放大器的频率响应(doc 18页)

放大器的频率响应(doc 18页)
放大器的频率响应(doc 18页)

放大器的频率响应(doc 18页)

放大器的频率响应

单级放大器的分析中只考虑了低频特性,而忽略了器件的分布电容的影响,但在大多数模拟电路中工作速度与其它参量如增益、功耗、噪声等之间要进行折衷,因此对每一种电路的频率响应的理解是非常必要的。

在本章中,将研究在频域中单级与差分放大器的响应,通过对基本概念的了解,分析共源放大器、共栅放大器、CMOS放大器以及源极跟随器的高频特性,然后研究级联与差分放大器,最后考虑差分对有源电流镜的频率响应。

6.1频率特性的基本概念和分析方法

在设计模拟集成电路时,所要处理的信号是在某一段频率内的,即是所谓的带宽,但是对于放大电路而言,一般都存在电抗元件,由于它们在各种频率下的电抗值不同,因而使放大器对不同频率信号的放大效果不完全一致,信号在放大过程中会产生失真,所以要考虑放大器的频率特性。

116

117

频率特性是指放大器对不同频率的正弦信号的稳态响应特性。

6.1.1 基本概念

1、频率特性和通频带

放大器的频率特性定义为电路的电压增益与频率间的关系:

)()(f f A A V V ?∠=? (6.1)

式中A V (f)反映的是电压增益的模与频率之间的关系,称之为幅频特性;而)(f ?则为放大器输出电压与输入电压间的相位差?与频率的关系,称为相频特性。所以放大器的频率特性由幅频特性与相频特性来表述。

低频区:即在第三章对放大器进行研究的频率区域,在这一频率范围内,MOS 管的电容可视为开路,此时放大器的电压增益为最大。当频率高于该频率时,放大器的电压增益将会下降。

上限频率:当频率增大使电压增益下降到低频区电压增益的1/2时的频率。

高频区:频率高于中频区的上限频率的区域。

2、幅度失真与相位失真

因为放大器的输入信号包含有丰富的频率成

118

分,若放大器的频带不够宽,则不同的信号频率的增益不同,因而产生失真,称之为频率失真。频率失真反映在两个方面:幅度失真(信号的幅度产生的失真)与相位失真(不同频率产生了不同的相移,引起输出波形的失真)。由于线性电抗元件引起的频率失真又称为线性失真。注:由于非线性元件(三极管等)的特性曲线的非线性所引起,称为非线性失真。

3、用分贝表示放大倍数

增益一般以分贝表示时,可以有两种形式,即: 功率放大倍数:

)(lg 10)(dB P P dB A i o P =

(6.2)

电压放大倍数:

)(lg 20lg 10)(22dB V V V V dB A i o i o

V ==

(6.3)

4 对数频率特性

频率采用对数分度,而幅值(以分贝表示的电压增益)或相角采用线性分度来表示放大器的频率特性,这种以对数频率特性表示的两条频率特性曲线,就称为对数频率特性,也称为波特图,

119

它是用折线近似表示的。

6.1.2 研究方法

对频率特性的研究一般是基于网络系统的传输函数的零极点的研究,由信号与系统的理论可知传输函数的零点决定了系统的稳定程度,而传输函数的极点所对应的就是系统的转折频率,因此重点通过等效电路推导出电路的传输函数,进而求出零、极点以确定电路的频率特性。

考虑如图6.1中的简单级联放大电路,A 1与A 2是理想电压放大器,R 1与R 2为每一级的输出电阻模型,C i 与C N 代表每一级输入电容,C L 代表负载电容。

V i V o

图6.1 放大器的级联

则总的传输函数为:

s C R A s C R A s C R A s V V P N in S i o 21121111)(+?+?+=

(6.4)

该电路有三个极点,每一个极点是由从该节点

120

看进去的总的到地的电容与总的到地的电阻的乘积。因此,电路的极点一一对应于电路的节点,即ωj =τj -1,其中τj 是从节点j 看进去的电容与电阻的乘积。因此可以认为电路的每一个节点提供给传输函数的一个极点。

