基于MATLAB的距离保护仿真

基于MATLAB的距离保护仿真
基于MATLAB的距离保护仿真

基于MATLAB的距离保护仿真

摘要:本文阐述了如何利用Matlab中的Simulink及SPS工具箱建立线路的距离保护仿真模型,并用S函数编制相间距离保护和接地距离保护算法程序,构建相应的保护模块,实现了三段式距离保护。仿真结果表明,所建立的三段式距离保护模型能够正确反应在保护区内的不同类型的短路故障并发出动作信号使断路器跳闸实现输电线路的保护功能。

关键词:Matlab;S函数;仿真;距离保护

Distance protection simulation based on Matlab

ABSTRACT:This paper established a distance protection simulation model of transmission line by using Simulink and SimPowerSystem toolbox in Matlab. We programed the distance protection of phase faults and earth faults by using S-Fuction and created relevant protection models to build distance protection. The simulation results show that the three-stage distance protection model we created can response to all kinds of faults within protection zones correctly and send correct signal to the breaker of the line.

KEY WORDS:Matlab; S-Function; Simulink; distance protection

0 引言

Matlab软件中的SimPowerSystem工具箱是基于Simulink发展起来的电力系统仿真工具箱,里面有许多可用于电力系统仿真的元件模块库,这些模块以图形的形式表示电力系统设备的数学模型。用户可以通过搭积木的方式建立所需仿真模型,可以设计并封装自己所需的模块,也可以用S函数将程序与Simulink解法器进行交互实现用程序控制电力系统模型的功能,最后还可以将仿真结果导入Matlab工作空间以分析仿真结果。其灵活性、方便性及实时准确性为电力系统的仿真验证提供了平台,极大地方便了电力系统的分析设计。

本文通过Simulink及SPS建立了输电线路的三段式距离保护仿真模型,用S函数编写相间距离保护和接地距离保护程序,设置了三段式距离保护作为本线路全长的主保护以及下级线路的后备保护。仿真模型能够直观动态地观察故障后保护模块内部的动作情况,从而实现对继电保护动作效果的检验。这种方法容易推广到其它保护中,尤其是实现新保护原理的仿真,具有一定的推广价值。

1 仿真模型的建立

考虑具有两级线路的单端电源110kV单回线输电线路系统,如图1所示。距离保护安装在线路AB的断路器处,作为本线路AB的主保护以及下级线路BC的后备保护。

.

负荷

2

1

图1 单端电源电力系统

系统的各个元件参数为:电压源的线电压10.5kV,内阻Zg=0.001+j0.0157Ω;变压器容量31.5MV A,Yg-d11接线,折算到高压侧的阻抗Z T=1.86+j18.6Ω;两级线路长度均为100km,线路的正序阻抗z1=(0.05+j0.3)Ω/km,零序阻抗z0=(0.04+j1.2) Ω/km

;负荷容量S LD=1.2+j0.9MV A。

在Matlab/Simulink中建立仿真模型,如图2所示。保护模块已经封装成子系统,其输入数据为断路器处的电压电流测量值,其输出信号送至断路器的控制端,以控制断路器的开合状态(信号0表示跳闸,信号1表示合闸,断路器初始状态为合闸)。用故障模块设置短路类型以及故障发生的时间(t=0.03s)。通过改变故障点两侧线路的长度来改变故障点的位置,但两侧线路的长度之和始终保持200km不变。仿真起止时间为0~0.2s,采用变步长、ode23t算法进行仿真。所有模块的频率均为50Hz。

图2 距离保护仿真模型

2 保护模块的构建

2.1 距离保护原理

根据测量阻抗的构成方式不同可以分别构成相间距离保护和接地距离保护。

相间距离保护采用的测量电压是相间电压,测量电流也为相间电流,能够反应相间短路、两相接地短路和三相短路故障,但不能反应单相接地故障。其测量阻抗为:

1

23A B m A B

B C m B C C A m C A

U U Z I I U U Z I I U U Z I I -=

--=--=

- (1)

接地距离保护采用测量电压为保护安装处的相电压,测量电流为带有零序电流补偿的相电流,能够反应单相接地故障、两相接地故障、三相接地故障,但不能反应相间短路故障。其测量阻抗为:

10

20

30

333A m A B m B C m C U Z I K I U Z I K I U Z I K I =+=+=

+ (2)

式中:K 是补偿系数,011

3z z K z -=

保护动作判据采用全阻抗圆特性,其动作方程为:m set Z Z ≤,相间距离保护和接地距离保护的整定值相同。将相间距离保护和接地距离保护组合在一起构成总的距离保护模块,能够反应保护范围内各种类型的短路故障。

设定不同的整定值会得到不同的保护范围,因此可以将三个整定值不同的距离保护模块构成三段式距离保护,实现本线路的主保护和下级线路的后备保护。

2.2 距离保护模块构建

三段式距离保护子系统的内部构成如图3所示,分别由距离Ⅰ段,距离Ⅱ段,距离Ⅲ段构成,距离Ⅱ段输出信号延时0.05s ,距离Ⅲ段输出信号延时0.1s ,再将各段的动作信号经过点乘模块之后得到最终的断路器动作信号。

