单片机应用中的键盘扫描原理、数码管动态显示原理、定 时器中断原理,从而了解单片机相关指令在各方面的应用,同时还介绍了数模 转换芯片DAC0832的工作原理。系统由模拟电源、控制电路、数模转换电路、 放大电路、显示电路等部分构成,输出0-12V电压范围,步进值为0.1V的直流 电源。 电源的数字化控制是人们追求的目标之一,人们对它的要求也越来越高,数控 直流稳压电源能给人们带来很大的方便,为我们工作、科研、生活提供更好、 更方便的服务。本题采用单片机和其他元件及外围电路,开发一个数字可调式 稳压电源,能够设定输出电压值、电压输出显示等功能。 关键词:单片机、直流、稳压、数模转换

Based on single-chip digital adjustable regulated power supply design Abstract: Microcontroller-based digital adjustable DC power supply as simple in principle, easy operation, good stability, high accuracy, low cost, easy to implement, and many other advantages of being more widely appreciated. Performance than the traditional adjustable DC power supply is good, very suitable for general teaching and research use. In this paper, a microcontroller-based digital controlled power supply design, the single chip digital control technology, organic integration into the DC power supply design, digital design of a universal DC power supply, details of the AT89C52 microcontroller applications The keyboard scanning principle, the digital dynamic display principle, the timer interrupt principle, to understand instruction in all aspects of SCM-related applications, but also introduces the DAC0832 digital-analog converter chip works. System consists of analog power supply, control circuits, digital to analog conversion circuit, amplifier circuit, display circuit and other parts, output 0-12V voltage range, step value of 0.1V DC power supply. Digital control of power is one of the goals people pursue, people demand more and more of it, NC DC power supply can give them great convenience for our work, scientific research and to provide better and more convenient service. The problem with single chip and other components and peripheral circuits, the development of a number of adjustable power supply, can set the output voltage, the voltage output display. Keyword s: microcontroller; DC; regulators; digital to analog conversion

电脑ATX电源改0V-30V可调电源,电流

前几天发帖atx电源改0V-30V可调电源,我有朋友说很乱,我整理了一下,这是以前的帖 子 现在开始整理: 我的得到了猪蹄煮不烂朋友的大力支持,在他的帮助下一步一步的进行,原文参考:第一步:打开电源拆除电源的 -5V +5v的部分,不知道怎么拆的就顺着后面往前拆,把欠 压过压的电路全部拆除。 第二部:拆除TL494的1脚上的全部原件,TL494和7005的原理是一样的,然后拆除2脚 的电阻,上面的电容不要拆, 第三步:要在2脚做一个调压电路具体的怎么做我下面给大家分享。调压原理借用的猪蹄煮不烂的“调整1脚和2脚的电阻都能达到调压目的只是1脚不能从0V 起调。”2脚接7500 14脚取样基准电压(5V)这个电压是恒定的。所以1脚能比较出电压是不是升高了,或者 降低了” 第四步:把12V的输出电容换成耐压50V的,不然会吓你一跳。 第五步:用一个24K的电阻接到TL494的一脚,另一角接电源的原12V的输出端作为R1 再找个的电阻接到TL494的1脚另一端接地,(我没有的电阻,我用了个5K的)作为R2。 TL494的2脚接一个的电阻接到电位器的中端,电位器的上端接tl494的13 14 15脚下端接地,我的这个电源,这样接好后,有个问题,电压不能从0v调起,又请教网友猪蹄煮不烂,在他的帮助下,减少电位器中端的电阻的阻值,顺利的把电压从到了。我没有买到常闭温度控制器,所以我的风扇是长吹的,最后做了个表头的单独的供电电源,找了个电子射灯的电源,刚好上面有个12V的交流输出。我就在上面加绕了双线并绕得到2个8V的电压,用全桥和7812 7805得到一路12V两路5v给风扇和表头供电,因为电压表,电流表是不能共地的,如果要想共地要买隔离的电压表和电流表,如果用指针的电压表和电流表就不需要另外做电源。电位器一定要买线绕的,那样就不会感觉调电压变化太快。电位器可以选用5K-40KZ 之间的任意阻值。电源的输出端要接个3W500的放电电阻,可以及时的放掉输出电容剩余的 电。, 最后我买到了温度长开控制器是50度的,风扇可以间歇的工作了,老化试验电流5A多25 分钟风扇才开始工作。 所有电源输出都有两路,一路可以摸索到有散热片的那一排mos管,这一路就是输出,线都比较粗,除了12v留下其他都拆,拆的时候注意只拆与本路连接的原件,不在本路上的原件不动,否则拆错了就还原不回去了。。另外一路是5v12v到494的1脚,全部拆除,剩下的会到339的5脚,也都拆掉,这部分是过压,欠压保护,拆掉就不会被保护了,可以向上调压。将494的1脚与12v之间只装一只24k精密电阻,必须是精密的,因为需要两电阻比值,