上面的描述一般情况下是无效的,例如在图

6.2的电路中,极点的位置很难计算,因为R 3与C 3在X 与Y 相互交接,然而在一个极点的许多电路中每一个节点提供一个直观的方法估算传输函数:把总的等效电容与总的累加的电阻相乘(有效的节点到地),因此得到等效时间常数和一个极点频率。

V C V o

图6.2 节点之间的相互作用

6.2 共源级的频率响应

6.2.1 电路的零极点

1 等效电路法

121 以二极管连接的增强型NMOS 为负载的共源放大器电路如图6.3(a)所示,则根据第二章所学的MOS 管的小信号等效模型,可以得到图6.3(b)中小信号等效电路,对图6.3(b)中的电路的进一步简化,可得图6.3(c)所示的等效电路。

o

V i V i

(a) (b) C V o

V i

(c)

图6.3 (a)二极管连接的增强型NMOS 为负载

的共源放大器电路;(b)图(a)的等效电路;

(c)图(b)的简化电路

在图6.3(c)所示的等效电路中

2221mb m ds ds g g g g G +++=

(6.5)

第十一章电路的频率响应 习题答案

第十一章电路的频率响应 习题 一、选择题 串联谐振电路的 Q 值越高,则 (D ) (A) 电路的选择性越差,电路的通频带越窄 (B) 电路的选择性越差,电路的通频带越宽 (C) 电路的选择性越好,电路的通频带越宽 (D ) 电路的选择性越好,电路的通频带越窄 串联电路谐振时,L 、C 储存能量的总和为 (D ) (A) W = W L + W C = 0 (B) 22 1 LI W W W C L =+= (C) 2 2 1C C L CU W W W =+= (D ) 2C C L CU W W W =+= 3.R L C 串联电路发生串联谐振时,下列说法不. 正确的是: (D ) A .端电压一定的情况下,电流为最大值 B .谐振角频率LC 10= ω C .电阻吸收有功功率最大 D .阻抗的模值为最大 4. RLC 串联电路在0f 时发生谐振。当电源频率增加到02f 时,电路性质呈 (B ) A. 电阻性 B . 电感性 C. 电容性 D. 视电路元件参数而定 5.下面关于RLC 串联谐振电路品质因数的说法中,不正确的是 (D ) A. 品质因数越高,电路的选择性越好 B. 品质因数高的电路对非谐振频率的电流具有较强的抵制能力 C. 品质因数等于谐振频率与带宽之比 D . 品质因数等于特性感抗电压有效值与特性容抗电压有效值之比 串联谐振电路品质因数Q=100,若U R =10V ,则电源电压Us 、电容两端电压U C 分别为 ( A ) 、1000V B. 1000V 、10V C. 100V 、1000V D. 1000V 、100V 二、判断题

1.图示电路,R << 0L,保持U S 一定,当发生谐振时,电流表的读数最小。 (×) 串联电路发生谐振时,电源输出的有功功率与无功功率均为最大。(×) 3.图示RLC串联电路,S闭合前的谐振频率与品质因数为f0与Q, S闭合后 的谐振频率与品质因数为f 0'与Q ',则 f f' =,Q < Q '。(×) 并联的交流电路中,当改变电路频率出现谐振时,则此时电路端口的阻抗值最小。(×) 4.若RLC串联谐振电路的电感增加至原来的4倍(R、C不变),则谐振角频率应变为原来的2倍。(×) 三填空题 1.图示电路,当发生串联谐振时,其谐振频率f 0= ( C M L L) 2 ( 2 1 2 1 + + π )。 2.电感L= 50mH与电容C= 20F并联,其谐振角频率 = ( 1000rad/s );其并联谐振时的阻抗Z = ( )。 串联电路如下图所示,则电路的谐振角频率 = ( 500rad/s ),电路的品质因数Q = ( 100 )。

实验五集成运算放大器的基本应用共7页文档

实验五集成运算放大器的基本应用(I) ─模拟运算电路─ 一、实验目的 1、了解和掌握集成运算放大器的功能、引脚 2、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算 电路的功能。 3、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A =∞ ud =∞ 输入阻抗r i =0 输出阻抗r o 带宽 f =∞ BW 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性:

(1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图8-1所示。对于理想运放, 该电路的输出电压与输入电压 之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图8-1 反相比例运算电路 图8-2 反相加法运算电路 2) 反相加法电路 电路如图8-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O U R R U - =

运算放大器_参数详解

运算放大器参数详解 技术2010-12-19 22:05:36 阅读80 评论0 字号:大中小订阅 运算放大器(常简称为“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。现今运放的种类繁多,广泛应用于几乎所有的行业当中。 历史 直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。 第一块集成运放电路是美国仙童(fairchild)公司发明的μA741,在60年代后期广泛流行。直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。 原理 运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际方向从a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图:

集成运算放大器的基本应用

实验十一 集成运算放大器的基本应用 —— 模拟运算电路 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验仪器 1、双踪示波器 2、万用表 3、交流毫伏表 4、信号发生器 三、实验原理 在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。 1、 反相比例运算电路 电路如图11-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 i F O U R R U 1 - = (11-1) U i O 图11-1 反相比例运算电路 为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1∥R F ,此处为了简化电路,我们选取R2=10K 。

2、反相加法电路 U O U 图11-2 反相加法运算电路 电路如图11-2所示,输出电压与输入电压之间的关系为 )( 22 11i F i F O U R R U R R U +-= R 3=R 1∥R 2∥R F (11-2) 3、同相比例运算电路 图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U )1(1 + = R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。图中R2=R F ,用以减小漂移和起保护作用。一般RF 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a)同相比例运算 (b)电压跟随器 图11-3 同相比例运算电路 4、差动放大电路(减法器) 对于图11-4所示的减法运算电路,当R1=R2,R3=R F 时,有如下关系式: )(1 120i i U U R RF U -= (11-4)

5.6集成运放的频率响应

5.6 集成运放的频率响应和频率补偿频率响应频率补偿

一、集成运放的频率响应 很大 或gs C C ''π低频特性很好 内部必须接补偿电容上限频率很低 -20dB/十倍频 -40dB/十倍频-900-1800-2700 f /H Z O f φ -1350-450-2250dB A od /lg 20 100 101 103 102 f 0 f c 104 -60dB/十倍频

时 c f f 0f = f 0 时极间电容引起的附加相移为±1800 -900-1800-2700 f /H Z O f φ -1350-450-2250dB A od /lg 20 100 101 103 102 f 0 f c 104 f c :单位增益带宽此时差模增益下降为0dB 电路将产生自激振荡

二、集成运放的频率补偿 频率补偿: 采用一定的手段改变集成运放的频率响应破坏可能产生自激振荡的条件 使电路稳定工作 dB A f f od 0lg 200<= 时,即使0 180 ->=?时,附加相位移或当c f f

-900-1800 00 f O f φ dB A od /lg 20 f 0 f c m G m ?0 lg 20f f od m A G == c f f m =-=? ?0 180为幅值裕度 m G 为相位裕度 m ?0 45 10≥-≤m m dB G ?,一般要求

1. 滞后补偿 滞后补偿:加入补偿电路后, 使运放的幅频特性在大于0dB的频率范围内 只存在一个拐点, 相当于一个RC回路的频率响应 ≥450的要求, 达到φ m 保证电路的稳定性 优点:简单易行 缺点:使频带变窄

集成运算放大器的基本应用

第7章集成运算放大器的基本应用 7.1 集成运算放大器的线性应用 7.1.1 比例运算电路 7.1.2 加法运算电路 7.1.3 减法运算电路 7.1.4 积分运算电路 7.1.5 微分运算电路 7.1.6 电压—电流转换电路 7.1.7 电流—电压转换电路 7.1.8 有源滤波器 *7.1.9 精密整流电路 7.2 集成运放的非线性应用 7.2.1 单门限电压比较器 7.2.2 滞回电压比较器 7.3 集成运放的使用常识 7.3.1 合理选用集成运放型号 7.3.2 集成运放的引脚功能 7.3.3 消振和调零 7.3.4 保护 本章重点: 1. 集成运算放大器的线性应用:比例运算电路、加减法运算电路、积分微分运算电路、一阶有源滤波器、二阶有源滤波器 2. 集成运算放大器的非线性应用:单门限电压比较器、滞回比较器 本章难点: 1. 虚断和虚短概念的灵活应用 2. 集成运算放大器的非线性应用 3. 集成运算放大器的组成与调试 集成运算放大器(简称集成运放)在科技领域得到广泛的应用,形成了各种各样的应用电路。从其功能上来分,可分为信号运算电路、信号处理电路和信号产生电路。从本章开始和以后的相关章节分别介绍它们的应用。 7.1 集成运算放大器的线性应用