图3 三段式距离保护模块内部结构

各段距离保护模块的内部结构一致,只是整定

值不同而已,以距离Ⅰ段为例,其内部结构如图4

所示,是由相间距离保护模块和接地距离保护模块构成,输入的电压电流测量值经过两个保护模块后得到各自的动作信号再经过点乘模块得到最终的距离保护Ⅰ段的动作信号。

图4 各段距离保护模块内部结构

接地距离保护和相间距离保护只是所选取的

测量电压和测量电流不同,其基本结构类似,结构框图如图5所示。

图5 保护结构框图

基波傅里叶变换模块的作用是滤除故障时测量电气量中的谐波分量,只保留基波分量。将得到的基波分量再送入S 函数模块,该S 函数模块会调用相应的保护程序,在保护程序中将测量电气量的基波分量进行运算得到测量阻抗,再将测量阻抗与整定值比较,当满足动作方程时,程序就输出信号0,表示跳闸;当不满足动作方程时就输出信号1,表示不动作。S 函数中的程序在仿真运行过程中是不断循环执行的,因此具有实时性,保护输出信号能随着输入电气量的改变而实时的改变。保护程序的输出信号输入到躲开暂态时间模块,因为当刚开始发生故障,有很大的暂态分量,暂态分量大约持续0.03s ,而保护的整定都是按照故障后稳态分量计算的,暂态分量会使保护误动,因此设计一个模块使得保护模块能够躲开故障发生后的0.03s 这段时间,只有当躲过这段时间后才开放保护,该模块的设计方法是将保护动作信号延时0.03s 后再与原动作信号相或实现的。最后动作信号还要经过继电器

动作保持模块,因为当保护发出动作信号使得断路器跳闸断开电路后,保护程序会根据所测的电气量的变化又发出合闸信号,使得断路器又重新合上,为了防止断路器因故障断开后又突然合上,就采用动作保持模块,该模块的设计是用一个继电器及其辅助电路实现的。

相间距离保护模块内部结构如图6所示,将三相电压和三相电流经过减法元件得到相间电压和相间电流,再分别经过傅里叶变换模块最后输入到S函数,S函数中调用相间距离保护算法程序,将程序输出的动作信号躲过暂态时间以及经过继电器保持后输出。

图6 相间距离保护模块内部结构

接地距离保护的模块内部结构如图7所示,用三相电流相加得到零序电流,再将三相电压和三相电流以及所得到的零序电流分别经过基波傅里叶变换模块后输入到S函数中,经过接地保护程序的处理后输出动作信号,再将信号躲过暂态时间以及经过继电器保持后输出。

图7 接地距离保护模块内部结构

3 距离保护算法以及S函数程序编写

3.1 整定计算

距离Ⅰ段:按躲过本线路末端短路时的测量阻抗整定;

1

0.85 4.2525.5

I I

set rel AB AB

Z K z L Z j

===+Ω(3) 距离Ⅱ段:与下级线路的距离Ⅰ段配合;

()0.8(0.85)7.444.4

II II I

set rel AB rel BC AB BC

Z K Z K Z Z Z j

=+=+=+Ω

(4)

距离Ⅲ段:按躲过正常运行时的最小负荷阻抗整定;

最小负荷阻抗为:

2

.min

7818.55796.4

LD

L AC

LD

V

Z Z j

S

=+=-Ω

(5)

.m in.m in34752576

1.2 1.5 1.25

III L L

set

rel ss re

Z Z

Z j

K K K

===-Ω

??

(6) 3.2距离保护S函数编程

S函数模块能够将程序与Simulink结合在一起,将电路模型的电气量采集输入到S函数模块,在仿真时,S函数不断循环地调用并执行内部程序,对输入的电气采集量进行处理,并将处理结果输出用以控制电路模型。

S函数的编写有固定的格式,它是由初始化函数、动态更新函数以及输出函数构成。

初始化函数用于说明程序输入和输出量的个数、连续或离散状态个数以及采样时间等。本程序中采用离散状态量,相间距离保护程序的输入量个数是12个,分别为经过傅里叶变换后得到的三相电压和三相电流的幅值和相角,输入量个数为1个动作信号。接地距离保护程序的输入量个数是14个,比相间距离保护程序多了零序电流的幅值和相角。

动态更新函数用于计算测量阻抗值,在动态更新函数中将由傅里叶变换模块得到的电压电流幅值和相角组合成电压和电流的相量形式,并计算得到各相的测量阻抗值。在用测量电压除以测量电流得到测量阻抗时会遇到某时刻测量电流恰好过零点或者电流非常小的情况,此时程序会出错,因此先判断该采样点的测量电流值是否非常小,如果很小的话就直接为测量阻抗赋值,如果测量电流比较大的话,就用电压除以电流的方式得到测量阻抗。

输出函数用于保护判断,并输出最终的动作信号。在输出函数中将动态更新函数得到的各相测量阻抗与整定阻抗值比较,三相中只要有一相测量阻抗值满足动作方程就输出跳闸信号。另外,由于傅里叶变换模块需要经过一个周期才有输出,因此在输出函数的开始的时候判断仿真时间是否小于0.025s,如果是则直接输出不动作的信号,否则进行正常的保护判断程序。