数显可调稳压电源的论文

数显可调稳压电源设计与总结报告

目录 第一部分:摘要 (2) 第二部分:方案论证与比较 (3) 一:输出电压模块 (3) 二:单片机选择 (4) 三:显示模块 (4) 第三部分:电路设计、理论分析与计算 (5) 一:整流滤波电路 (5) 二:输出电压控制电路 (6) 三:采样电路 (6) 四:单片机和数码管的驱动电路供电电路 (7) 五: 显示电路的设计 (7) 六:整体电路图 (9) 第四部分:软件设计、流程图 (10) 第五部分:测试方案与测试结论 (11) 第六部分:附录 (12) 一:原器件清单 (12) 二:程序 (13)

摘要 本作品采用LM2576-ADJ作为调整输出电压的主控器件,通过调整滑动变阻器来改变输出电压。同时利用8051F310来实现A/D转换和向数码管提供显示信息。本系统主要有整流滤波模块、输出电压控制模块(LM2576)、8051F310单片机、数码管显示模块所组成,从而构成一个完整的数显可调稳压电源。该作品具有功耗低,输出电压稳定等优点! 关键字:LM2576 输出电压单片机数码管 Abstract This work uses LM2576 as the master control device to regulate the output voltage, by adjusting the sliding rheostat to change the output voltage. At the same time to use 8051F310 to realize A / D conversion and digital tube display to provide information. This system mainly has the rectifier filter module, the output voltage control module ( LM2576), 8051F microcontroller, digital tube display modules, which constitute a complete digital adjustable regulated power supply. This work has the advantages of high efficiency, stable output voltage and other advantages. Key words:LM2576 the output voltage microcontroller digital tube display

可调直流稳压电源的设计完整版

可调直流稳压电源的设计 直流稳压电源的设计 设计要求 基本要求:短路保护,电压可调。若用集成电路制作,要求具有扩流电路。 基本指标:输出电压调节范围:0-6V,或0-8V,或0-9V,或0—12V; 最大输出电流:在0.3A-1.5A区间选一个值来设计; 输出电阻Ro:小于1欧姆。 其他:纹波系数越小越好(5%Vo),电网电压允许波动范围 + -10%。 设计步骤 1.电路图设计 (1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出直流稳压电源方框图。 (2)系统分析:根据系统功能,选择各模块所用电路形式。 (3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。 (4)总电路图:连接各模块电路。 2. 设计思想 (1)电网供电电压交流220V(有效值)频率为50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。 (2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。 (3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。 (4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响 。 的稳定直流电压输出,供给负载R L 电路设计