集成运算放大器的线性应用 7.1.1 比例运算电路 1. 同相比例运算电路 (点击查看大图)反馈方式:电压串联负反馈 因为有负反馈,利用虚短和虚断 虚短: u-= u+= u i

虚断: i +=i i- =0 , i 1 =i f 电压放大倍数: 平衡电阻R=R f//R1 2. 反相比例运算 (点击查看大图)反馈方式:电压并联负反馈 因为有负反馈,利用虚短和虚断 i - =i+= 0(虚断) u + =0,u-=u+=0(虚地) i 1 =i f 电压放大倍数:

模拟电子技术课程习题第五章放大电路的频率响应

模拟电子技术课程习题第五章放大电路的频率响应 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第五章 放大电路的频率响应 5.1具有相同参数的两级放大电路在组成它的各个单管的截止频率处,幅值下降 [ ] A. 3dB B. 6dB C. 10dB D. 20dB 5.2在出现频率失真时,若u i 为正弦波,则u o 为 [ ] A. 正弦波 B. 三角波 C. 矩形波 D. 方波 5.3 多级放大电路放大倍数的波特图是 [ ] A. 各级波特图的叠加 B. 各级波特图的乘积 C. 各级波特图中通频带最窄者 D. 各级波特图中通频带最宽者 5.4 当输入信号频率为f L 或f H 时,放大倍数的幅值约为中频时的 [ ] 倍。 A.0.7 B.0.5 C.0.9 D.0.1 5.5 在阻容耦合放大器中,下列哪种方法能够降低放大器的下限频率?[ ] A .增大耦合电容 B .减小耦合电容 C .选用极间电容小的晶体管 D .选用极间电容大的晶体管 5.6 当我们将两个带宽均为BW 的放大器级联后,级联放大器的带宽 [ ] A 小于BW B 等于BW C 大于BW D 不能确定 5.7 填空: 已知某放大电路电压放大倍数的频率特性为 6100010 (1)(1) 1010 u f j A f f j j = ++ (式中f 单位:Hz ) 表明其下限频率为 ,上限频率为 ,中频电压增益为 dB ,输出电压与输入电压在中频段的相位差为 。 5.8 选择正确的答案填空。

幅度失真和相位失真统称为失真(a.交越b.频率),它属于失真(a.线性b.非线性),在出现这类失真时,若u i为正弦波,则u o为波(a.正弦b.非正弦),若u i为非正弦波,则u o与u i的频率成分 (a.相同b.不同)。 饱和失真、截止失真、交越失真都属于失真(a.线性b.非线性),在出现这类失真时,若u i为非正弦波,则u o为波(a.正弦b.非正弦),u o与u i的频率成分 (a.相同b.不同)。 5.9 选择正确的答案填空。 晶体管主要频率参数之间的关系是。 a.f a

放大电路的频率响应题解

放大电路的频率响应 自测题 选择正确答案填入空内。 (1) 测试放大电路输出电压幅值与相位的变化,可以得到它的频率响 应,条件是_________ 。 A. 输入电压幅值不变,改变频率 B. 输入电压频率不变,改变幅值 C. 输入电压的幅值与频率同时变化 (2) 放大电路在高频信号作用时放大倍数数值下降的原因是_____________________ ,而低频信号作用时放大倍数数值下降的原因是__________________ 。 A. 耦合电容和旁路电容的存在 B. 半导体管极间电容和分布电容的存在。 C. 半导体管的非线性特性 D. 放大电路的静态工作点不合适 (3 )当信号频率等于放大电路的f L或f H时,放大倍数的值约下降到中频时的。 A. —45 B. —135 C. —225 A.0.5 倍 B.0.7 倍 C.0.9 倍 即增益下降。 A.3dB B.4dB C.5dB (4)对于单管共射放大电路,当f = f L时,U °与U i相位关系是 A. + 45? B. —90 ? C. —135 ? 当f = f H时,U。与U i的相位关系是_________________ 解:(1 ) A ( 2) B , A ( 3) B A ( 4) C C