程序流程图如图8所示。

初始化函数

动态更新函数

输出函数

图8 保护程序流程图

4 仿真结果

调节故障点的位置仿真得到距离保护各段的保护范围为:Ⅰ段能保护80km 内的各种故障,Ⅱ段能保护150km ,Ⅲ段能保护本级以及下级线路全长。

各段中的相间距离保护对于范围内的单相接地故障不会误动,而接地距离保护对于范围内的相间短路也不会误动作。

以130km 处发生两相相间短路为例,此时故障发生在Ⅰ段范围外,距离Ⅰ段应该不动作,而距离Ⅱ段和距离Ⅲ段分别延时0.05s 和0.1s 动作,并且这两段距离保护模块内所包含的相间距离动作而接地距离不会动作。仿真结果如图9所示。

/t s

o p o p o p

/()

I A /()

U V

图9 130km 处相间短路时距离各段动作图

/t s

o p o p

图10 距离Ⅱ段内的相间和接地保护动作图

距离Ⅱ段保护模块内部的相间距离和接地距

离模块的动作如图10,是在延时模块前的动作信号,可以看出在相间短路时由相间距离保护动作而接地距离保护不会动作。

5 结论

本文利用Matlab 建立了继电保护仿真模型,并用S 函数编写相间距离保护和接地距离保护程序,能够反应保护范围内的各种相间故障和接地故障,

并以此构建三段式距离保护模块,实现了输电线路的三段式距离保护。仿真结果表明,Matlab 软件提供了方便的仿真验证平台,利用Matlab 建模结合保护算法程序能够直观验证保护原理,有利于新的继电保护算法的研究和开发。

参考文献

[1] 张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社,2005. [2] 王忠礼,段慧达,高玉峰.MA TLA B 应用技术:在电气工程与自动化专业中的应用[M].北京:清华大学出版社,2007.

[3] 薛定宇,陈阳泉.基于Matlab/Simulink 的系统仿真技术与应用[M].北京:清华大学出版社,2002.

[4] 吴天明,赵新力,刘建存.MA TLA B 电力系统设计与分析[M].北京:国防工业出版社,2007.

[5] 陈皓.微机保护原理及算法仿真[M].北京:中国电力出版社,2007. [6] 韩笑,戈祥麟,汪经华.基于S 函数的数字式变压器差动保护仿真[J].继电器,2007,35(09):1-4.

[7]

杨兰,杨廷芳,陈众,蔡立红.MA TLAB/SIMULINK 在继电保护设计中的应用[J].电气传动自动化,2006,28(01):53-55.

基于 MATLAB 的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现 学生学号: 学生姓名: 所在班级: 任课教师: 2016年10月25日

目录 1.1QPSK系统的应用背景简介 (3) 1.2 QPSK实验仿真的意义 (3) 1.3 实验平台和实验内容 (3) 1.3.1实验平台 (3) 1.3.2实验内容 (3) 二、系统实现框图和分析 (4) 2.1、QPSK调制部分, (4) 2.2、QPSK解调部分 (5) 三、实验结果及分析 (6) 3.1、理想信道下的仿真 (6) 3.2、高斯信道下的仿真 (7) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8) 总结: (10) 参考文献: (11) 附录 (12)

1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验内容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验内容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱

基于PSCAD4.2电力系统距离保护的仿真分析

基于PSCAD4.2电力系统距离保护的仿真分析 摘要:简要地介绍了PSCAD4.2软件及其工具箱,分析了输电线路距离保护的基本原理,并利用软件提供的工具箱搭建了距离保护仿真模型,设置了输电线路可能发生的接 地故障和相间故障,最终得出了不同故障类型下输电线路的电压、电流以及其他量 的变化规律的波形,从而实现了三段式距离保护的作用。仿真波形结果表明:利用 该软件建立的模型是能够准确反应距离保护的作用机理,即距离保护装置能够快速 响应故障信号并动作于断路器,实现输电线路的保护。 关键词: PSCAD4.2;距离保护;接地故障;仿真 Analysis of power system distance protection simulation based on PSCAD4.2 Abstract: Briefly introducing PSCAD4.2 software and its toolbox ,then analyzing the basic principle of the transmission line distance protection , and use the toolbox that the software provides to build a protection simulation model and set a ground fault and phase transmission line failures the system may occur, at last obtain the voltage, current and waveform variation of other different types of transmission line failures , enabling three- distances protection. Simulation waveform results showed that: using the model of the software is accurately able to establish the reaction mechanism of the distance protection , distance protection device can quickly respond to the circuit breaker failure signal and act on it to achieve protection of transmission lines . Key words: PSCAD4.2;Distance Protection;Ground Fault;Simulation 0 引言 电力系统保护中,输电线路的保护主要是距离保护,其不受运行方式的影响,继电保护性能得到提高,因而获得广泛的应用[1]。文献[2]过对继电器模块的搭建来得到对电力系统的继电保护,但如果保护原理发生变化则相应的继电器模块也会发生变化,保护模块的移植性不强。目前,虽然电力系统的保护已经进入微机自动化时[3],但距离保护体系并不十分完善, 其中接地电阻对距离保护的影响表现突出,文献[4-6] 详述了采用自适应的方法来消除接地电阻对距离保护的影响。 PSCAD4.2是一种电力系统电磁暂态仿真软件,尤其在控制系统、无功补偿系统、高压直流输电以及继电保护系统等领域较为活跃,该软件主要对电力系统时域和频率等变量进行 仿真分析,其结果一般以简单易懂的图形界面输出,使得仿真过程清晰、准确而灵活[7-8]。 1 电力系统距离保护的原理 在电力系统继电保护中,距离保护扮演着重要的角色。它满足电力系统的选择性、灵敏性、可靠性以及能够快速切除故障,从而快速恢复电网的正常稳定运行。距离保护是反应于保护安装地点到故障发生处之间的距离(阻抗),以此来根据阻抗的大小而整定动作时间的一 种保护装置[9]。为了满足选择性、速动性和灵敏性的要求,现在广泛采用的是三段式距离保护,其网络接线如图1。