(一)直流稳压电源的基本组成 直流稳压电源是将频率为50Hz 、有效值为220V 的单相交流电压转换为幅值稳定、输出电流为几十安以下的直流电源,其基本组成如图(1)所示: 图(1) 直流稳压电源的方框图 直流稳压电源的输入为220V 的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。变压器副边电压有效值决定于后面电路的需要。 变压器副边电压通过整流电路从交流电压转换为直流电压,即正弦波电压转换为单一方向的脉动电压,半波整流电路和全波整流电路的输出波形如图所示。可以看出,他们均含有较大的交流分量,会影响负载电路的正常工作。 为了减小电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。理想情况下,应将交流分量全部滤掉,使滤波电路的输出电压仅为直流电压。然而,由于滤波电路为无源电路,所以接入负载后势必影响其滤波效果。对于稳定性要求不高的电子电路,整流、滤波后的直流电压可以作为供电电源。 交流电压通过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或者负载变化时,其平均值也将随之变化。稳压电路的功能是使输出直流电压基本不受电网电压波动和负载电阻变化的影响,从而获得足够高的稳定性。 (二)各电路的选择 1.电源变压器 电源变压器T 的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压U i 。实际上,理想变压器满足I 1/I 2=U 2/U 1=N 2/N 1=1/n ,因此有P 1=P 2=U 1I 1=U 2I 2。变压器副边与原边的功率比为P 2/ P 1=η,式中η是变压器的效率。根据输出电压的范围,可以令变压器副边电压为22V ,即变压系数为0.1。 2.整流电路 T 负 载

将电脑电源改造为可调稳压电源详细教程相当实用

将AT电源改造为可调稳压电源 先发个ATX的电路图,以便参考,我是用AT电源改的,电路差不多。 1:先拆除5V等输出端的整流二极管(保留12V的整流二极管),更换12V处的滤波电容,参考上图拆除图中以下元件D(这个是供494电源的,很好找的,负极接12V输出端的,正极连到494的12脚),R25,R26,R20,R21(494第1脚的元件)R19,R24(494第2脚的元件,并且切断与393的连接),简单的方法是直接切断494第1,2脚与线路板的连接。 2:切断494第15,16脚与线路板的连接,一般AT电源上这2脚是不用的,我们要用他来控制输出电流 3:拆掉LM393的1,2,3脚元件 下面就要改电压和电流取样了,一般大家都在494的2个比较器的一端设一个固定的基准电压,然后取样输出电压(取样电压通过电位器调节比例)和固定的基准电压进行比较,达到输出电压可以调节的目的,这样的话,使的电压的调整下限受到基准电压的限制,而我现在是调节基准电压,输出端的电压取样用固定比列,这样一来,基准电压可以从0V起调,取样电压和基准电压比较后的结果大家应该可以想到, 实际的结果是输出端电压可以到20V的电压表显示0V,呵呵。 利用了1个0-20V和1个0-20A的表作显示,表的接法如下图 取用一个电位器(我用的5K),1端接地,另一端接494的14脚,中心脚接到494的2脚,在原12V输出处接一个15K电阻到494的1脚,另在494的1脚接一个5K电阻到电流表的正端,在494的2脚和3脚接一个1000P左右的电容,这样电压控制部分就改好了,应该很容易吧,上面两个电阻的数值是输出上限20V,下限可以接近0V; 电流取样部分比电压部分稍多点,因为20A的电流表满量程199mV,1A时10mV,0.1A时只有1mV,呵呵,这个电压太小了,如果直接送到494去,那么电流控制精度就很差了,1mV电压估计494不会动作,所以我拆掉了LM393的1、2、3脚元件,用它来构成一个大约40倍的放大器,这样在10A电流时输出4V,0.1A时有40mV,将此电压送到494的16脚,同15脚给定的约0-4V基准电压比较; 辅助电源: AT电源没有辅助电源,用了一个几块钱的电子变压器,就是点12V射灯的DD,绕了3个绕组,整流后经过一个7812,2个7805稳压,(一个12V和两个5V,3组独立)两个5V给表供电,12V给494供电,接到494的12脚,即原来拆掉的D的+端。 对了,把电源板和连接外壳处的铜箔切断(电路板螺丝固定孔处),不要让外壳和电源地相连,可以通过0.1的电容将外壳接地,再在原12V输出端电容处接一个几百欧姆1-2W的电阻(我用了2个1K1W并联),风扇电源也要改接的哦~~~呵呵! 哈哈,现在可以用了!(另外2个5K的电位器如果用多圈的就更好了)

相关文档
最新文档