二、电路如图T5.2 所示。已知:V cc = 12V ;晶体管的C“= 4pF , 50MHz , r bb= 100 Q , 0 = 80。试求解: (1 )中频电压放大倍数A usm ; (2)C'; (3)f H 和f L ; (4)画出波特图。 解:(1)静态及动态的分析估算: I EQ (1 ) I BQ 1.8mA U CEQ V CC I CQ R c 3V r be (1 )響丫 1.17k r be r bb' 「b'e 1.27 k R r be 〃 R b 1.27k I EQ g m69.2mA/V U T A usm '匹(g m R c) 178 R s R i r be f T = I BQ V CC U BEQ 22.6 口 A 图T5.2

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

放大电路的频率响应习题解答

∥178)(mA/V 2.69k 27.1k 27.1k 17.1mV 26)1(V 3mA 8.1)1(A μ 6.22c m be e b'i s i sm T EQ m b be i e b'bb'be EQ e b'c CQ CC CEQ BQ EQ b BEQ CC BQ -≈-?+=≈=Ω≈=Ω≈+=Ω≈+=≈-=≈+=≈-=R g r r R R R A U I g R r R r r r I r R I V U I I R U V I u &ββ第五章 放大电路的频率响应 自 测 题 一、选择正确答案填入空内。 (1)测试放大电路输出电压幅值与相位的变化,可以得到它的频率响应,条件是 。 A.输入电压幅值不变,改变频率 B.输入电压频率不变,改变幅值 C.输入电压的幅值与频率同时变化 (2)放大电路在高频信号作用时放大倍数数值下降的原因是 ,而低频信号作用时放大倍数数值下降的原因是 。 A.耦合电容和旁路电容的存在 B.半导体管极间电容和分布电容的存在。 C.半导体管的非线性特性 D.放大电路的静态工作点不合适 (3)当信号频率等于放大电路的f L 或f H 时,放大倍数的值约下降到中频时的 。 A.0.5倍 倍 倍 即增益下降 (4)对于单管共射放大电路,当f = f L 时,o U &与i U & 相位关系是 。 A.+45 B.-90 C.-135 当f = f H 时, o U &与i U & 的相位关系是 A.-45 B.-135 C.-225 解:(1)A (2)B ,A (3)B A (4)C C 二、电路如图所示。已知:V C C =12V ;晶体管的C μ=4pF ,f T = 50MHz , ' bb r =100Ω, 0=80。试求解: (1)中频电压放大倍数 sm u A &;(2)' πC ; (3)f H 和f L ;(4)画出波特图。 解:(1)静态及动态的分析估算:

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

放大器极零点与频率响应

关于放大器极、零点与频率响应的初步实验 1.极零点的复杂性与必要性 一个简单单级共源差分对就包含四个极点和四个零点,如下图所示: 图1 简单单级共源全差分运放极零点及频率、相位响应示意图 上图为简单共源全差分运放的极零点以及频率响应的示意图,可以看到,运放共有四个极点,均为负实极点,共有四个零点,其中三个为负实零点,一个为正实零点。后面将要详细讨论各个极零点对运放的频率响应的影响。 正在设计中的折叠共源共栅运算放大器的整体极零点方针则包括了更多的极零点(有量级上的增长),如下图所示:

图2 folded-cascode with gain-boosting and bandgap all-poles details

图3 folded-cascode with gain-boosting and bandgap all-zeros details 从上述两张图可以看到,面对这样数量的极零点数量(各有46个),精确的计算是不可能的,只能依靠计算机仿真。但是手算可以估计几个主要极零点的大致位置,从而预期放大器的频率特性。同时从以上图中也可以看到,详细分析极零点情况也是很有必要的。可以看到46个极点中基本都为左半平面极点(负极