基于MATLAB的QPSK通信系统仿真设计毕业设计论文

基于MATLAB的QPSK通信系统仿真设计 摘要 随着移动通信技术的发展,以前在数字通信系统中采用FSK、ASK、PSK 等调制方式,逐渐被许多优秀的调制技术所替代。本文主要介绍了QPSK调制与解调的实现原理框图,用MATLAB软件中的SIMULINK仿真功能对QPSK调制与解调这一过程如何建立仿真模型,通过对仿真模型的运行,得到信号在QPSK 调制与解调过程中的信号时域变化图。通过该软件实现方式,可以大大提高设计的灵活性,节约设计时间,提高设计效率,从而缩小硬件电路设计的工作量,缩短开发周期。 关键词 QPSK,数字通信,调制,解调,SIMULINK -I-

Abstract As mobile communications technology, and previously in the adoption of digital cellular system, ASK, FSK PSK modulation, etc. Gradually been many excellent mod ulation technology substitution, where four phase-shift keying QPSK technology is a wireless communications technology in a binary modulation method. This article prim arily describes QPSK modulation and demodulation of the implementation of the prin ciple of block diagrams, focuses on the MATLAB SIMULINK software emulation in on QPSK modulation and demodulation the process how to build a simulation model, through the operation of simulation model, I get signal in QPSK modulation and dem odulation adjustment process domain change figure. The software implementation, ca n dramatically improve the design flexibility, saving design time, increase efficiency, design to reduce the workload of hardware circuit design, and shorten the developmen t cycle. Keywords QPSK, Digital Communication,modulation,demodulation,SIMULINK -II-

距离保护PSCAD仿真

第三章距离保护仿真构建 3.1一次系统模型 本次距离保护模型采用双电源供电的长距离输电线路配备主保护是距离保护,双侧电源均采用 R-L-C中性点接地的230kV,50Hz的电源,其部电阻9.186Ω,电抗是138mH。通过万用表确定电压电流信号,加断路器B1配置距离保护通过长距离输电线路与另一侧相接,在线路中加上故障。 系统模型 加上三相故障数字控制器不同的数字对应不同的故障。0表示没故障,1表示A相接地故障,2表示B相接地故障,3表示C相接地故障,4表示AB两相接地故障,5表示AC两相接地故障,6表示BC两相接地故障,7表示ABC三相接地故障,8表示AB两相相间短路故障,9表示AC两相相间短路故障,10表示BC两相相间短路故障,11表示ABC三相相间短路故障。对应的数字转换开关有1-6个数,每个数对应一个故障状态数字 3.1.1电源模型 这个组件模型一个三相交流电压源,源阻抗可以指定为理想(即无限总线)。这个源可能是控 制通过固定、部参数或变量的外部信号。本次模型定义为采用R-L-C中性点接地的230kV,50Hz的首段电源,其部电阻9.186Ω,电抗是138mH。双击电源模型选项一:配置选项,可以确定电源名称source1,电源阻抗类型R-L-C,中性点是否接地YES,模型显示单线路。

选项二:信号参数,可以确定是否有外控电压NO,外控频率NO,电压230kV,电压启动时间0.05s,频率50Hz,相移0。 选项三:终端条件可以不用设置。选项四:电阻设定无。选项五:阻抗R/R-L设定无。选项六: 阻抗R-L-C设定9.186ohm,138mH,0uF。

基于matlab的QPSK与BPSK信号性能比较仿真

┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 第一章概述 (1) 第二章QPSK通信系统原理与仿真 (1) 2.1 QPSK系统框图介绍 (1) 2.2QPSK信号的调制原理 (2) 2.2.1QPSK信号产生方法 (2) 2.2.2QPSK星座图 (2) 2.3QPSK解调原理及误码率分析 (3) 2.3.1QPSK解调方法 (3) 2.3.2QPSK系统误码率 (3) 2.4QPSK信号在AWGN信道下仿真 (4) 第三章BPSK通信系统原理与仿真 (4) 3.1BPSK信号的调制原理 (4) 3.2BPSK解调原理及误码率分析 (4) 第四章QPSK与BPSK性能比较 (5) 4.1QPSK与BPSK在多信道下比较仿真 (5) 4.1.1纵向比较分析 (5) 4.1.2横向比较分析 (7) 4.2仿真结果分析 (7) 4.2.1误码率分析 (7) 4.2.2频带利用率比较 (7) 附录 (8) 代码1 (8) 代码2 (8) 代码3 (10) 代码4 (12)