点)而仿真器特别标出有一个正极点(RHP )。由于一般放大器的极点均应为LHP ,于是可以预期这个右半平面极点可能是一个设计上的缺陷所在。(具体原因现在还不明,可能存在问题的方面:1。推测是主放大器的CMFB 的补偿或者频率响应不合适。 2。推测是两个辅助放大器的带宽或频率响应或补偿电容值不合适)其次可以从极零点的对应中看到存在众多的极零点对(一般是由电流镜产生),这些极零点对产生极零相消效应,减少了所需要考虑的极零点的个数。另外可以看到46个零点中45个为负零点,一个为正零点,这个正零点即是需要考虑的对放大器稳定性产生直接影响的零点。 以上只是根据仿真结果进行的一些粗略的分析,进一步的学习和研究还需要进行一系列实验。 1. 单极点传输函数——RC 低通电路 首先看一个最简单的单极点系统——RC 低通电 路,其中阻值为1k ,电容为1p ,传输函数为: sRC s H +=11)( 则预计极点p0=1/(2πRC )=1.592e8 Hz ,仿真得 到结果与此相同。 而从输出点的频率响应图中可以得到以下几个结 论: 图4 一阶RC 积分电路 1)-3dB 带宽点(截止频率)就是传输函数极点,此极点对应相位约为-45°。 2)相位响应从0°移向高频时的90°,即单极点产生+90°相移。 3)在高于极点频率时,幅度响应呈现-20dB/十倍频程的特性。 图5 一阶RC 电路极点与频率响应(R=1k C=1p )

放大器的频率响应(doc 18页)

放大器的频率响应(doc 18页)

放大器的频率响应 单级放大器的分析中只考虑了低频特性,而忽略了器件的分布电容的影响,但在大多数模拟电路中工作速度与其它参量如增益、功耗、噪声等之间要进行折衷,因此对每一种电路的频率响应的理解是非常必要的。 在本章中,将研究在频域中单级与差分放大器的响应,通过对基本概念的了解,分析共源放大器、共栅放大器、CMOS放大器以及源极跟随器的高频特性,然后研究级联与差分放大器,最后考虑差分对有源电流镜的频率响应。 6.1频率特性的基本概念和分析方法 在设计模拟集成电路时,所要处理的信号是在某一段频率内的,即是所谓的带宽,但是对于放大电路而言,一般都存在电抗元件,由于它们在各种频率下的电抗值不同,因而使放大器对不同频率信号的放大效果不完全一致,信号在放大过程中会产生失真,所以要考虑放大器的频率特性。 116

117 频率特性是指放大器对不同频率的正弦信号的稳态响应特性。 6.1.1 基本概念 1、频率特性和通频带 放大器的频率特性定义为电路的电压增益与频率间的关系: )()(f f A A V V ?∠=? (6.1) 式中A V (f)反映的是电压增益的模与频率之间的关系,称之为幅频特性;而)(f ?则为放大器输出电压与输入电压间的相位差?与频率的关系,称为相频特性。所以放大器的频率特性由幅频特性与相频特性来表述。 低频区:即在第三章对放大器进行研究的频率区域,在这一频率范围内,MOS 管的电容可视为开路,此时放大器的电压增益为最大。当频率高于该频率时,放大器的电压增益将会下降。 上限频率:当频率增大使电压增益下降到低频区电压增益的1/2时的频率。 高频区:频率高于中频区的上限频率的区域。 2、幅度失真与相位失真 因为放大器的输入信号包含有丰富的频率成

常见运算放大电路

运算放大器分类总结

一、通用型运算放大器通用型运算放大器 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。下面就实验室里也常用的LM358来做一下介绍: LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。: 外观管脚图 它的特点如下: ·内部频率补偿 ·直流电压增益高(约100dB) ·单位增益频带宽(约1MHz) ·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V) ·低功耗电流,适合于电池供电 ·低输入偏流 ·低输入失调电压和失调电流 ·共模输入电压范围宽,包括接地 ·差模输入电压范围宽,等于电源电压范围 ·输出电压摆幅大(0 至Vcc-1.5V)

大信号频率响应大信号电压开环增益 电压跟随器对小信号脉冲的响应 电压跟随器对小信号脉冲的响应 常用电路: (1)、正向放大器 根据虚短路,虚开路,易知:

(2)、高阻抗差分放大器 电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C,因此得到结果: 0 (21)(1) eCeea b (3)、迟滞比较器 将输入电平与参考电平作比较,根据虚短路,虚开路有: 将输入电平与参考电平作比较,根据虚短路,虚开路有: 二、高精度运算放大器 所谓高精度运放是一类受温度影响小,即温漂小,噪声低,灵敏度高,适合微小信号放大用的运算放大器。 高精度运算放大器的运用范畴很广,在产业领域中可用于量测仪器、控

(完整版)第十一章电路的频率响应

第十一章 电路的频率响应 11-1 网络函数 11-2 RLC 串联电路的谐振 11-3 RLC 串联电路的频率响应 11-4 RLC 并联谐振电路 11-5 波特图 11-6 滤波器简介 重点 1. 网络函数 2. 串、并联谐振的概念 11-1 网络函数 当电路中激励源的频率变化时,电路中的感抗、容抗将跟随频率变化,从而导致电路的工作状态亦跟随频率变化。因此,分析研究电路和系统的频率特性就显得格外重要。 频率特性 电路和系统的工作状态跟随频率而变化的现象,称为电路和系统的频率特性,又称频率响应。 1. 网络函数H (j ω)的定义 在线性正弦稳态网络中,当只有一个独立激励源作用时,网络中某一处的响应(电压或电流)与网络输入之比,称为该响应的网络函数。 def (j )(j )(j ) R H E ωωω=

2. 网络函数H(j ω)的物理意义 ⑴ 驱动点函数 激励是电流源,响应是电压 策动点阻抗 激励是电压源,响应是电流 策动点导纳 ⑵ 转移函数(传递函数) 激励是电压源 转移导纳 转移电压比 (j ) I ω(j U 1(U 1(j )I ω(j )(j )(j ) U H I ωωω= (j )(j )(j ) I H U ωωω= 21(j )(j )(j )I H U ωωω= 21(j ) (j )(j ) U H U ωωω=

激励是电流源 转移阻抗 转移电流比 注意 ①H(j ω)与网络的结构、参数值有关,与输入、输出变量的类型以及端口对的相互位置有关,与输入、输出幅值无关。因此网络函数是网络性质的一种体现。 ②H(j ω) 是一个复数,它的频率特性分为两个部分: 幅频特性 :模与频率的关系 ()H j ωω - 相频特性:幅角与频率的关系 ()j ?ωω - ③网络函数可以用相量法中任一分析求解方法获得。 例1-1 求图示电路的网络函数 2 S I U ? ? 和 L S U U ? ? 解:列网孔方程解电流 _ 2 I 1 I 21(j ) (j )(j ) U H I ωωω= 21(j ) (j )(j ) I H I ωωω= 12s 12(2j )22(4j )0 I I U I I ωω?+-=??-++=??s 2224(j )j6U I ωω = ++