┊ ┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 第一章概述 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。它以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接人、移动通信及有线电视系统之中。 BPSK是英文Binary Phase Shift Keying的缩略语简称,意为二相相移键控,是利用偏离相位的复数波浪组合来表现信息键控移相方式的一种。它使用了基准的正弦波和相位反转的波浪,使一方为0,另一方为1,从而可以同时传送接受2值(1比特)的信息。 本文所研究的QPSK系统与二进制的BPSK系统相比,具有以下特点: 1.在传码率相同的情况下,四进制数字调制系统的信息速率是二进制系统的2倍。 2.在相同信息速率条件下,四进制数字调制系统的传码率是二进制系统的1/4倍,这一特 点使得四进制码元宽度是二进制码元宽度的2倍,码元宽度的加大,可增加每个码元的 能量,也可减小码间串扰的影响。 3.由于四进制码元速率比二进制的降低,所需信道带宽减小。 4.在接收系统输入信噪比相同的条件下,四进制数字调制系统的误码率要高于二进制系 统。 5.四进制数字调制系统较二进制系统复杂,常在信息速率要求较高的场合。 基于以上优点,在数字信号的调制方式中QPSK(Quadrature Phase Shift Keying)四相移键控是目前最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性,在电路上实现也较为简单,因而被WCDMA和CDMA2000等第三代移动通信系统采用。 第二章QPSK通信系统原理与仿真 2.1 QPSK系统框图介绍 在图2.1的系统中,发送方,QPSK数据源采用随机生成,信源编码采用差分编码,编码后的信号经QPSK调制器,经由发送滤波器进入传输信道。 接收方,信号首先经过相位旋转,再经匹配滤波器解调,经阈值比较得到未解码的接收信号,差分译码后得到接收信号,与信源发送信号相比较,由此得到系统误码率,同时计算系统误码率的理论值,将系统值与理论值进行比较。 对于信道,这里选取的是加性高斯白噪声(Additive White Gaussian Noise)以及多径Rayleigh

基于MATLAB的距离保护仿真

基于MATLAB的距离保护仿真 摘要:本文阐述了如何利用Matlab中的Simulink及SPS工具箱建立线路的距离保护仿真模型,并用S函数编制相间距离保护和接地距离保护算法程序,构建相应的保护模块,实现了三段式距离保护。仿真结果表明,所建立的三段式距离保护模型能够正确反应在保护区内的不同类型的短路故障并发出动作信号使断路器跳闸实现输电线路的保护功能。 关键词:Matlab;S函数;仿真;距离保护 Distance protection simulation based on Matlab ABSTRACT:This paper established a distance protection simulation model of transmission line by using Simulink and SimPowerSystem toolbox in Matlab. We programed the distance protection of phase faults and earth faults by using S-Fuction and created relevant protection models to build distance protection. The simulation results show that the three-stage distance protection model we created can response to all kinds of faults within protection zones correctly and send correct signal to the breaker of the line. KEY WORDS:Matlab; S-Function; Simulink; distance protection 0 引言 Matlab软件中的SimPowerSystem工具箱是基于Simulink发展起来的电力系统仿真工具箱,里面有许多可用于电力系统仿真的元件模块库,这些模块以图形的形式表示电力系统设备的数学模型。用户可以通过搭积木的方式建立所需仿真模型,可以设计并封装自己所需的模块,也可以用S函数将程序与Simulink解法器进行交互实现用程序控制电力系统模型的功能,最后还可以将仿真结果导入Matlab工作空间以分析仿真结果。其灵活性、方便性及实时准确性为电力系统的仿真验证提供了平台,极大地方便了电力系统的分析设计。 本文通过Simulink及SPS建立了输电线路的三段式距离保护仿真模型,用S函数编写相间距离保护和接地距离保护程序,设置了三段式距离保护作为本线路全长的主保护以及下级线路的后备保护。仿真模型能够直观动态地观察故障后保护模块内部的动作情况,从而实现对继电保护动作效果的检验。这种方法容易推广到其它保护中,尤其是实现新保护原理的仿真,具有一定的推广价值。 1 仿真模型的建立 考虑具有两级线路的单端电源110kV单回线输电线路系统,如图1所示。距离保护安装在线路AB的断路器处,作为本线路AB的主保护以及下级线路BC的后备保护。 . 负荷 2 1 图1 单端电源电力系统 系统的各个元件参数为:电压源的线电压10.5kV,内阻Zg=0.001+j0.0157Ω;变压器容量31.5MV A,Yg-d11接线,折算到高压侧的阻抗Z T=1.86+j18.6Ω;两级线路长度均为100km,线路的正序阻抗z1=(0.05+j0.3)Ω/km,零序阻抗z0=(0.04+j1.2) Ω/km ;负荷容量S LD=1.2+j0.9MV A。 在Matlab/Simulink中建立仿真模型,如图2所示。保护模块已经封装成子系统,其输入数据为断路器处的电压电流测量值,其输出信号送至断路器的控制端,以控制断路器的开合状态(信号0表示跳闸,信号1表示合闸,断路器初始状态为合闸)。用故障模块设置短路类型以及故障发生的时间(t=0.03s)。通过改变故障点两侧线路的长度来改变故障点的位置,但两侧线路的长度之和始终保持200km不变。仿真起止时间为0~0.2s,采用变步长、ode23t算法进行仿真。所有模块的频率均为50Hz。 图2 距离保护仿真模型 2 保护模块的构建 2.1 距离保护原理

QPSK通信系统性能分析与MATLAB仿真报告

淮海工学院课程设计报告书 课程名称:通信系统的计算机仿真设计 题目:QPSK通信系统性能分析 与MATLAB仿真 学院:电子工程学院 学期:2013-2014-2 专业班级: 姓名: 学号: 评语: 成绩: 签名: 日期:

QPSK通信系统性能分析与MATLAB仿真 1 绪论 1.1 研究背景与研究意义 数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。 本实验采用QPSK。QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 课程设计的目的和任务 目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 课程设计的任务是: (1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。 (2)训练学生网络设计能力。 (3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。1.3 可行性分析 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,

基于MATLAB的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于 MATLAB 的QPSK系统仿真设计与实现 学生学号: 学生: 所在班级: 任课教师: 2016年 10月25日

目录 1.1QPSK系统的应用背景简介 (3) 1.2 QPSK实验仿真的意义 (3) 1.3 实验平台和实验容 (3) 1.3.1实验平台 (3) 1.3.2实验容 (3) 二、系统实现框图和分析 (4) 2.1、QPSK调制部分, (4) 2.2、QPSK解调部分 (5) 三、实验结果及分析 (6) 3.1、理想信道下的仿真 (6) 3.2、高斯信道下的仿真 (7) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8) 总结: (10) 参考文献: (11) 附录 (12)

1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱

某输电线路距离保护设计方案

某输电线路距离保护设计方案 1.1输电线路距离保护概述 输电线路距离保护是指利用阻抗元件来反应短路故障的保护装置,阻抗元件的阻抗值是接入该元件的电压与电流的比值,也就是短路点至保护安装处的阻抗值。因线路的阻抗值与距离成正比,所以叫距离保护或阻抗保护。系统在正常运行时,不可能总工作于最大运行方式下,因此当运行方式变小时,电流保护的保护范围将缩短,灵敏度降低;而距离保护测量的是短路点至保护安装处的距离,受系统运行方式影响较小,保护范围稳定,常用于线路保护 电力系统稳定运行主要有符合要求电网结构、系统运行方式和电力系统继电保护来保证。高压及以上等级电网中,继电装置可靠性和速动性有双重主保护来保证,其选择性和灵敏性主要由相间接地故障后被保护延时段来保证。距离保护是以距离测量元件为基础构成保护装置,称阻抗保护。系统正常运行时,保护装置安装处的电压为系统的额定电压,电流负载电流,发生短路故障时,电压降低、电流增大。因此,电压和电流比,正常状态和故障状态有很大变化。由于线路阻抗和距离成正比,保护安装处的电压与电流之比反映了保护安装处到短路点的阻抗,也反映保护安装处到短路点距离。所以按照距离远近来确定保护动作时间,这样就能有选择地切除故障。 当前微计算机硬件的更新和网络化发展在计算机控制领域。单片机与DSP芯片二者技术上的融合,主要体现在运算能力的提高及嵌入式网络通信芯片的出现和应用等方面。这些发展使硬件设计更加方便。高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。硬件技术的不断更新和微机保护设计网络化,将为距离保护的设计和发展带来一种全新的理念和创新,它会大大简化硬件设计、增强硬件的可靠性,使装置真正具有了局部或整体升级的可能。 1.2本文研究内容 本次课程设计的主要是输电线路的距离保护。计算和分析主要内容是计算保护1距离保护Ⅰ段、Ⅱ段和Ⅲ段整定值和灵敏度,计算灵敏度同时要注意每个保护的动作时间要精确,上述工作完成后接下来对设计提出的系统震荡和短路过渡电阻对系统的影响进行相应的计算分析,并确定距离保护的范围,并分析系统在最小运行方式下振荡时,保护1各段距离保护的动作情况。后用MATLAB仿真,验证计算的正确性。