放大器的频率响应

116 放大器的频率响应 单级放大器的分析中只考虑了低频特性,而忽略了器件的分布电容的影响,但在大多数模拟电路中工作速度与其它参量如增益、功耗、噪声等之间要进行折衷,因此对每一种电路的频率响应的理解是非常必要的。 在本章中,将研究在频域中单级与差分放大器的响应,通过对基本概念的了解,分析共源放大器、共栅放大器、CMOS 放大器以及源极跟随器的高频特性,然后研究级联与差分放大器,最后考虑差分对有源电流镜的频率响应。 6.1 频率特性的基本概念和分析方法 在设计模拟集成电路时,所要处理的信号是在某一段频率内的,即是所谓的带宽,但是对于放大电路而言,一般都存在电抗元件,由于它们在各种频率下的电抗值不同,因而使放大器对不同频率信号的放大效果不完全一致,信号在放大过程中会产生失真,所以要考虑放大器的频率特性。 频率特性是指放大器对不同频率的正弦信号的稳态响应特性。 6.1.1 基本概念 1、频率特性和通频带 放大器的频率特性定义为电路的电压增益与频率间的关系: )()(f f A A V V ?∠=? (6.1) 式中A V (f)反映的是电压增益的模与频率之间的关系,称之为幅频特性;而)(f ?则为放大器输出电压与输入电压间的相位差?与频率的关系,称为相频特性。所以放大器的频率特性由幅频特性与相频特性来表述。 低频区:即在第三章对放大器进行研究的频率区域,在这一频率范围内,MOS 管的电容可视为开路,此时放大器的电压增益为最大。当频率高于该频率时,放大器的电压增益将会下降。 上限频率:当频率增大使电压增益下降到低频区电压增益的1/2时的频率。 高频区:频率高于中频区的上限频率的区域。 2、幅度失真与相位失真 因为放大器的输入信号包含有丰富的频率成分,若放大器的频带不够宽,则不同的信号频率的增益不同,因而产生失真,称之为频率失真。频率失真反映在两个方面:幅度失真(信号的幅度产生的失真)与相位失真(不同频率产生了不同的相移,引起输出波形的失真)。由于线性电抗元件引起的频率失真又称为线性失真。注:由于非线性元件(三极管等)的特性曲线的非线性所引起,称为非线性失真。 3、用分贝表示放大倍数 增益一般以分贝表示时,可以有两种形式,即: 功率放大倍数: )(lg 10)(dB P P dB A i o P = (6.2)

实验二 集成运算放大器的基本应用(I)

实验二 集成运算放大器的基本应用(I) ─ 模拟运算电路 ─ 一 实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 了解运算放大器在实际应用时应考虑的一些问题。 二 实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 集成运算放大器配接不同的外围元件可以方便灵活地实现各种不同的运算电路(线性放大和非线性电路)。用运算放大器组成的运算电路(也叫运算器),可以实现输入信号和输出信号之间的数学运算和函数关系,是运算放大器的基本用途之一,这些运算器包括比例器、加法器、减法器、对数运算器、积分器、微分器、模拟乘法器等各种模拟运算功能电路。 (1) 反相比例运算电路 电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 i U 10-=- =i 1 F O U R R U

图1 反相比例运算电路 (2) 同相比例运算电路 图2是同相比例运算电路,它的输出电压与输入电压之间的关系为 i U 11=+ =i 1 F O )U R R (1U R 2=R 1 // R F 图2 同相比例运算电路 三 实验设备与器件 1. ±12V 直流电源 2. 函数信号发生器 3. 交流毫伏表 4. 直流电压表 5. 集成运算放大器OP07×1 9.1K Ω、10 K Ω、100 K Ω电阻各1个,导线若干。 2 3 6 7 4 1 8 2 3 1 8 4 6 7

几种常用集成运算放大器的性能参数

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

运算放大器基本应用

东南大学电工电子实验中心 实验报告 课程名称:电子电路实验 第一次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化 姓名:周晓慧学号:61010212 实验室: 105实验组别: 同组人员:无实验时间:2012年03月23日评定成绩:审阅教师:

实验一运算放大器的基本应用 一、实验目的: 1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法; 2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、 带宽的测量方法; 3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、了解运放调零和相位补偿的基本概念; 5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。 二、预习思考: 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。

2、 设计一个反相比例放大器,要求:|A V |=10,Ri>10K Ω,将设计过程记录在预习报告上; (1) 仿真原理图 (2) 参数选择计算 因为要求|A v |=10,即|V 0/V i |= |-R f /R 1|=10,故取R f =10R 1,.又电阻应尽量大些,故取:R 1=10k Ω,Rk=100 k Ω, R L =10 k Ω (3) 仿真结果 图中红色波形表示输入,另一波形为输出,通过仿真可知|V 0/V i |=9.77≈10,仿真正确。 3、 设计一个电路满足运算关系U O = -2U i1 + 3U i2

相关文档
最新文档