基于EMTP的数字式距离保护仿真教学

第28卷 第5期2006年10月 电气电子教学学报 JO U RN A L O F EEE Vol.28 No.5 Oct.2006 基于EMTP的数字式距离保护仿真教学 屈桂银,刘建华,苏 盛,曾祥君 (长沙理工大学 电气与信息工程学院,湖南长沙410077)y 摘 要:针对教学需要,为促进学生对继电保护系统尽早形成整体认识,并深入了解数字式继电保护的各个实现细节,提出了一种在EM T P电磁暂态仿真软件基础上编制自定义模块实现简化的线路距离保护教学系统。该自定义模块在EM TP故障仿真的过程中与EM TP仿真软件以闭环方式进行交互,对数字式继电保护的各实现环节进行了仿真建模。文末对相间短路故障和单相接地故障进行了仿真分析。 关键词:G642 4EM T P;数字式距离保护;仿真 中图分类号:G642 4 文献标识码:A 文章编号:1008-0686(2006)05-0101-05 Educational Use of EMTP for the S tudy of a Distance Relaying of Transmission Lines QU Gui yin,LIU Jian hua,SU Sheng,ZENG Xian gjun (Colle ge of E lec tr ica l Eng ine ering,Chang sha Univ er sity of Scienc e and Tec hnology,Chang sha410077,China) Abstract:In order to enhance understanding o f the basic co ncepts of distance relaying of underg raduate students w ho are new to the subject o f pow er system protective relay ing.This paper pro poses an EM TP based integr ated simulatio n sy stem to provide systematic relaying co ncepts by mo deling a digital relaying system using self defined model functio ns in a closed loop manner.Various elements of dig ital distance re lay ing are org anized to g enerate a systematic approach to modeling the actual hardw ar e of dig ital relaying system s.Case studies relating to the most commo nly encountered single phase to gro und fault and phase to phase fault are presented and various fault distances and fault inception ang les are considered. Keywords:EM TP;distance protection;sim ulation 0 引言 继电保护系统的作用是在电网发生故障时根据异常信号检测、定位并隔离故障点,以确保电力系统的安全稳定运行和主设备安全。随着电网的互联和远距离输电的兴起,传统的模拟保护系统在性能上越来越难以达到现代电网的保护要求,而数字式的微机保护系统则成为继电保护的主流。在开发微机保护系统时,可以先利用电磁暂态仿真软件EMT P 对电网的各种故障和继电保护装置的保护逻辑进行模拟仿真测试。 为了促进电气专业学生对数字式继电保护系统的整体及各实现环节的深入认识,作为电气与信息工程学院电气工程专业教学环节创新的一部分,本文在EMT P电磁暂态仿真软件的基础上编制了自定义模块,对数字式继电保护的低通滤波、直流滤波及基频分量求取等实现环节进行了建模,并对单相接地短路及相间短路故障进行了仿真分析。由于学生可以形象地看到仿真过程中继电保护每一实现环节对继电保护系统性能的影响,因此该仿真系统对促进学生理解数字式继电保护的工作原理具有积极的作用。 y收稿日期:2006-06-26;修回日期:2006-07-14 第一作者:屈桂银(1954-),男,湖南石门人,大专,实验师,主要从事电气实验教学及电力系统模拟仿真研究。

电气继电保护仿真实验报告

《继电保护仿真实验》报告 一.线路距离保护数字仿真实验 1.实验预习 电力系统线路距离保护的工作原理,接地距离保护与相间距离保护的区别,距离保护的整定。 2.实验目的 仿真电力系统线路故障和距离保护动作。 3.实验步骤 (1)将dist_protection拷到电脑,进入PSCAD界面; (2)打开dist_protection; (3)认识各个模块作用,找到接地距离保护和相间距离保护部分; (4)运行。 4.实验记录 (1)断路器B1处保护的包括故障瞬间及断路器断开瞬间的三相测量电压、电流; a.单相接地三相测量电压(故障相:A相) 单相接地三相测量电流(故障相:A相)

b.两相短路接地三相测量电压(故障相:B、C相) 两相短路接地三相测量电流(故障相:B、C相) c.三相短路接地三相测量电压

三相短路接地三相测量电流 (2)各个接地距离、相间距离保护测量阻抗的变化。 在dist_relay模块中找到显示接地距离、相间距离保护测量阻抗和整定阻抗的两个XY_Plot,利用Plot右侧的滑竿可以清楚看到测量阻抗与整定阻抗的关系。注意记录的Plot要显示整个运行期间测量阻抗与整定阻抗的关系。 由所学知识可知:当测量阻抗落入整定阻抗特性内则保护动作。

a.单相接地短路时接地距离保护测量阻抗的变化(左图:整个过程。右图:放大) 单相接地短路时相间距离保护测量阻抗的变化 可知:相间距离保护无法正确反应 单相接地故障距离。即保护拒动。b.两相接地短路时接地距离保护测量阻抗变化(左图:整个过程。右图:放大)

两相接地短路时相间距离保护测量阻抗的变化(左图:整个过程。右图:放大) c.三相接地短路时接地距离保护测量阻抗变化(左图:整个过程。右图:放大)

毕业设计基于matlab的QPSK系统仿真

基于MATLAB的QPSK仿真设计与实现 一.前言 1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验内容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验内容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱 c.QPSK信号星座图 2.构建一个在AWGN(高斯白噪声)信道条件下的QPSK仿真系统,要求仿真结果有

距离保护PSCAD仿真要点

东南大学成贤学院毕业设计论文 第三章距离保护仿真构建 3.1一次系统模型 本次距离保护模型采用双电源供电的长距离输电线路配备主保护是距离保护,双侧电源均采用R-L-C中性点接地的230kV,50Hz的电源,其内部电阻9.186Ω,电抗是138mH。通过万用表确定电压电流信号,加断路器B1配置距离保护通过长距离输电线路与另一侧相接,在线路中加上故障。 系统模型 加上三相故障数字控制器不同的数字对应不同的故障。0表示没故障,1表示A相接地故障,2表示B相接地故障,3表示C相接地故障,4表示AB两相接地故障,5表示AC两相接地故障,6表示BC两相接地故障,7表示ABC三相接地故障,8表示AB两相相间短路故障,9表示AC两相相间短路故障,10表示BC两相相间短路故障,11表示ABC三相相间短路故障。对应的数字转换开关有1-6个数,每个数对应一个故障状态数字 3.1.1电源模型 这个组件模型一个三相交流电压源,源阻抗可以指定为理想(即无限总线)。这个源可能是控制通过固定、内部参数或变量的外部信号。本次模型定义为采用R-L-C中性点接地的230kV,50Hz的首段电源,其内部电阻9.186Ω,电抗是138mH。双击电源模型选项一:配置选项,可以确定电源名称source1,电源阻抗类型R-L-C,中性点是否接地YES,模型显示单线路。

选项二:信号参数,可以确定是否有外控电压NO,外控频率NO,电压230kV,电压启动时间0.05s,频率50Hz,相移0。 选项三:终端条件可以不用设置。选项四:电阻设定无。选项五:阻抗R/R-L设定无。选项六:阻抗R-L-C设定9.186ohm,138mH,0uF。

MATLAB对QPSK通信系统的仿真

QPSK通信系统的性能分析与matlab仿真 1 绪论 在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。在新技术革命的高速推动和信息高速公路的建设,全球网络化发展浪潮的推动下,通信技术得到迅猛的发展,载波通信、卫星通信和移动通信技术正在向数字化、智能化、宽带化发展。Simulink具有适应面广、结构和流程清晰及仿真精细、效率高、贴近实际、等优点,基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件应用于Simulink。本文设计出一个QPSK仿真模型,以分析QPSK在高斯信道中的性能,通过此次课程设计,更好地了解QPSK系统的工作原理,传输比特错误率和符号错误率的计算。 1.1 研究背景与研究意义 1.1.1 研究背景 在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。信息的数字转换处理技术走向成熟,为大规模、多领域的信息产品制造和信息服务创造了条件。高新技术层出不穷。随着通信技术的发展,通信系统方面的设计也会越来越复杂,利用计算机软件的仿真,可以大大地降低通信过程中的实验成本。Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中只

要通过简单的鼠标操作,就可以构造出复杂的系统。Simulink提供了一个建立模型方块图的图形用户接口,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。 1.1.2研究意义 通过完成实验的设计内容,加深对通信原理理论的理解,熟悉通信系统的基本概念,复习正交相位偏移键控(QPSK)调制解调的基本原理和误比特率的计算方法,了解调制解调方式中最基础的方法。包括模拟调制中的幅度调制(AM)如双边带幅度调制(DSB)、单边带幅度调制(SSB)、常规幅度调制;角度调制中的相位调制(FM)和频率调制(PM)。以及数字调制中的幅度调制,相位调制,频率调制等方式,了解QPSK的实现方法及数学原理,掌握通信系统Simulink仿真建模方法。数字通信之所以取得迅速的发展不是偶然的现象, 有其理论上、技术上和客观需求上的基础从理论分析开始, 人们早就认识到数字通信在理论上比模拟通信具有一系列优点。除上述各点外, 在频带和功率的有效利用方面也更为有利计算技术和微电子学的进展为通信的数字化提供了坚实的技术基础人们在社会生活中对多种功能综合服务的需要是数字通信发展的强大动力。 1.2 课程设计的目的和任务 1.2.1 课程设计的目的 本次课程设计是根据“通信工程专业培养计划”要求而制定的。通信系统的计算机仿真设计课程设计是通信工程专业的学生在学完通信工程专业基础课、通信工程专业主干课及科学计算与仿真专业课后进行的综合性课程设计。其目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 1.2.2课程设计的任务 (1)掌握一般通信系统设计的过程、步骤、要求、工作内容及设计方法;掌握

输电线路距离保护建模与仿真概要

摘要 当电力系统运行的时候,时常会发生各种故障使得系统不能够正常运作,其中短路故障就是最危险也是最普通的的故障。在出现故障时,电力系统必须快速并有选择地去切除出现故障的元件,这时就需要在电器元件上安装继电保护装置来保护,距离保护是一种在继电保护中定位故障点的有效方法。 本文依据输电线路距离保护的基本原理和组成,对距离保护系统中的方向阻抗继电器进行建模,并使用MATLAB/SIMULINK对线路的距离保护建立仿真模型,使距离保护成功仿真。仿真结果表明:对距离保护建立的仿真模型能够被正确运行,且可以正确地表示不一样类型的短路故障并根据所给不一样的故障发出动作信号让断路器跳闸以实现对线路的保护。 关键词距离保护;方向阻抗继电器;建模;仿真

Abstract When the power system runs, there are often all kinds of fault leading to that the system can’t run correctly. Of all the faults, the most dangerous and most common fault is the short circuit fault. In case of faults, the power system must be fast and selective to remove the component of fault, then you need to install protection devices to protect the electrical components. Distance protection is an effective method to locate the point of fault in the relay. According to the basic principle and structure of distance protection of transmission line, this paper makes a mathematical model of directional impedance relay in the distance protection and uses SIMULINK to establish a distance protection simulation model of transmission line in MATLAB. It makes the three-stage distance protection emulation realize. Simulation results show that: the three-stage distance protection simulation model can run correctly, and correctly represent different kinds of short circuit fault . According to the different kinds of fault, it can also send the correct signal to make the breaker disconnect so that it can protect the transmission line. Keywords Distance protection Directional Impedance Relay Modeling SIMULINK

相关文档
最新文档